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Abstract—The Airport Collaborative Decision Making (A-
CDM) concept yields concrete and promising solutions for
airports, in terms of traffic punctuality and predictability, with
possible delay, noise and pollution reduction. A key feature of A-
CDM is the Departure Management (DMAN): runway take-off
sequences can be anticipated such that a significant part of the
delay can be shifted at the gate, engines off, without penalizing
the remaining traffic. During this process, an increase in the gate
occupancy for delayed departures is unavoidable, therefore the
airport layout must provide enough gates and their allocation
must be robust enough w.r.t. departures delay.

In this paper, we introduce a method to estimate the gate delays
due to the DMAN pre-departure scheduling, then we propose
a robust gate allocation algorithm and assess its performance
with current and increased traffic at Paris-Charles-de-Gaulle
international airport. Results show a significant reduction in the
number of gate conflicts, when comparing such a robust gate
allocation to current practice.

Index Terms—departure management, gate allocation, robust-
ness

I. INTRODUCTION

All airports have to handle many challenges regarding
traffic increase, delay reduction, traffic predictability and en-
vironmental impact. In this scope, the Airport Collaborative
Decision Making (A-CDM) concepts offer concrete solutions
for airports to improve the management of these topics.

A-CDM was first developed to help the airport stakeholders
in adverse conditions (e.g. bad weather, capacity reduction, se-
curity issues, systems failure, etc.), but the European A-CDM
program also includes the definition of some new organization
and systems, in order to bring significant improvements in
normal operating conditions:

o Optimizing the use of existing resources at any time can

decrease delay and improve punctuality.

« Avoiding surface congestion enables to reduce noise and
pollution.

o Estimating taxiing times more accurately, by including
anticipated delay, increases the traffic predictability, not
only at the considered airport but also for the other
components of the air traffic network like other airports
or the approach and en-route sectors.

Many European airports have already obtained the A-CDM
certification and many others are currently in the process of its
implementation [1]. Even if this program is often summarized
as information sharing between different stakeholders, it also

includes a Departure Management (DMAN) process, which
is an essential feature in normal operating conditions: its
output is a pre-departure sequence that aims at keeping delayed
departures at gate, engines off and apart from the rest of the
traffic rather than on the taxiways or near the runways. The
benefits of DMAN are threefold:

« runways takeoff sequences are anticipated;

o unavoidable delays due to the runways capacity are
estimated;

« realistic taxiing times are taken into account in order to
shift a significant part of these delays at the gates, without
penalizing the departure flow.

The DMAN process of the European A-CDM concept has
proven to be very efficient, once successfully calibrated to
each airport: in particular, the taxiing times used to shift the
delay at the gates is known to be a very sensitive parameter
during the implementation. Another unavoidable effect of this
process is to increase the gate occupancy before departure,
notably during traffic peaks where the amount of delay due to
runways capacities increases.

However, two measures can be taken to mitigate these
effects:

o The airport layout must offers enough gates in order to
accommodate the additional gate occupancy.

o The gate allocation must be compatible with the depar-
tures delays, which are not evenly distributed among all
flights in a given terminal.

While the former is very expansive, the latter is not an easy
task: the initial gate allocation must be achieved well before
the tactical DMAN process, and deviations from the plan can
result in very complex situations in which arrivals have to wait
a long time before a suitable gate becomes available.

For these reasons, A-CDM-enabled airports need a gate
allocation process that produces more robust schedules w.r.t.
departures delays. To overcome this issue, we propose in this
study to:

o Estimate the increase in gate occupancy due to the
DMAN process, on a major international airport like
Paris-Charles-de-Gaulle (Paris-CDG).

o Design an initial gate allocation method to optimize the
robustness w.r.t. departure delays and assess its perfor-
mance.



o Evaluate the scalability of this scheme w.r.t. the expected
traffic growth.

After an analysis of existing works related to departure man-
agement and gate allocation, this article presents the strategy
that was chosen to estimate the additional gate occupancy for
departures, by simulating the DMAN process at Paris-CDG
airport, and the general formulation and resolution method
used to obtain a robust gate allocation for each terminal of
the airport. Eventually, we describe the results obtained when
combining these two optimization processes, first in terms of
additional gate occupancy, then by measuring the impact of
a robust gate allocation over the initial one on the amount of
gate conflicts.

II. RELATED WORKS

In this section, we first review the state of the art on the
optimization of the departure process at busy airport in an
A-CDM context. Then we mention the main models of the
well-studied Gate Allocation Problem, their diverse objectives
and the interest to optimize its robustness prior to the DMAN
sequencing.

A. Airport Collaborative Decision Making and Departure
Management

The A-CDM program [1] is the result of a large body of
research and development regarding the sharing of information
and the management of departures at the airport level. In
Europe, this program is already implemented at many airports
and its positive effects on local and network operations have
already been measured [2].

The main idea of the departure management process is to
avoid surface congestion, by sequencing the departures from
their gate positions rather than on the taxiways or in front
of the runways. This task can involve tools and displays
to support humans decisions: in [3], the authors conduct a
functional analysis to define the needs and the role of a system
called Departure Reservoir Coordinator that would support
human controllers in the task of departure metering. In [4],
the author provides a comprehensive analysis of the depar-
ture operations including the characterization of the airport
capacity, and proposes a model of the departure management
process, in order to define and test the efficiency of algorithms
to better control the departure flow. The author measures the
gate-hold times and the corresponding fuel burn and emissions
that can be saved, but does not investigate the consequent gate
conflicts that can appear between departures and arrivals.

The central point of the departure management process is
based on accurate estimates of runway delays and of the
part of these delays that can be shifted at the gate without
losing the takeoff rate at the runway level. This process
requires the computation of feasible runway takeoff sequences,
which also is a combinatorial optimization problem, because
takeoff sequences must be optimized, can be constrained by
Calculated TakeOff Times (CTOT), and are linked to the
departure routing problem, as mentioned in [5] and [6] where

DMAN is applied on real traffic at the London Heathrow and
Paris-CDG airports respectively.

The goal of this article is to estimate the impact of such
departures metering strategies on gate occupancy and the pos-
sible gate conflicts that can appear, which has been much less
studied in the literature. One of the most complete work on this
topic that we are aware of is [7]: the author provides a rigorous
analysis of ramp operations and congestion, proposes various
methods to optimize the gate assignment w.r.t. passengers,
aircraft or operations, and a queueing model to meter the
departure process and the number of gate conflicts w.r.t. the
gate assignment strategy.

B. Gate Allocation Problem

The GAP' consists in finding an allocation of airport gates
to arriving traffic with fixed occupancy periods, such that one
aircraft at most is assigned to a given gate at any time. This
problem has been studied since several decades with many
variants as mentioned in [8].

If there were no compatibility restriction between gates and
aircraft, the corresponding decision problem could be modeled
as the coloring of an interval graph, which is polynomial [9]
for the minimization of the number of colors (i.e. gates).
Airport gates are generally not equivalent resources though,
as they are dimensioned to accommodate specific types of
aircraft. Therefore, the set of compatible gates for an aircraft
usually is a strict subset of all the available gates and the
decision version of the allocation problem is rather a [ist-
coloring problem, which is NP-Complete even for interval
graphs [10]. Other operational side constraints like the simul-
taneous occupancy of adjacent gates for large aircraft appear
in some of the most refined models.

Moreover, gates may also be endowed with other secondary
features (e.g. compatible airlines, domestic or international,
terminal or apron) which should match the characteristics
of the flight and the preferences of airlines as much as
possible. These preferences can be modeled as costs associated
with each possible assignment, and standard GAP objectives
often include the minimization of their sum, which is NP-
Hard [11]. Other classic objectives can be the passengers
walking distance [7] (or other connection means like buses),
which is similar to the Quadratic Assignment Problem, or the
number of towing movements [12].

In order to absorb possible deviations from the original
schedule, because of the DMAN sequencing (or other factors
like traffic delays, severe weather conditions, equipment fail-
ures. .. ), and avoid costly disruptions, our study rather focuses
on optimizing the robustness of the allocation as proposed
by [13], which minimizes the variance of idle times to balance
and spread them over time and resources. Despite its practical
importance, research on the robustness of solutions to the GAP
is quite limited.

To solve these very diverse variants of the GAP, many clas-
sic combinatorial optimization methods were experimented,

IThis problem is sometimes called Airport Gate Allocation Problem
(AGAP) or Stand Allocation Problem (SAP) in the literature.



depending on the linearity of the model, the size of the
instances and the requirements on the execution time of the
solver. One of the most used tools is Mixed Integer Program-
ming (MIP) or Integer Linear Programming (ILP) solvers like
CPLEX or Gurobi to obtain proved optimal solutions like [12],
[14]. Constraint Programming was also experimented by [15],
[16] to solve the GAP as a scheduling problem similar to
Fixed Job Scheduling (FJS). As previously mentioned, all
considered variants of the GAP are NP-Complete or NP-Hard,
so approximation algorithms like metaheuristics (e.g. Genetic
Algorithm, Tabu Search) have also been used by [7], [14] to
solve large instances in reasonable time or non-linear models.

III. DEPARTURE MANAGEMENT AT PARIS-CDG

In this section, we focus on the sequence of departures on
each runway at Paris-CDG airport, in order to estimate the
delay that can be shifted at the gate by the Departure Man-
agement (DMAN) process. We first describe the context and
remind the overall principles of DMAN, and then detail the
method used to estimate feasible optimized take-off sequences
on each runway.

A. Simulation of the Departures Scheduling Process

We consider that a fixed terminal and a fixed runway are
assigned to each departure, as it is often the case at Paris-
CDG airport, where the terminal of each flight is normally
defined long before it happens, and where runway assignment
does not depend on the terminal, but on the departure route
of the aircraft or its exit point from the approach sectors. In
standard configuration (East or West), Paris-CDG airport offers
two doublets of specialized runways (see Figure 1): 27R-09L,
27L-09R to the north and 26L-08R, 26R-08L to the south,
with an arrival and a departure runway in each doublet, so
that takeoff sequencing does not directly interfere with landing
sequencing.

Fig. 1. Paris-CDG international airport map (West configuration).

Each departure has an EOBT (Estimated Off-Block Time)
given by the airline that can be added to an estimate of the

taxi-out time (depending on the gate and the runway used) to
obtain the estimate of the minimal takeoff time of the flight.

For a given period of the day and a given runway, feasible
takeoff times are deduced from the minimal takeoff times by
taking into account the runway constraints:

o the runway separation rules, which can be modeled as
a minimal separation time between each pair of aircraft,
depending on their wake turbulence category;

o the Calculated TakeOff Time (CTOT) of the concerned
departures, which specifies a time interval of 15min in
which each aircraft is constrained to take off.

The resulting runway sequence is given by the TTOT (Target
TakeOff Time) of each aircraft, which is a delayed takeoff time
compared to the initial (minimal) one. In case of a tactical slot
allocation, the TTOT already takes into account the CTOT
assigned by the network management center.

In the DMAN process, the estimate of the taxi-out time of
each aircraft (sometimes re-calibrated for operational reasons,
specific to the airport) is then subtracted from the TTOT to
obtain the TSAT (Target Start-up Approval Time), and the
TOBT (Target Oft-Block Time), equal to or later than the
initial EOBT. Thus, the difference between the TOBT and
EOBT is the additional gate occupancy for the departure.

TSAT: Target Start Up Approval Times
TOBT: Target Off Block Times

i

- Calibrated Taxi Out Times
(depending on the terminal)

‘ EOBT: Estimated Off Block Times ‘ ‘

+ Minimal Taxi Out Times
(depending on the terminal)

Minimal Take Off Times
‘ Runway scheduling >

Fig. 2. Departure management.

‘ TTOT: Target Take Off Times ‘

As illustrated on Figure 2, the crux of the departure schedul-
ing is the computation of the takeoff sequence on each runway,
given the minimal takeoff times of each departure. In this
article, we propose to compute an optimal runway sequence
for each 30min period of the day, in order to minimize
the additional gate occupancy that will result from it. The
minimization criterion is therefore the total delay due to the
takeoff sequence.

B. Runway Scheduling

For a set of n departures scheduled on a given period on a
given runway, we formulate the departure runway scheduling
problem as follows:

o The decision variables are the target takeoff times of each
departure:

T={t;,Vie[l,n]} (1)

e The domain of each variable ¢; takes into account the
minimal takeoff time 7;™" and the maximal takeoff



time 7;"%* of the regulated departures of set C that are
constrained with a CTOT:

™ <ty Vi € [1,n) ()
t; TP VieC 3)

o The constraints of the problem are the separation rules on
the runway, modeled as a minimal separation time Sep, ;
between each successive takeoffs ¢ and j, depending on
their wake turbulence categories:

ti+8ep; ; <t; Vtj+Sep;, <ti, Vi#je€[l,n] (4)

« The minimization criterion is the total delay generated by
the takeoff sequence:

fT) =Y ti—T™" )
=1

First come first served sequence

Fig. 3. Permutation tree.

This formulation corresponds to a standard scheduling prob-
lem, known to be highly combinatorial with the number of
variables (aircraft). However, as explained in [6], by taking
advantage of the numerous symmetries of the problem and
by pruning as many sub-optimal parts of the search space as
possible, a Branch and Bound algorithm can find an optimal
solution in a very short time (a few seconds), for small
instances corresponding to a period from 30 to 60 min of
planned traffic on the runway (less than 100 aircraft). The
algorithm begins with the first-come first-served sequence (i.e.
aircraft are initially sorted by their minimal takeoff time) and
explores the permutation tree (see Figure 3) while pruning the
subtrees that cannot improve the best solution so far:

e During the exploration of the permutations tree, when
the delay resulting from the already instantiated variables
becomes higher than the one of the best known solution
so far, the current node is pruned (and the algorithm
backtracks).

o As the exploration starts with the first-come first-served
sequence, there is no advantage to swap equivalent air-
craft. Two aircraft are equivalent when they have the
same wake vortex category and the same class of CTOT
constraints: both without CTOT or both with CTOTs in
the same order as their minimal takeoff times.

o Many other sub-optimal sequences can be pruned, be-
cause it cannot be optimal to schedule an aircraft j

before an aircraft 7 that could be scheduled earlier without
penalizing it, as this would result in an idle period on the
runway during which the aircraft ¢ could be scheduled.
According to this rule, once a variable ¢; is instantiated,
all the permutations of ¢ and j verifying the following
inequation are pruned:

t; + Sep, ; < T;"" 6)

In order to obtain a valid runway sequence for the whole
day of traffic, the problem is solved for each successive 30 min
period and for each departure runway, adding to each period
the departures that could not be scheduled before the end of
the last period, if any. As explained in the last section, the
results of this scheduling process are the TTOT and the TOBT
for each departure, which directly give the estimate of the
additional gate occupancy due to the DMAN process.

IV. GATE ALLOCATION PROBLEM

In the following sections, we first present a simple integer
scheduling model of the GAP which can directly be solved by
Constraint Programming as in [16] for small instances. Then
we describe a (much larger) boolean ILP version (similar to
one of the models of [14]), which state-of-the-art MIP solvers
can optimize using the Branch and Cut algorithm mentioned in
Section IV-D, even for realistic instances at major international
airports as shown in Section V for Paris-CDG.

A. Instance

An instance of the GAP is defined by:
o F={f1,...,fn} asetof n flights (or tasks), with Vf; €
F:
— ff and f? the start and end times of the gate
occupancy by f;;
- G, € G a set of compatible gates which can be
assigned to the aircraft.
e G={g1,.-.,9m} the set of m gates (or resources), with
ng eg:
- g; and g5 the opening and closing times of gate
g;. However, except when mentioned otherwise, all
gates are considered available during the same pe-
riod? in the following, therefore V7, g; = g° and
9; =9
- Fj = {f; € F st gj € G} the set® of compatible
aircraft that can be executed on gate g;.

B. Scheduling Model

The scheduling of tasks with fixed start and end times
on non-identical resources is a versatile NP-complete prob-
lem [17] which occurs in many applications beside the GAP,
like processors scheduling or staff rostering. Though various
objectives can be associated with this problem, our approach
is dedicated to the optimization of resource costs based on the
idle times to ensure the robustness of solutions w.r.t. delays.

ZNote that this is not a limitation as unavailability periods over a given
gate can easily be modeled by additional aircraft with a singleton compatible
resource set.

3Redundantly defined from G; to simplify notations in the next section.



1) Decision Variables: A solution to the GAP consists in
assigning a gate to each aircraft while satisfying the constraints
described in the next section. We define the set of decision
variables associated to the aircraft of F as:

X ={z; €{jst gj€G} VfieF}

2) Constraints: The only constraints of this essential ver-
sion of the problem are the non-overlapping of the aircraft
occupancies scheduled on the same gate. As aircraft occupancy
start and end times are fixed, we require that overlapping
aircraft are assigned to different resources:

Vi# i, [ N fil # @ = @i # @ ™)

3) Cost: Many different kind of costs can be taken into
account to optimize the allocation of fixed tasks on non-
identical resources. For the GAP, one of the most crucial
objectives is the robustness of the schedule to prevent the
DMAN sequencing (and other delay-inducing uncertainties
that burden air traffic) from disrupting airport operations. To be
able to absorb those possible delays, [13] proposes to minimize
the variance of idle times, which tends to balance them over
resources and time while allowing necessary short or large
pauses required by some instances.

Since all tasks must be scheduled, the sum of the duration
of the n + m idle times (one before each task and an extra
one before the closing of each resource), and therefore their
mean, are constant. Hence, minimizing the variance of idle
times amounts to minimizing the sum of their squares:

cost = Z Cj ®)

9; €9

where c; is the cost of a single resource g;:

>

fi€Fj st z;i=j

¢; = (Frsttoy = 97" + (next(fi) = ££)°

with:

o next(f;) = g5 if f; is the last task assigned on resource
g; or the start time of the task immediately following f;
on g; otherwise;

o first(g;) is the index of the first task scheduled on
resource g;.

Note that our approach could be generalized to any convex
objective function of the idle times to evenly distribute them
between tasks and among resources.

C. Integer Linear Programming Model

In this section, we describe an ILP model of the GAP similar
to the model called “P5” in [14] and designed to obtain a
linear expression for the cost specified in Section IV-B3, i.e.
the sum of the square of all idle times for all the gates of a
given terminal.

1) Decision Variables: First, we define the set X p of
binary decision variables x; ; ., which are equal to 1 iff flight
f; immediately succeeds to flight f; on gate g, as the union of
the four following sets defined by Equations 9 to 12, provided
that the flights f; are ordered by increasing start times f; (so
that only pairs of ordered indices ¢ < j need to be considered):

Vi<je[ln], st ff < 7. Vg, € GiN Gy,

S 1 if f; directly succeeds to f; on gy ©)
4k 7 0 otherwise

Vj € [1,n], Vg, € G;,

| 1 if f; is the first flight of g
L0,k = { 0 otherwise (10)
' | 1 if f; is the last flight of g
Tintlk = { 0 otherwise an
Vk € [1,m],
__ | 1 if there is no flight assigned to g,
Tontlk = { 0 otherwise (12

Note that flight indices in interval [1,n] correspond to regular
flights that belong to F, whereas indices 0 and n + 1 corre-
spond to fictive tasks representing the opening and closing of
the gates. This ILP model requires O(n?m) decision variables
(instead of O(n) for the scheduling one).

For each decision variable x; j;, we also define a corre-
sponding idle period I; ; 1 to take into account the contribution
of each pair of successive flights (as well as the opening and
closing idle periods) in the cost of a solution (cf. Equation 19):

fi—ff if1<i<j<n

$—g; ifi=0,7<n
Lw=147 9 =05 (13)

gp—ff fizl,j=n+1

gr—gp fi=0,j=n+1

2) Constraints: As mentioned in Section IV-B3, there are
exactly n 4+ m idle periods (possibly of length 0) in a feasible

solution, so:

Vi ;1 EXILP

Tijk=TN+m (14)

Moreover, either a gate k is empty and zg p41,5 = 1, or its
first flight of index jo < n is unique and g j, = 1, all other
Zo,j,x being equal to O, therefore:

2

Vzo,j,k EXTLP

vk € [1,m], 0,5,k = 1 (15)

Furthermore, in order to guarantee that only one flight can be
assigned immediately before a given flight f; (Equation 16)



or after flight f; (Equation 17), we add the two following sets
of constraints:

Vielnl, > wije=1 (16)
Vi ik EXILP
Viellnl, > mik=1 a7

Vx; j xr €XILP

Eventually, we have to ensure that if a pair of flights f; and
f; are successively assigned on gate g, no successor fj of
f; can be assigned another gate gy than gj:

Vi < je€0,n], Vk € [1,m],

2.

YV, i EXILP
k' #k

Tigk + zjjk <1 (18)

These last O(n?m) constraints dominate the number of con-
straints of this model.

3) Cost: Finally, the linear objective function to minimize,
which coincides with the cost of the scheduling model defined
by Equation 8, can be expressed as the sum of the products
of the square of each idle period I; ;i by the corresponding
binary decision variable x; ; 1

2
E Ii,j,kxi,j,k

YV, ik EXILP
D. Resolution with a MIP Solver

Even if the ILP model of the previous section is much larger
than the scheduling one in terms of numbers of variables and
constraints, MIP solvers have become such powerful tools for
modeling and solving real-world combinatorial optimization
problems [18] that optimal solutions could be proved for all
instances of our data set, including for terminal F, the busiest
one at Paris-CDG airport, with almost 200 flights per day to
allocate among 30 gates.

The main resolution algorithm to solve ILP and MIP mod-
els, Branch and Cut (BC) [19], is based on a Branch and
Bound algorithm where a Simplex algorithm is run at each
node of the search tree to solve continuous relaxations of the
problem. Cutting planes that exclude non-integral solutions are
then added to the model to reduce the search space.

State of the art MIP solvers like Gurobi [20], which we
used to obtain the results presented in this paper, significantly
improve the efficiency of the previously mentioned basic
BC algorithm with preliminary transformation techniques to
reduce the size of combinatorial problems, as well as heuristics
to obtain better objective bounds during the search. The
description of these sophisticated refinements falls beyond the
scope of this paper and inquisitive readers may refer to [21]
to obtain more information.

Figure 4 shows the distribution of idle time durations in
minutes with the initial gate allocation (blue) and the robust
gate allocation (orange) for one day of traffic at Paris-CDG,
terminal F. The robust distribution is significantly shifted
towards larger values, leaving more room for the absorption
of potential delays during operations. Table I provides the

cost = (19)

Init
Robust

Number of occurrences

I I I
200 300 400

Idle time (minutes)

0 100

Fig. 4. Distribution of idle time durations for the initial and robust gate
allocations.

TABLE I
COMPARISON OF INITIAL AND ROBUST GATE ALLOCATION FOR ONE DAY
OF TRAFFIC AT PARIS-CDG, TERMINAL F.

Idle times (minutes)

Minimum  Average  Std Deviation
Init 1 63 48
Robust 2 76 26

minimum value, average and standard deviation for those
distributions. On this particular instance, the smallest idle time
has also been increased from 1 min to 2 min.

V. RESULTS

In this section, we first describe how we extracted the flights
and gates data from recorded traffic at Paris-CDG airport,
then the simulation of the DMAN on the departures and the
resulting additional gate occupancy. Eventually, we present
the benefits of a robust gate allocation when departures are
sequenced by a DMAN over the initially recorded gates, in
terms of number and duration of potential gate conflicts.

A. Data Processing and DMAN Simulation

For this study, we have selected the ten heaviest days of
actual traffic recorded at Paris-CDG airport during the whole

TABLE II
NUMBER OF FLIGHTS AND GATES BY TERMINAL (PER DAY ON AVERAGE).

Terminal ‘ Flights Gates  Flights per Gate
A 49 17 29
B 15 10 1.5
C 21 14 1.5
D 83 18 4.6
E 111 23 4.8
F 185 27 6.8
J 76 20 3.8
K 53 19 2.8
L 18 7 2.6
X 27 6 4.5




month of July, 2017, and the ten busiest terminals in terms of
average number of flights per gate and per day (see Table II).

For each day of traffic and each turnaround movement on
the airport, the following information was gathered:

 aircraft type;

« used gate and corresponding terminal;
o time of arrival at the gate;

« time of departure from the gate.

In some rare cases (probably due to some gate-to-gate move-
ments that were not recorded), one of the two times is missing.
The data were completed as follows:

o If the arrival time is missing:

— If there is not any other flight occupying the same
gate before its departure time, the flight is considered
at the gate from its opening.

— Otherwise, the flight is considered at the gate 30 min
before its departure time (which does not create any
conflict with our data set).

o In the same way, if the departure time is missing:

— If there is no flight occupying the same gate after its
arrival time, the flight is considered at the gate until
its closing.

— Otherwise, the flight is considered at the gate 30 min
after its arrival time (without generating any con-
flict).

These data provide the initial gate allocation (called Init in
the figures) and will be compared to the robust gate allocation
(called Robust in the figures), obtained as explained in IV,
using the Gurobi Commercial Optimizer 8.1.0 [20], without
changing the terminal nor the gate occupation period, but
only the assigned gate. This robust gate allocation takes into
account the compatibility between gates and aircraft types:
only the gates that were actually used (at least once) by a
given aircraft type are considered compatible with it. Note
that the actual gates capabilities could include more aircraft
types than the ones we infered from our data set.

By simulating the DMAN process as described in III,
we obtain the Target Off-Block Times (TOBT), which are
new, potentially delayed, departure times from the gate. The
difference between these new off-block times and the initial
ones gives the additional gate occupancy due to the DMAN
process, and permits to detect the number and duration of
gate conflicts that would appear in the considered allocation
scheme (initial or robust). We consider that there is a gate
conflict when there is less than 2 minutes between the arrival
time of a flight and the departure of the previous one at the
same gate, because there would not be enough time for the
push-back of the departing flight.

In order to estimate the effects of a traffic increase on
the additional gate occupancy and conflicts induced by the
DMAN and the gate allocation scheme, we reproduced the
same computations for samples with respectively 3 % and 5 %
more traffic. To increase the traffic, we have copied some
randomly selected turnaround movements, among the ones that

TABLE III
ADDITIONAL GATE OCCUPANCY BY TERMINAL (min PER DAY ON
AVERAGE).

Terminal | Actual 3% 5%
A 20.6 232 23.6
B 35 4.2 4.9
C 8.7 9.4 10.3
D 24.2 25.9 27.5
E 45.6 50.9 53.1
F 52.6 59.8 62.3
J 30.1 30.9 31.8
K 33.6 35.1 375
L 10.2 13.8 12.5
X 8.2 8.3 10.2

others 704 7725 77.75

can be assigned the same gates with the same duration at a
different time without conflict.

B. Additional Gate Occupancy

Figure 5 shows the total amount of additional gate occu-
pancy due to the DMAN process, in average per day, for actual
and increased traffic. The additional gate occupancy vary from
5.1h to 5.9h, according to the rate of the traffic increase,
which represents around 0.3 % of the total gate occupancy
per day. These values provide a global measure of the non-
negligible effects of the DMAN process.
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Fig. 5. Additional gate occupancy in hours (average per day) due to DMAN
for actual traffic, a 3% and a 5 % increase.

Results can be detailed by terminal (see table III), in order
to point out the ones that are the most affected. As an example,
terminal F appears to be the busiest one, with an amount of
additional gate occupancy around 1h per day. The analysis
of the data explains this result: more than 180 flights are
scheduled on this terminal each day, while it offers only 27
gates. During traffic peaks, this terminal is close to saturation
and can cause significant operations disruptions in case of gate
conflicts between arrivals and departures.



C. Gate Conflicts Due to Delayed Departures

Figures 6 and 7 give the total number and duration of the
gate conflicts that appear when the delayed off-block times
are applied in each gate allocation (initial or robust), and for
each traffic density (actual, 3% and 5 % increase), during the
ten considered days.
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Fig. 6. Number of gate conflicts due to DMAN with the initial and robust
gate allocation for actual and increased traffic.
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Fig. 7. Total duration of gate conflicts due to DMAN with the initial and
robust gate allocation for actual and increased traffic.

The robustness of the second gate allocation method is ob-
vious, with no more than 5 gate conflicts for the 5 % increase
during the whole period, while the initial gate allocation causes
from 79 to 128 gate conflicts, depending on the traffic density.
The effects on the duration of gate conflicts is even more
blatant as there is at least two orders of magnitude between
both allocation strategies: only a few minutes for the robust
gate allocation, against more than 200 min for the initial one
with actual traffic, growing to 243 min with the 5% increase.

It is quite important to notice that the duration of a gate
conflict is a poor indicator of all the operational problems that
it can cause in real time: it only represents the time that the
arrival flight would have to wait for its gate if no other solution

TABLE IV
NUMBER OF GATE CONFLICTS DUE TO THE DMAN.

Terminal Actual 3% 5%

Init Robust | Init Robust | Init Robust

A 3 0 10 0 7 0
B 2 0 2 0 3 0
C 1 0 1 0 1 0
D 11 0 19 0 23 0

E 14 0 15 0 17 0

F 22 0 27 0 40 0

J 2 0 3 0 6 0

K 9 0 11 0 11 0

L 6 3 10 5 8 5
X 6 0 7 0 7 0
others 3 0 4 0 5 0

TABLE V

DURATION OF GATE CONFLICTS DUE TO THE DMAN (IN min).

Terminal Actual 3% 5%

Init Robust | Init Robust | Init Robust

A 12 0 21 0 9 0

B 8 0 2 0 3 0

C 3 0 1 0 1 0
D 29 0 26 0 34 0

E 33 0 42 0 44 0

F 41 0 39 0 64 0

J 4 0 4 0 11 0

K 24 0 32 0 33 0

L 30 8 32 6 30 6

X 16 0 8 0 9 0
others 5 0 4 0 5 0

is found. However, such situations involving a holding aircraft
can rapidly cause far more trouble to the rest of the traffic in
the stand area.

Tables IV and V present the details of the number and
the duration of conflicts by terminal. These values shows
that terminal F appears almost saturated with the initial gate
allocation strategy, as it is the less resilient to departure delays,
while no more gate conflict occurs when we use the robust
gate allocation, even with the 5% increase. This confirms the
efficiency of such a gate allocation method, which remains
robust even in the case of a noticeable traffic increase and
allows to exploit the terminal to their full capacity.

We can also notice that the few conflicts that appear with the
robust gate allocation are all located in terminal L. Actually,
the reason for these conflicts is quite simple and can be
directly found in the data: many flights have a very long gate
occupancy in this terminal (almost half a day for some of
them), so that there is no possible asiignment that could allow
any departure delay or traffic increase with this kind of use
scheme.

CONCLUSION AND FURTHER WORKS

In this article, we first propose a method to estimate the
additional gate occupancy expected when an airport imple-
ments a Departure Management (DMAN) process with a
pre-departure sequencing. These additional gate occupancies
are deduced from realistic and optimized runway take-off



sequences, involving all the departures on all the runways of
the airport at a given period. These results can be analyzed
for each terminal, in order to point out the ones that are the
most affected by the departure scheduling.

We also show how to compute optimally robust solution
for the Gate Allocation Problem (GAP), even for the Paris-
Charles-de-Gaulle international airport and its busiest termi-
nals. The robustness of the solution stems from the minimiza-
tion of the variance of idle time periods which tends to balance
them over time and resources. The resulting allocation appears
very efficient at Paris-CDG airport, as it remains robust w.r.t.
the departure delays that can be expected from the DMAN
process, even in case of a 5% traffic increase: departures
in other terminals can be delayed as needed by the DMAN
sequencing, without creating any additional gate conflict and
allowing to operate the terminals at their full capacity.

Further works could confirm and enrich these promising
results at Paris-CDG airport, using fast time simulations that
reproduce the whole taxiing phase of the flights. Under dif-
ferent surface management hypotheses, the robustness of the
gate allocation could be tested in more realistic and difficult
conditions, including uncertainties on departure times, landing
times, taxiing speeds and the resolution of conflicts between
taxiing aircraft. The same approach could also be applied
to other airports that are planning to implement a Departure
Management process and wish to estimate their needs in terms
of terminals and gates development, in the scope of an A-CDM
certification.
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