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Abstract

The invariant unscented Kalman filtering (IUKF), relies on a geometrical-based constructive method for designing filters dedicated to non-
linear state estimation problems while preserving the physical invariances and systems symmetries. This can be achieved by using a geomet-
rically adapted correction term based on an invariant output error. In this article, a special formulation of the attitude and heading estimation
problem derives the invariant IUKF so that state and sigma-points are considered as a transformation group parameterization. The specific
interest of this formulation is that only the invariant errors between the predicted state and the sigma-points must be known to determine the
predicted outputs errors. As this is already computed during the prediction step, the computation complexity to find the covariance matrix of
the invariant state estimation is greatly reduced.

Key words: Attitude estimation; Invariant filtering; Invariant Unscented Kalman filtering; Symmetries; Transformation group
parametrization.

1 INTRODUCTION

Although dynamical systems possessing symmetries have
been studied in control theory, few results taking benefit of
system invariances for observers design exist today. Invari-
ant nonlinear estimation theory appears as a young research
domain whose first main contributions can be dated from
the beginning of 2000s. At that time, several research works
on nonlinear invariant observers have been led and pro-
vide a geometrical-based constructive method for designing
observers able to estimate dynamical systems state vector
while preserving their symmetries ([1–4]). Building upon
both invariant frame and output-error, this peculiar kind of
observers allows to formulate a state estimation error whose
dynamics have a remarkable property: it does not depend on
the followed trajectory. It requires however to tune an im-
portant number of setting parameters potentially when com-
puting estimation gains, which can be cumbersome for com-
plex system modeling. Thereafter, researchers have tried to
develop more generic procedures which facilitate the design
of invariant observers, by performing an automatic tuning of
the correction gains which occurs in any filtering equation
associated with nonlinear state observer.
Regarding the state of the art, there exist two major tech-
niques : Invariant Extended Kalman Filter – IEKF or more
recently the Invariant Unscented Kalman Filter IUKF and
the Invariant Particle Filter – IPF.
The IEKF ([5–7, 15]) is characterized by a larger conver-
gence domain, due to the exploitation of systems’ symme-
tries within the estimation algorithm (i.e., within filter equa-
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tions and gains computation), and present very good perfor-
mances in practice. An important well known drawback in
this method is that it requires to linearize the system of dif-
ferential equations which govern the invariant state estima-
tion error dynamics. Such an operation appears suitable for
simple system modeling but for more complex cases, this
linearization may be difficult to carry out.
To overcome this problem, the UKF algorithm based on in-
variant framework has been recently proposed in ([14],[8–
12]). It has been proved in these bibliographical references
that an Invariant UKF-like estimator could be designed by
using either a compatibility condition or a specific case in
order to make equation more explicit for attitude estimation
problem. In a similar spirit to research from a few years ago
on the IEKF (Invariant Extended Kalman Filter) algorithm,
the correction gains of this estimator, which are specifically
designed to be invariant, may be deduced by performing the
same computational steps as UKF-type filtering (either in
factorized or non-factorized form). However, before we can
integrate the procedure for computing the correction gains
(an algorithm borrowed from unscented Kalman filtering)
with invariant observer theory, a series of methodological
developments are required, as described in this article. Simi-
larly, an extension of nonlinear invariant observers has been
made for Rao-Blackwellized Particle Filters (PF) that can
be used for nonlinear state estimation ([13]). Invariant PFs
(IPF) rely on the notion of conditional invariance which cor-
responds to classical system invariance properties, but once
some state variables are assumed to be known. It is those
known states that will be sampled throughout the estima-
tion process. It is noteworthy that, for the obtained IPF, the
Kalman gains computed are identical for all particles which
drastically reduces the computational effort usually needed
to implement any PF. Among methods described above, only
a few tried to customize equations in order to make them
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more explicit for the special case of the Attitude and Head-
ing Reference System (AHRS) ([14–16]). But none of them
is able to reduce the computation cost. This paper focuses
on a new formulation of the Invariant UKF-like estimator
for AHRS in order to reduce this cost. The contributions of
the paper include :
(1) The presentation in Section 2 of theoretical prerequi-

sities dealing with unscented Kalman filtering where
both invariant state and output error are introduced. The
invariant framework dedicated to unscented Kalman
filter is exceedingly convenient as filter equations can
be specialized.

(2) The invariant unscented Kalman filter equations pre-
sented in Section 2 are applied on the system of differ-
ential equations that described the proposed IUKF in
the benchmarking case of an attitude estimation system
is derived. Our focus in Section 4 is on finding param-
etization group that reduce the computational cost of
the filter.

Finally, the compuational results that appear in Theorem 2
are validated in Section 5 on the basis of numerical results.
The performances reached by the UKF, the standard IUKF
and the developed IUKF dedicated to AHRS named IUKFx

are compared. We provide preliminary results on the com-
putational effort of algorithms validating the reduction of
the computational complexity of the new IUKF parametric
formulation.

2 Some preliminaries

This section introduces the unscented Kalman filter this ar-
ticle is concerned with, as well as the invariant unscented
Kalman filter our results apply to.

2.1 Unsented Kalman Filter

The standard UKF framework ([17]) involves estimation of
the state xk P Rn of a discrete-time nonlinear dynamic
system, xk`1 “ fpxk,ukq `wk

yk “ hpxk,ukq ` vk,
(1)

where yk P Rm is the output of the modeled system. vk P
Rm (resp. wk P Rn) refers to the discrete Gaussian process
wk „ Np0,Wkq (resp. observation vk „ Np0,Vkq). The
UKF estimation process starts with the calculation of the
scaled Unscented Transform (UT), in order to pick a min-
imal set of sample points, also called sigma points, around
the mean state vector denoted by X , s.t. X p0q

k|k “ x̂k|k. This
calculation provides a set of p2n` 1q sigma points and also
two series of p2n` 1q scalar weighting factors, denoted by
tW piq

pmqu and tW piq

pcqu (i P rr 0 ; 2n ss). These sigma points are
then propagated through the nonlinear state fp¨q and out-
put hp¨q equations, providing a cloud of evolving points.
The mean x̂k|k and estimated covariance matrix Px

k|k of the
transformed points are then computed based on their statis-
tics. The mean and covariance of the initial state x0 are de-
noted x̂0 and Px

0 , respectively. The unscented transform can

be seen as a function (or functional) from (f ||h,x̂k,Px
k ) to

(x̂k`1|k||ŷk`1|k,P̃x
k`1|k,P̃y

k`1|k) depending if the unscented
transform is applied on the process or (||) output equation
(See appendix A):

px̂k`1|k||ŷk`1|k, P̃
x
k`1|k||P̃

y
k`1|kq “ UTpf ||h, x̂k,Px

kq.

(2)
In terms of the unscented transform UT(¨) the unscented
Kalman filter prediction and update steps can be written as
follows :
‚ Prediction: Compute the predicted state mean x̂k`1|k and

the predicted covariance Px
k`1|k :

rx̂k`1|k, P̃
x
k`1|ks “ UTpf, x̂k|k,Px

k|kq

Px
k`1|k “ P̃x

k`1|k `Wk

(3)

‚ Update: Compute the predicted mean ŷk`1|k and co-
variance of the measurement Py

k`1|k , and the cross-
corvariance of the state and measurement Pxy

k`1|k:

rŷk`1|k, P̃
y
k`1|ks “ UTph, x̂k`1|k,P

x
k`1|kq

Py
k`1|k “ P̃y

k`1|k `Vk

Pxy
k`1|k “

2n
ÿ

i“0

W
piq
pcqpx̂

piq
k`1|k ´ x̂k`1|kq

ˆ pŷk`1|k ´ ŷ
piq
k`1|kq

(4)

An estimation x̂k`1|k`1 of xk`1 is then computed by the
Kalman filtering equations :

x̂k`1|k`1 “ x̂k`1|k `Kk`1pyk`1 ´ ŷk`1|kq

Px
k`1|k`1 “ Px

k`1|k ´Kk`1P
y
k`1|kK

T
k`1,

(5)

where Kk`1 “ Pxy
k`1|kP

y´1

k`1|k and yk`1 is the raw mea-
surements.

The linear correction pyk`1 ´ ŷk`1|kq is weighted by the
gain Kk`1 in such a way as to minimize the covariance of
the state estimation error pxk`1 ´ x̂k`1|kq.

2.2 Invariant Unscented Kalman filtering

This subsection is an extention of a previous research dealing
with IUKF [11]. The motivation is that using the udapte
equations of the IUKF algorithm we can specialize each step
to make them more explicit in Section 4. If the dynamics of
the observed system have invariance properties (symmetries)
such as fp¨q is G-invariant and hp¨q is G-equivariant (see
[2] for details), we cannot directly construct an estimator
of the system state with analogous properties directly from
the basic equations of the UKF algorithm. For convergence,
it would be extremely desirable for any candidate estimator
filter to satisfy the same invariance properties as the system
itself, in the same spirit as the invariant observers of the
IEKF algorithm. To achieve this, IUKF algorithm adapts
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the UKF algorithm so that it yields an invariant estimator.
From the same principles and computation steps as the UKF
algorithm, a natural reformulation of the equations aiming
to adapt the method for estimation in an invariant setting
can be obtained simply by redefining the error terms used
of the standard algorithm. The linear state error pxk`1 ´

x̂k`1|kq, the linear predicted output error pŷk`1|k´ ŷ
piq
k`1|kq

used in Py
k`1|k and pyk`1´ ŷk`1|kq conventionally used in

Eq.(5) do not preserve any of the symmetries and invariance
properties of the system. Instead, we consider in the IUKF
algorithm the following invariant state error 1 and predicted
output error on Lie groupG such as @g P G, @i P rr 0 ; 2n ss:

ηpxk`1, x̂k`1|kq “ x´1
k`1x̂k`1|k

Epŷk`1,g, ŷ
piq
k`1|kq “ ρgpŷk`1q ´ ρgpŷ

piq
k`1|kq

(6)

Where x´1
k`1 is deduced from Cartan moving frame

method and local transformation ρg is defined as for
a dynamical system preserving symmetries [4]. An es-
timation x̂k`1|k`1 of xk`1 is computed by the invari-
ant Kalman filtering equations : x̂k`1|k`1 “ x̂k`1|k `

Kk`1Epŷk`1|k, x̂k`1|k,yk`1, ωpx̂k`1|kqq, whereωpx̂k`1|kq

is the standard basis of Rn formed by the invariant vector
field Bpx̂k`1|kq “ tωipx̂k`1|kquiPrr 1 ;n ss (see [4] for more
details). The unscented transfrom can be re-written in in-
variant form where the weighted sum of sigma point are
written as equivalent invariant expressions.

Lemma 1. (The invariant state error form of UT) : The un-
scented transform can be written with an invariant state er-
ror form as follow :

X k`1|k “ rX
p0q
k`1|k X p1q

k`1|k . . . X p2nq
k`1|ks “ fpX k|k,ukq

x̂k`1|k “

2n
ÿ

i“0

W
piq
pmqX

piq
k`1|k

Px
k`1|k “

2n
ÿ

i“0

W
piq
pcqpX

piq´1

k`1|k ¨x̂k`1|kqpX
piq´1

k`1|k ¨x̂k`1|kq
T

(7)
Lemma 2. (The invariant output error form of UT) : The
unscented transform can be written with an invariant output
error form parametrized by the Lie group g as follow :

Ŷk`1|k “ rŷ
p0q
k`1|k ŷ

p1q
k`1|k . . . ŷ

p2nq
k`1|ks “ hpX k`1|k,ukq

ŷk`1|k “

2n
ÿ

i“0

W
piq
pmqŷ

piq
k`1|k

Py
k`1|k “

2n
ÿ

i“0

W
piq
pcqEpŷk`1|k,g, ŷ

piq
k`1|kqE

T
pŷk`1|k,g, ŷ

piq
k`1|kq

(8)
Proof. See Appendix B.1 &B.2

1 The group action coincides with left translations (resp. right
translations), see [7] for details.

3 Problem setting

3.1 Considered Discret-Time model

We consider an Attitude and Heading Reference Systems
(AHRS) in discrete-time [18] with step dt, characterized by
its quaternion qk with the quaternion product ˚. Eq (1) now
becomes :

qk`1 “ qk ` 0.5.qk ˚ pωmk
´ ωbkq.dt`wqk

˚ qk

ωbk`1
“ ωbk ` qk

´1 ˚ dt.wwk
˚ qk

ask`1
“ ask ` dt.wak

bsk`1
“ bsk ` dt.wbk

˜

yAk

yBk

¸

“

˜

ask .q
´1
k ˚A ˚ qk ` vAk

bsk .q
´1
k ˚B ˚ qk ` vBk

¸

,

(9)
Where wqk

,wwk
,wak ,wbk (resp. vAk

,vBk
) refer to the

process (resp. measurement) Gaussian white noise covari-
ance matrices. The AHRS is endowed with 3 triaxial sensors:
3 magnetometers measure Earth’s magnetic field, which is
known constant and expressed in the body-fixed frame s.t.
vector yBk`1

“ q´1
k`1˚B˚qk`1 (where B “ pBx By BzqT )

can be considered as an output of the observation equations;
3 gyroscopes produce the measurements associated with the
instantaneous angular velocities gathered in ωmk

P R3; and
3 accelerometers provide the measured output signals corre-
sponding to the acceleration. Constant A “ p0 0 gqT refers
to the local Earth’s gravity vector. Moreover, we add con-
stant bias vector ωbk on the angular velocities vector mea-
surement ωmk

and constant scaling factor, denoted by ask
and bsk , which adjust and correct the predicted outputs yAk
and yBk. Note that the noise wwk

is defined as a Langevin
noise i.e, this noise is said isotropic and enter into the sys-
tem in an invariant way (see definition 1 in [15] for more
details).

3.2 Invariance properties of the considered model

By taking advantage of the Galilean invariance properties of
the problem, the model equations can be expressed equiv-
alently in both aircraft coordinates and ground coordinates.
Given Eq. (9) and the Lie group G “ H1 ˆ R5 (where H1

is the Lie algebra of quaternions of norm one) acting on
the entire state space, the dynamics of the system is indeed
G-equivariant. We have :
Lemma 3. Let G a Lie-group, @g0 “ pqT0 ω

T
0 a0 b0q

T P

G, the following output transformation proves that system
modeling is G-equivariant [3] : ρg0

pyk`1q “ ppa0.q
´1
0 ˚

yAk`1
˚ q0q

T pb0.q
´1
0 ˚ yBk`1

˚ q0q
T qT .

Moreover, the invariant state estimation error vector
ηpxk`1, x̂k`1|kq, which is a transposition of the linear error
to the multiplicative group may be defined by the following
expression:
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Lemma 4. Consider p2n` 1q sigma points X , s.t. X p0q

k|k “

x̂k|k “ pq̂Tk|k ω̂
T
bk|k

âsk|k b̂sk|kq. An invariant state estima-

tion error ηpX piq
k`1|k, x̂k`1|kq “ X piq

k`1|k

´1
¨ x̂k`1|k{i P

rr 0 ; 2n ss can be expressed by [3]

ηpX piq, x̂k`1|kq “

¨

˚

˚

˚

˚

˚

˝

q´1
X piq ˚ q̂k`1|k

qX piq ˚ pωb,X piq ´ ω̂b,k`1|kq ˚ q
´1
X piq

âsk`1|k
{as,X piq

b̂sk`1|k
{bs,X piq

˛

‹

‹

‹

‹

‹

‚

(10)
Where:
X piq´1

“ pq´1
X piq qX piq˚ωb,X piq˚q´1

X piq p1{as,X piqq p1{bs,X piqqqT .

The invariance properties of the IUKF applied on AHRS are
closely intertwined with the invariant state estimation error.
Along the line of the theorem 2 presented in [15], we con-
sider the variable ηpX piq, x̂k`1|kq as Markov processes, in-
dependent of the inputs ωmk 2 . The most important conse-
quence of this property is that the invariant filter gain(s) cal-
culation can be addressed ad hoc by choosing gain value(s)
which will meet some predifined requirements in terms of :
-convergence (guarantee and domain); - decoupling pur-
posed (see [15] fot more details).

3.3 Toward an invariant unscented Kalman filter for AHRS

At this point, we should note that the algorithm presented in
Section II uses a multiple parametrization of the transforma-
tion group obtained by successively defining the inverse of
each sigma point as a parameter of the composite mapping
φg “ px

´1
k`1, ρgq. This is ultimately equivalent to defining

a set of p2n` 1q n-dimensional moving frames in the state
space, sending each sigma point to the identity element e
via the local mapping x´1

k`1. The algorithm proposed here
is generic in the sense that it does not assume any specific
form for the equations of the observation model nor the
relations which define the group transformation ρg. Never-
theless, it can sometimes be useful to extend and specialize
the computations in each of the steps listed above in order
to make them more explicit for AHRS.

Problem 1. The problem is to find a parametrization
group g, reducing the computation cost of the IUKF al-
gorithm from Eq.(9) and the invariant predicted output
error of unscented transform (See Lemma 2) such that :
Epŷk`1|k,g, ŷ

piq
k`1|kq “ ρgpŷk`1|kq ´ ρgpŷ

piq
k`1|kq.

We are now in a position to study the modification of the
considered parametrization in the invariant predicted output
error of the IUKF algorithm.

2 When the consante biais vector ωbk is correctly estimated that
is the case in practice.

4 A parametric formulation study for AHRS

This section contains the main theoretical result of this
article. This results, Theorem 2, consists of a formulation
avoiding to find 4n2 ` 2n, when the state dimension is n,
invariant state errors between the sigma points. The main

idea of the paper is to consider either g0 “ X piq
k`1|k

´1
or

g0 “ x̂´1
k`1|k. We futher make the following assumption :

Assumption 1. Without loss of generality and emphasize the
role of the parametrization, we assume evolution and obser-
vation noises in Eq.(9) equal to zero (i.e.,wk “ vk “ 0).

4.1 The considered parametrization

4.1.1 Sigma-point as parametrization (g0 “ X piq
k`1|k

´1
)

For AHRS, there is a straightforward way to express the
p2n ` 1q invariant output errors in terms of the constant
vector pAT BT qT , the transformation group ρg0 , and a set
of invariant state estimation errors satisfying the following
relation for all @i P rr 0 ; 2n ss:

Theorem 1. Let pAT BT qT , two constant vectors. For any
sigma points X piq, @i P rr 0 ; 2n ss the predicted invariant
output error Epŷk`1|k,X piq, ŷ

piq
k`1|kq, denoted ÊX for con-

venience can be expressed such as

ÊX “

2n
ÿ

j “ 0

j ‰ i

W
pjq
pmq

„

˜

A

B

¸

´ ρηpX piq,X pjqq

˜

A

B

¸



. (11)

Proof. See Appendix C.1

Eq.(11) shows that the invariant prediction output errors can
be written as a weighted sum of the (invariant) distances
between the constant vector pAT BT qT and its image un-
der the mapping ρg over the Lie group parametrized by
the elements ηpX piq,X pjq

q, where i ranges over rr 0 ; 2n ss
and @j P rr 0 ; 2n ss. This expression requires to compute the
values of the p2n ` 1q invariant error vectors between the
sigmas points ηpX piq,X pjq

q. As a special case, whenever
i P rr 0 ; 2n ss, then ηpX piq,X piq

q “ ~0.

Remark 1. The algorithm therefore requires to find p2n `
1q ˆ p2n` 1q ´ p2n` 1q “ 4n2 ` 2n terms ηpX piq,X pjq

q

after these trivial cases are eliminated. In the simple case of
an AHRS with n “ 9, the IUKF approach therefore requires
to compute 342 invariant error vectors between the sigma
points at each iteration (i.e, prediction and correction step).

For the AHRS, given a set of p2n ` 1q sigma points, we
implicitly need to compute a potentially large number of
invariant estimation errors between the sigma points in order
to compute the invariant output errors.
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4.1.2 Predicted state as parametrization (g0 “ x̂´1
k`1|k)

The parameter g0 of the group transformation ρg0can also
be chosen to be constant and equal to x̂k`1|k.The invariant
output predicted errors can be expressed as :
Theorem 2. Solution to problem : Let pAT BT qT , two con-
stant vectors. For any predicted state x̂k`1|k,@i P rr 0 ; 2n ss

the predicted invariant output error Epŷk`1|k, x̂k`1|k, ŷ
piq
k`1|kq,

denoted Êx̂ for convenience, can be expressed such as

Êx̂ “ ρηpX piq,x̂k`1|kq

˜

A

B

¸

´

2n
ÿ

j“0

W
pjq
pmqρηpX pjq,x̂k`1|kq

˜

A

B

¸

.

(12)

Proof. See Appendix C.2
The significance of this result is that each elementary error
term takes an invariant of the estimation problem as an argu-
ment, namely the constant vector pAT BT qT , and that the
parametrization of the Lie group ranges over the index j of
the weighted sum, depending on the sigma point considered
in each elementary calculation.
Remark 2. Unlike the earlier case, we only need to know
2n “ 18 invariant state estimation errors between the pre-
dicted state and each sigma point in order to determine the
errors in the predicted outputs.

4.2 Invariant unscented Kalman filter equations for AHRS
In terms of the unscented transform UT(¨) the invariant un-
scented Kalman filter for AHRS prediction and update steps
can be written by using Lemma 4. and Theorem 2. as

‚ Prediction: Compute the predicted state mean x̂k`1|k and
the predicted covariance Px

k`1|k as
rx̂k`1|k, P̃

x
k`1|ks “ UTpf, x̂k|k,Px

k|k,x
´1
k x̂k|kq

Px
k`1|k “ P̃x

k`1|k `Wk

(13)

‚ Update: Compute the predicted mean ŷk`1|k and co-
variance of the measurement Py

k`1|k , and the cross-
corvariance of the state and measurement Pxy

k`1|k :
rŷk`1|k, P̃

y
k`1|ks “ UTph, x̂k`1|k,P

x
k`1|k, Êx̂q

Py
k`1|k “ P̃y

k`1|k `Vk

Pxy
k`1|k 9

`

x´1
k`1x̂k`1|k, Êx̂

˘

(14)

An estimation x̂k`1|k`1 of xk`1 is then computed by the
Kalman filtering equations using Eq.(12) :

x̂k`1|k`1“

2n
ÿ

j“0

W
pjq
pmq

„

X pjq
k`1|k . . .

`

n
ÿ

i“1

K
piq
k`1

ˆ

ρx̂´1
k`1|k

pyk`1q ´ ρηpx̂k`1|k,X pjqq

˜

A

B

¸

˙

ωipx̂k`1|kq



(15)

Proof. See Appendix C.3

Fig. 1. Pictorial overview of SPQR concept.

5 Simulation results

The motivation for this simulation is led by the development
of Small Payload Quick-Return (SPQR) study intended to
routinely deliver small payloads from International Space
Station (ISS) on-demand 3 . The SPQR concept, originating
from NASA Ames Research Center at Moffett Field, CA,
relies on a three-stage method of returning payloads, after
being stored until needed and then loaded while on-board
the ISS (cf. Figure 1): a) Deorbit, by means of a passive
deployable drag system; b) Atmospheric reentry, via the de-
ployment of a passively self-stabilizing reentry body; c) Ter-
minal descent of the temperature-controlled paylaod canister
beneath an autonomous guided parafoil. To mature this final
phase of the SPQR concept, an autonomous parafoil system
which satisfies the demands of landing precision require-
ments must be developed by using a small AHRS payload.
We illustrate the behavior of the UKF and the IUKF dedi-
cated to AHRS with both parametrizations (IUKFx,IUKFX )
by simulations and compare this one with experiment data.
A set of results for the AHRS estimation problem generated
from simulated noisy data are then presented to demonstrate
the well-foundedness of the IUKF algorithm using state as
parametrization (IUKFx), as well as its potential benefits in
both theoretical and SPQR contexts.

5.1 Simuation Setting

The reference input data used for our evaluation of an IUKF-
type approach were generated by dynamic model simula-
tions describing the free fall of a parafoil. These simulated
data provide a straightforward way to validate the method-
ological principles presented in this article, configure the
parameters of each method, and establish a few preliminary
conclusions regarding the analysis on the computational ef-
fort. We considered the data both with and without added
noise. The reference simulation that we used to validate our
algorithms had a duration of slightly over 100 seconds. The
simulated parachute system exhibits relatively strong dy-
namics, as can be seen in the figure 2. The roll, heading,
and pitch angles vary by up to several dozen degrees. The
UAV also experienced significant variations in the velocity,
partially invalidating one of the hypotheses of the model in
Eq.(9), namely the assumption that the linear acceleration
is negligible i.e, 9V “ 0 (See Figure 2). It would therefore
be interesting to investigate the effects of the error intro-
duced into the estimation process by assuming that 9V “ 0.

3 https://www.nasa.gov/mission_pages/
station/research/experiments/2543.html
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Fig. 2. 3D trajectory of the parafoil in terminal descent starting
from the position (0,0,0). The simulated parachute system exhibits
relatively strong dynamics. The linear acceleration 9V is non-zero
from (0,0,0) to (0,-200,-200).

Analysis of the simulated data shows that 9V was non-zero
throughout the period t P r5 ; 40s. The results and estimates
obtained below by applying both IUKF algorithms to the
data are compared against results from the standard UKF
algorithm in each case.

5.2 Noise-Free Simulations

To emphase the effect of the parametrization on algorithms
performance, we first assume that the sensors are perfect
(see Assumpation 1), i.e., without noise. Figure 3 shows the
estimated attitude errors computed by the UKF, IUKFX and
IUKFx algorithms. Each estimate is compared against the
pseudo-measurements reconstructed from the components
of the reference quaternion state vector. The estimated an-
gles match the reference values almost perfectly. The atti-
tude of the parafoil is correctly reconstruct with respect to
all three axes. Note that the error introduced into the initial
state of the simulation was corrected very rapidly, after only
a few computation steps (characteristic time ă 0.5 sec.).
However, the estimation errors (with a log scale along the
vertical axis) show that the IUKF estimator converges more
closely and quickly to the true values of the flight param-
eters. The IUKFx achieves smaller estimation errors than
the UKF and IUKFX . Additionally, the comparison of these
error plots suggests that the residuals of the state estimate
constructed by IUKFx appear to be more stable over time;
a slight albeit slow decrease of these residuals may be ob-
served in the results generated by the UKF algorithm due
to 9V ‰ 0 throughout the period t P r5 ; 40s. The estimates
of the new IUKF parametrization therefore outperforms the
standard variant of the UKF algorithm.

5.3 Measurement Noise

We now study the impact of the measurement noise on the
algorithms performance. Here, a series of additive colored
noise terms were incorporated into the reference simulation
as perturbations of the measurements ωm, yAm, and yBm.
The experimental data are sampled with a frequency equal
to 50Hz which characterized the inertial measurement unit
and the magnetometers. The measurements are corrupted by
gaussian white noises whose standard deviations are set to :
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(a) UKF : estimated errors of the attitude anlges (φ, θ, ψ).

0 20 40 60 80 100
Time (s)

10-6

10-4

10-2

100

Er
ro

r (
de

g)
   

 

(b) IUKFX : estimated errors of the attitude anlges (φ, θ, ψ).
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(c) IUKFx : estimated errors of the attitude anlges (φ, θ, ψ).
Fig. 3. Attitude estimation errors with wrong initial angles and
9V ‰ 0 throughout the period t P r5 ; 40s. The plots show that the

IUKFx estimator converge more closely and quikly to the true val-
ues of the flight parameters.

σgyro “ 0.2 ˝{s, σaccelero “ 0.2 g and σmagneto “ 500 nT. In
order to validate our filters, we have also introduced a biases
vector on ωm s.t. ωb “ r0.1 rad/s 0.05 rad/s 0.02 rad/ssT .
The two positive scalar factor values are set to as “ 1.2
and bs “ 0.9 respectively. Initially, we set for the fil-
ters with incorrect angles φ̄ „ N

´

0, pπ{4q2
¯

, θ̄ „

N
´

0, pπ{4q2
¯

, ψ̄ „ N
´

0, pπ{2q2
¯

. We then run 500
Monte-Carlo simulations for different levels of measure-
ment noise σ2

accelero “ r4.10´4, 3.10´2s and compare the
(average) Root Mean Square Errors w.r.t the reference val-
ues over the whole trajectory. Figures 4 compare the results
produced by the IUKFx,IUKFX and UKF algorithms. For
this trajectory, we see that IUKFx is sightly better than
IUKFX . The UKF is sightly better than IUKF when noise
is moderate.
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(a) Monte-Carlo average of the Root Mean Square Error on
(φk)1ďkďN over the whole trajectory, as a function of the
noise measurement variance σ2.
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(b) Monte-Carlo average of the Root Mean Square Error on
(θk)1ďkďN over the whole trajectory, as a function of the
noise measurement variance σ2.
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(c) Monte-Carlo average of the Root Mean Square Error on
(ψk)1ďkďN over the whole trajectory, as a function of the
noise measurement variance σ2.

Fig. 4. Noisy case - comparison of the average Root Mean Square
Error of IUKFx,IUKFX and UKF. The IUKFx is sightly better than
IUKFX algorithm but the UKF is sightly better than IUKF when
noise is moderate.

5.4 Study in the frequency domain

In order to analyse the bandwith performance of the IUKFx

algorithm, we performed a frequency analysis based on FFT
of the estimated signal. The frequency analysis shows that
the reference frequencies are tracked over a broad spectrum
of frequencies, i.e. up to 0.7 Hz equivalent to 252 ˝{s for
pitch and roll which is less than the maximun angular ve-
locity used in our application.

5.5 Initial analysis on the computational effort

In case of a real time embedded application, another inter-
esting filter characteristic is the computational effort. In sec-
tion 4, we claimed the reduction of the computational burden
of the IUKF parametrize by the state xk. A first computa-
tional analysis consist in computing the average time calcu-
lation using 500 Monte-Carlo simulation using an Intel Core
I7 2.Ghz. We thus see in the table below that the computa-
tion time of the IUKF is slightly higher („19.5%) than UKF
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(a) Frequency response of the roll angle φ.
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(b) Frequency response of the roll angle θ.
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(c) Frequency response of the roll angle ψ.
Fig. 5. Study of attitude estimation of the IUKF parametrized by
the state in the frequency domain.

algorithm due to additional operation on invariant state error.
But results clearly reveal that the IUKF parametrized by the
state is more computation time efficient („5.1%) than IUKF
parametrized by sigma-point. In future work, the memory
allocation, which is a relevant parameter for embedded sys-
tem, will be studied for each algorithms.

Filter Computation time (s) RMSE (s)

¬ UKF 0.56 (∆¬Ñ®„ `19.5%) 1e-4

 IUKFX 0.7345 1.6e-4

® IUKFx 0.6988(∆Ñ®„ ´5.1%) 1.6e-4

6 Conclusion and perspectives

The presented algorithm is combining efficiently the invari-
ant observers and the non-linear unscented filtering theories.
The advantage is that is does not require to linearize the
problem while taking into account dynamical symmetries.
In the case of the attitude estimation problem, it has been
demonstrated that a specific formulation can reduce the com-
putation cost without compromising the stability and preci-
sion of the filter. Future work will include performance test
on embedded micro-controllers for real-world applications.
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A Unscented transfrom

The unscented transform [17] can be used for forming a
Gaussian approximation to the joint distribution of random
variable xk|k and yk|k, when the random variable yk|k is
obtained by a non-linear transformation of the Gaussian ran-
dom variable xk|k as follow :

"

xk|k „ Npx̂k|k,Pk|kq

yk|k “ γpxk|k, kq
(A.1)

The aims of the basic UT is to form a fixed number of deter-
ministically chosen sigma-points X k|k, which capture the
“true” mean x̂k|k and covariance Pk|k of the original distri-
bution xk|k. This set of points must represent accurately the
first and second order moments. These sigma-points are then
propagated through the nonlinear functions Eq.(A.1) provid-
ing a cloud of evolving points. The mean x̂k|k`1 and esti-
mated covariance matrix Pk|k`1 of the transformed points
are then computed based on their statistics. The unscented
transform can be used for forming

˜

xk|k

yk|k

¸

„ N

¨

˝

˜

x̂k|k

ŷk`1|k

¸

,

¨

˝

Px
k|k Pxy

k|k

Pyx
k|k Py

k|k

˛

‚

˛

‚ (A.2)

to the joint probability density of xk|k P Rn and yk|k P Rm.
The unscented transform is the following :

(1) Form the set of 2n` 1 sigma points from the coloms
of the nˆ n matrix p

?
n` λqPk|k as follows:

$

’

’

&

’

’

%

X p0q
k|k “ xk|k

X piq
k|k “ xk|k `

”b

pn` λqPx
k|k

ı

, i “ 1, ¨ ¨ ¨ , n

X piq
k|k “ xk|k ´

”b

pn` λqPx
k|k

ı

, i “ n` 1, ¨ ¨ ¨ , 2n

(A.3)
and compute the associated weightsW p0q

m ,W p0q
c ,W piq

m ,W piq
c

4 .
(2) Transform each of sigma as

y
piq
k`1|k “ γpX piq

k|kq, i “ 0, ¨ ¨ ¨ , 2n. (A.4)

(3) Mean and covariance estimates for yk`1|k can be com-
puted as

ŷk`1|k «

2n
ÿ

i“0

W piq
m ŷ

piq
k`1|k (A.5)

Py
k`1|k «

2n
ÿ

i“0

W piq
c pŷ

piq
k`1|k ´ ŷk`1|kqpŷ

piq
k`1|k ´ ŷk`1|kq

T

(A.6)

4 W
p0q
m “ λ{pn`λq,W

p0q
c “ λ{pn`λq`p1´α2

`βq,W
piq
m “

1{t2pn ` λqu, i “ 1, ¨ ¨ ¨ , 2n,W
piq
c “ 1{t2pn ` λqu, i “

1, ¨ ¨ ¨ , 2n. The parameter λ is a scaling parameter defined as λ “
α2
pn ` κq ´ n. The positive constants α, β and κ are used as pa-

rameters of the method. We set uncented transform parameters to
κ “ 0 and β “ 2. α keeps a free-parameter chosen by the practi-
tioner, which must be small (α “ 10´3 in our applications).

B Derivations

B.1 Derivation of the invariant state error form of UT

Let’s consider a group action, full-rank and transitive (i.e.
dimpGq “ dimpX q “ n). G can be identified with the state
space X “ Rn in such a way that the local transformation
on the state ϕg is viewed as the left or right-multiplication
mapping ϕgpxq “ g¨x. Solving the normalization equations
to obtain ϕgpxq “ g ¨ x “ e from Cartan moving frame
method, where e is the identity element of the group G,
gives us the moving frame γpxq “ x´1 as a solution [? ]. If
we define the invariant state error on Lie group G such as

ηpxk`1, x̂k`1|kq “ x´1
k`1.x̂k`1|k (B.1)

then the unscented transform in Eq.(3) can be written in
form of the last equation in Eq.(7).
X k`1|k “ rX

p0q
k`1|k X p1q

k`1|k . . . X p2nq
k`1|ks “ fpX k|k,ukq

x̂k`1|k «

2n
ÿ

i“0

W
piq
pmqX

piq
k`1|k

Px
k`1|k «

2n
ÿ

i“0

W
piq
pcqpϕX piq´1

k`1|k

pX piq
k`1|kq ´ ϕX piq´1

k`1|k

px̂k`1|kqq

ˆ pϕ
X piq´1

k`1|k

pX piq
k`1|kq ´ ϕX piq´1

k`1|k

px̂k`1|kqq
T

«

2n
ÿ

i“0

W
piq
pcqηpX

piq
k`1|k, x̂k`1|kqη

T pX piq
k`1|k, x̂k`1|kq

«

2n
ÿ

i“0

W
piq
pcqpX

piq´1

k`1|k ¨x̂k`1|kqpX
piq´1

k`1|k ¨x̂k`1|kq
T

B.2 Derivation of the invariant output error form of UT

If we define the invariant output error using the Lie group
@g P G such as

Epŷk`1,g, ŷ
piq
k`1|kq “ ρgpŷk`1q ´ ρgpŷ

piq
k`1|kq (B.2)

then the unscented transform in Eq.(4) can be written in
form of the last equation in Eq.(8).

Ŷk`1|k “ rŷ
p0q
k`1|k ŷ

p1q
k`1|k . . . ŷ

p2nq
k`1|ks “ hpX k`1|k,ukq

ŷk`1|k «

2n
ÿ

i“0

W
piq
pmqŷ

piq
k`1|k

Py
k`1|k «

2n
ÿ

i“0

W
piq
pcqpρgpŷk`1|kq ´ ρgpŷ

piq
k`1|kqq

ˆ pρgpŷk`1|kq ´ ρgpŷ
piq
k`1|kqq

T

«

2n
ÿ

i“0

W
piq
pcqEpŷk`1|k,g,y

piq
k`1|kq

ˆET pŷk`1|k,g,y
piq
k`1|kq

which leads to last equation in Lemma 1 and Lemma 2.
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C Proofs of the results of section V

C.1 Proof of Theorem 1

Let g0 “ X piq
k`1|k

´1
, we have :

ÊX “ ρX piq´1 pŷk`1|kq ´ ρX piq´1 pŷ
piq
k`1|kq

“

˜

A

B

¸

´

¨

˝

a´1
s,X piqqX piq ˚ ŷAk`1|k

˚ q´1
X piq

b´1
s,X piqqX piq ˚ ŷBk`1|k

˚ q´1
X piq

˛

‚

“

˜

A

B

¸

¨ ¨ ¨

´

¨

˚

˚

˚

˚

˝

a´1
s,X piqqX piq ˚

´

2n
ÿ

j“0

W
pjq
pmqhApX

pjq
q

¯

˚ q´1
X piq

b´1
s,X piqqX piq ˚

´

2n
ÿ

j“0

W
pjq
pmqhBpX

pjq
q

¯

˚ q´1
X piq

˛

‹

‹

‹

‹

‚

Where hAp¨q and hBp¨q denotes the restriction of the obser-
vation model to the outputs associated with the acceleration
and the magnetic field respectively.

ÊX “

˜

A

B

¸

´

2n
ÿ

j“0

W
pjq
pmq ¨ ¨ ¨

ˆ

¨

˝

a´1
s,X piqqX piq ˚

`

as,X pjqq´1
X pjq ˚A ˚ qX pjq

˘

˚ q´1
X piq

b´1
s,X piqqX piq ˚

`

bs,X pjqq´1
X pjq ˚B ˚ qX pjq

˘

˚ q´1
X piq

˛

‚

“

˜

A

B

¸

´

2n
ÿ

j“0

W
pjq
pmq ¨ ¨ ¨

(C.1)

ˆ

¨

˝

a´1
s,X piqas,X pjq ¨ pqX pjq ˚ q´1

X piqq
´1 ˚ . . .

b´1
s,X piqbs,X pjq ¨ pqX pjq ˚ q´1

X piqq
´1 ˚ . . .

(C.2)

A ˚ pqX pjq ˚ q´1
X piqq

B ˚ pqX pjq ˚ q´1
X piqq

¸

(C.3)

“

˜

A

B

¸

´

2n
ÿ

j“0

W
pjq
pmqρηpX piq,X pjqq

˜

A

B

¸

We have

2n
ÿ

j“0

W
pjq
pmq “ 1.

Hence

ÊX “

2n
ÿ

j“0

W
pjq
pmq

„

˜

A

B

¸

´ ρηpX piq,X pjqq

˜

A

B

¸



(C.4)

Moreover

˜

A

B

¸

´ ρηpX piq,X piqq

˜

A

B

¸

“

˜

A

B

¸

´ ρ~0

˜

A

B

¸

“ ~0

Equation (C.4) can be expressed in the case where j ‰ i,
which concludes the proof with @i P rr 0 ; 2n ss:

ÊX “
2n
ÿ

j “ 0

j ‰ i

W
pjq
pmq

„

˜

A

B

¸

´ ρηpX piq,X pjqq

˜

A

B

¸



.

C.2 Proof of Theorem 2

Let g0 “ x̂´1
k`1|k. We have

Êx̂ “ ρx̂´1
k`1|k

pŷk`1|kq ´ ρx̂´1
k`1|k

pŷ
piq
k`1|kq

“ ρx̂´1
k`1|k

phA,BpX piq
qq ´ ρx̂´1

k`1|k
pŷk`1|kq

“ ρx̂´1
k`1|k

phA,BpX piq
qq ´ ¨ ¨ ¨ (C.5)

2n
ÿ

j“0

W
pjq
pmqρηpx̂k`1|k,X pjqq

˜

A

B

¸

“ h
A,B
pηpx̂k`1|k,X piq

qq ´ ¨ ¨ ¨ (C.6)
2n
ÿ

j“0

W
pjq
pmqρηpx̂k`1|k,X pjqq

˜

A

B

¸

With h
A,B
pηpx̂k`1|k,X piq

qq, we have :

¨

˝

as,X piq ¨ â´1
s,k`1|kq̂k`1|k ˚ q

´1
X piq ˚A ˚ qX piq ˚ q̂´1

k`1|k

bs,X piq b̂´1
s,k`1|k ¨ q̂k`1|k ˚ q

´1
X piq ˚B ˚ qX piq ˚ q̂´1

k`1|k

˛

‚.

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

“ ρηpx̂k`1|k,X piqq

˜

A

B

¸

(C.7)
The claimed predicted invariant output error can be ex-
pressed as a weighted sum of invariant output errors such as:

Êx̂ “ ρηpx̂k`1|k,X piqq

˜

A

B

¸

´

2n
ÿ

j“0

W
pjq
pmqρηpx̂k`1|k,X pjqq

˜

A

B

¸

.
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C.3 Derivation of the IUKFx for the AHRS
As shown in Section V, predicted state parametrization Êx

avoids the need to find 4n2 ` 2n invariant state errors. The
invariant unscented Kalman filter equations of the AHRS
problem can be derived as follows.

x̂k`1|k`1 “ x̂k`1|k `

n
ÿ

i“1

K
piq
k`1 . . .

ˆEpyk`1, x̂k`1|k, ŷk`1|kq ¨ wipx̂k`1|kq

“ x̂k`1|k `

n
ÿ

i“1

K
piq
k`1

`

ρx̂´1
k`1|k

pyk`1q ¨ ¨ ¨

´ρx̂´1
k`1|k

pŷk`1|kq
˘

¨ wipx̂k`1|kq

“ x̂k`1|k `

n
ÿ

i“1

K
piq
k`1

ˆ

ρx̂´1
k`1|k

pyk`1q ¨ ¨ ¨

´

2n
ÿ

j“0

W
pjq
pmqρηpx̂k`1|k,X pjqq

˜

A

B

¸

˙

wipx̂k`1|kq

“ x̂k`1|k `

n
ÿ

i“1

K
piq
k`1

2n
ÿ

j“0

W
pjq
pmq

ˆ

ρx̂´1
k`1|k

pyk`1q

´ρηpx̂k`1|k,X pjqq

˜

A

B

¸

˙

wipx̂k`1|kq

At each time step, the estimated state is therefore computed
in the form of a correction of the prediction derived from
the left or right-invariant dynamics of the system expressed
as a weighted sum of invariant innovation terms over the Lie
group parametrized directly or indirectly by x̂k`1|k`1.

“ x̂k`1|k `

2n
ÿ

j“0

W
pjq
pmq

n
ÿ

i“1

K
piq
k`1

ˆ

ρx̂´1
k`1|k

pyk`1q ¨ ¨ ¨

´ρηpx̂k`1|k,X pjqq

˜

A

B

¸

˙

¨ wipx̂k`1|kq

“ x̂k`1|k `

2n
ÿ

j“0

W
pjq
pmq

„

X pjq
k`1|k `

n
ÿ

i“1

K
piq
k`1

ˆ

ρx̂´1
k`1|k

pyk`1q

´ρηpx̂k`1|k,X pjqq

˜

A

B

¸

˙

¨ wipx̂k`1|kq
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