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Abstract

Airports and surrounding airspaces are limited in terms of capacity and repre-
sent the major bottlenecks of the air traffic management system. This paper
addresses the problems of terminal airspace management and airport congestion
management at the macroscopic level through the integrated control of arrivals
and departures. Conflict detection and resolution methods are applied to a
predefined terminal route structure. Different airside components are modeled
using network abstraction. Speed, arrival and departure times, and runway as-
signment are managed by using an optimization method. An adapted simulated
annealing heuristic combined with a time decomposition approach is proposed
to solve the corresponding problem. Computational experiments performed on
case studies of Paris Charles De-Gaulle airport show some potential improve-
ments: First, when the airport capacity is decreased, until a certain threshold,
the overload can be mitigated properly by adjusting the aircraft entry time in
the Terminal Maneuvering Area and the pushback time. Second, landing and
take-off runway assignments in peak hours with imbalanced runway through-
puts can significantly reduce flight delays. A decrease of 37% arrival delays and
36% departure delays was reached compared to baseline case.

Keywords: Integrated Optimization, Terminal Maneuvering Area, Airport,
Simulated Annealing

1. Introduction

With the steady growth of air traffic demand, the current air network is
facing capacity problems, leading to delays and congestions. One of the most
critical parts is the airport and its surrounding airspaces. Increasing use of
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saturated airfield capacity will adversely impact predictability and punctuality.
European SESAR (Single European Sky ATM Research) program [1] and FAA’s
NextGen (Next Generation Air Transportation System) plan [2] aim to increase
the network traffic throughput in order to accommodate the forecast demand
with a sufficient margin. To achieve this goal, new technologies integrating ex-
isting optimization support systems in order to act as holistic decision-support
tools for all airport partners are proposed, such as the Total Airport Manage-
ment Concept (TAM) [3]. Efficient planning and optimization approaches of
airport operations are critical to alleviate traffic congestion.

In previous work, segregated problems on runway sequencing and scheduling,
and airport ground optimization have been studied extensively. Bennell et al.
[4] gave a brief review of the techniques and tools for scheduling aircraft landings
and take-offs. Atkin et al. [5] provided an overview of the research for ground
movement and the integration of various airport operations.

The runway sequencing and scheduling problem aims to find the optimal
schedule for aircraft in order to reduce delay and to maximize runway through-
put, taking into account safety and operational constraints. Arrivals and de-
partures are often considered as separate problems. Past efforts have also been
made for mixed operations (simultaneous arrival and departure scheduling on a
single runway). Beasley et al. [6] presented a mixed-integer, zero-one program
to schedule aircraft landings. Atkin et al. [7] proposed a hybrid metaheuristic
system to improve runway scheduling at the London Heathrow airport. Balakr-
ishnan and Chandran [8] presented dynamic programming algorithms for the
problem of mixed operations under constrained position shifting. An interest-
ing rolling horizon approach to the aircraft sequencing problem for arrivals and
departures was proposed by Furini et al. [9].

Runway sequencing is intimately linked to other airport ground operations.
The problem becomes more complicated for finding the best schedules and routes
with respect to taxiing separation, route choices, runway wake turbulence sep-
aration etc. Gotteland et al. [10, 11] presented a hybrid algorithm combining
a genetic algorithm, and branch and bound to solve the ground movement and
runway sequencing problem. Lee and Balakrishnan [12] introduced a mixed-
integer linear programming model to optimize both taxiway and runway sched-
ules. Jung et al. [13] presented two decoupled optimization algorithms to pro-
vide sequence and timing advisories for pushback and take-off. Ma et al. [14]
proposed a global optimization approach to solve the surface operations prob-
lem and compared different control strategies (controlled pushback time, taxi
reroutes and controlled holding time).

Recently, more research focuses on the integrated optimization of TMA (Ter-
minal Maneuvering Area) and airport. Integrating terminal airspace manage-
ment with existing route network is a more complicated, but more realistic
problem than considering only the runway scheduling and sequencing problem
in TMA. Khadilkar and Balakrishnan [15] modeled departure operations using
a network abstraction, and combined with published arrival routes, used dy-
namic programming to solve the integrated control problem in order to get the
optimal times of departures. Xue and Zelinski [16] modeled terminal airspace
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by spatially and temporally segregating arrival and departure routes. Bosson et
al. [17] extended previous research with surface operations to integrate taxiway
and runway operations. Frankovich [18] proposed unified approaches on both
strategic and tactical levels to optimize the traffic flowing through an airport.

Preliminary research on merging flows in TMA using a time decomposition
approach [19] and reducing airport capacity overload [20] has been presented.
This paper studies the integrated problem of terminal airspace management
for arrivals and departures, and airport capacity management through the ab-
straction model of terminal, taxi network, and runway. A fast metaheuristic
algorithm combined with a time decomposition approach is proposed. The case
studies based on Paris CDG airport show some potential benefits: First, as-
suming a decrease of airport capacity based on the current level, until a certain
threshold, the overload can be mitigated properly by adjusting the flight time
decisions. Second, the benefits of landing and take-off runway assignments in
peak hours are studied.

The remaining parts of this paper are organized as follows. Section 2 presents
the mathematical model of the integrated terminal airspace management and
airport congestion management problem. A metaheuristic method combined
with a time decomposition approach aiming at minimizing the airspace conflicts,
airport overload, and total flight delays is presented in Section 3. Computational
experiments conducted with the proposed methodology are presented in Section
4. Conclusions and perspectives are discussed in Section 5.

2. Problem description and model

In the terminal airspace, aircraft from different entry points must be merged
and sequenced into an orderly stream, follow the Standard Terminal Arrival
Routes (STAR), then prepare to land on the runway. After slowing down the
speed and exiting the runway, aircraft taxi towards the assigned gate. Then,
after a certain turnaround duration for disembark, embark and other ground-
holding operations, aircraft push back, taxi out, depart, and follow the desig-
nated Standard Instrument Departure (SID) routes.

Based on different levels of fidelity, the airport models are broadly described
as microscopic or macroscopic. In microscopic levels, individual aircraft tra-
jectories with detailed information about taxiway routing, gate occupancy are
explicitly considered. However, the simulations can be computationally inten-
sive. In macroscopic models, the airport components (terminals, taxi network)
can be globally modeled as resources with specific capacities (as opposed to
individual aircraft or taxiway links). This level of abstraction can help better
understand the airport congestion situations and integrate into decision support
tools.

Our first step is to consider the terminal and airport integration problem at
the macroscopic level, in order to be sufficiently flexible to resolve airspace con-
flicts (which implicitly represents potential workload for air traffic controllers),
to mitigate airport congestion, and to reduce delays. We focus on the pre-
tactical off-line planning phase, i.e., we assume the planning time to be several
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hours, or at least 30 min, prior to actual arrival/departure time. The integrated
problem is considered in a moving time frame to reduce computational burden
and to account for the frozen flights, which were already optimized in the previ-
ous time window and are traveling in the current time window. In future work,
the model will be improved to on-line planning taking into account uncertain-
ties. The uncertainty of aircraft arrival time will increase as time passes by,
thus a more robust occupancy curve is built and evaluated.

2.1. Network model of TMA and airport surface

Figure 1: Terminal route network of arrivals and departures in CDG in west configuration

We model the TMA arrival and departure routes by a graph, G (N ,L ), in
which the aircraft are allowed to fly in the airspace, where N is the node set
and L is the link set. Each route is defined by a sequence of nodes and links; the
first link starts from an entering point (a so-called Initial Approach Fix (IAF)
for arrivals and runway threshold for departures) and the last link ends at the
exit point (runway threshold for arrivals and last SID waypoint for departures).

Fig. 1 displays an example model of a route network for the Paris Charles
De-Gaulle (CDG) airport. CDG is one of the busiest passenger airports in
Europe, it is composed of four parallel runways (two for landings and two for
take-offs) and three terminals. The West configuration with runways 26L/26R
and 27L/27R is illustrated in Fig. 1, arrival and departure procedures are
respectively represented by black and gray colors. In the arrival procedure, four-
corner routes fuse into one to each runway. Each of the starting nodes of these
four routes is an IAF. The set of entering points here is N e={MOPAR, LORNI,
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Figure 2: Network model of TMA and airport surface. Each component is considered as
resource with a specific capacity.

OKIPA, BANOX}. For the departure procedure, one route starts at the runway
threshold and ends with one of the SID waypoints in the set N x={OPALE,
NURMO, NEPAR, BEKOS, DOPAP, RBT, LESGA}. The set of routes is
denoted as R = {re|e ∈ N e ∪ N x}. Each aircraft follows exactly one of these
routes corresponding to its entering point and landing runway for arrivals, and
exit point and take-off runway for departures.

According to real radar data and published routes, departure and arrival
trajectories are separated in altitude. The arrival flows from the North-West
(South-West) maintain their flight level at about 12,000 ft (13,000 ft) on the
route section overlapping with departure flows between MOPAR and PG560
(DOMUS and PG515), and the departure flows to the North (South) pass below
them. In the Eastern part, IF27R keeps a flight level of 5000 ft, IF26L keeps
4000 ft, so that the departures are able to fly above the arrivals.

Different airport components are considered using a network abstraction.
Runways and terminals are modeled as resources with a specific capacity. We
only take into account the overall capacity of a terminal without considering its
individual gates. Taxiway is seen as a network with a threshold of total allowed
number of taxi-in and taxi-out aircraft. The network model of TMA and airport
surface is illustrated in Fig 2.

In the next section, we describe an integrated global optimization model of
TMA and airport. We first give the flight input data. Then, decision variables
are defined. Lastly, we clarify constraints and introduce the objective function.

2.2. Input data

Assume that we are given a set of flights (or aircraft), F = A ∪ AD ∪ D ,
where A is a set of arrivals, flights that land at the airport and stay until the end
of the day; AD is a set of arrival-departures, flights that arrive at the airport
and depart from it after a turnaround duration; D is a set of departures, flights
that are parked at the airport at the beginning of the day and depart later.
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For each flight f ∈ F , the following data is given: wake turbulence category
for f ∈ F , assigned terminal for f ∈ F , entering waypoint at TMA for f ∈
A
⋃

AD , exit waypoint at TMA for f ∈ D
⋃

AD , taxi-in duration for f ∈
A
⋃

AD , taxi-out duration for f ∈ D
⋃

AD , initial landing runway number for
f ∈ A

⋃
AD , initial departure runway number for f ∈ D

⋃
AD , initial off-block

time for f ∈ D , turnaround duration for f ∈ AD and initial exit time at the
exit SID waypoint for f ∈ D

⋃
AD . Moreover, we know:

• T 0
f : initial RTA (Required Time of Arrival) at the entering waypoint of

TMA (f ∈ A
⋃

AD );

• V 0
f : initial speed at the entering waypoint of TMA (f ∈ A

⋃
AD );

• P 0
f : initial off-block time (f ∈ D

⋃
AD ), it is the earliest time that an

aircraft is ready to depart from its parking position.

Here are the assumptions and simplifications we make for our model:

• Flights are assumed to be able to park at any gates in their assigned
terminal;

• We use an average taxi-in and taxi-out duration with regard to terminal
and runway for each flight, due to the fact that we do not have information
about the gate for the macroscopic model of the airport. Detailed study
of airport taxi routings can be found in [14];

• Each aircraft has a constant deceleration or acceleration in the TMA.
However, our model can tackle other types of trajectory (real radar data,
BADA data) by discretizing the airspace into a space-time grid and de-
tecting conflicts, as done in the work of Chaimatanan et al. [21]

2.3. Decision variables

The optimization model we are using has five types of decision variables.
For arrivals, we have to attribute the entering time in the TMA, the entering
speed in the TMA, and the landing runway:

1. Entering time in the TMA for f ∈ A
⋃

AD : First, we assume that we are
given a maximum delay and a maximum advance, denoted respectively
∆Tmax and ∆Tmin, which define the range of possible entering times in
the TMA. We therefore define, for each flight f ∈ A

⋃
AD , a time-slot

decision variable tf ∈ Tf , where

Tf = {T 0
f + j∆T |∆Tmin/∆T 6 j 6 ∆Tmax/∆T, j ∈ Z},

where ∆T is a discretized time increment, whose value is to be set by
the user. In order to shift an aircraft entering time in the TMA, we can
either decrease or increase its speed in the en-route phase. In practice,
the latter strategy burns more fuel, and may be far less attractive for the
airlines. As a consequence, our time slot interval can be asymmetric, with
|∆Tmax| ≥ |∆Tmin|. In the following sections, the notation delay is used
to indicate the time deviation of a flight.

6



2. Entering speed in the TMA for f ∈ A
⋃

AD : vf ∈ Vf , where

Vf = {V min
f + j∆v

f | j ∈ Z, |j| 6 (V max
f − V min

f )/∆v
f},

with ∆v
f is a (user-defined) speed increment, V min

f and V max
f are given as

input data corresponding to the minimum and maximum allowable speeds
for aircraft f .

3. Landing runway for f ∈ A
⋃

AD : rlf is the landing runway decision for
arrivals. Runway assignment is used to balance the capacity when one
runway gets overloaded while another is still able to accommodate more
aircraft. Fig. 3 gives an example of how flight delay can be reduced by
assigning the landing runways. In Case 1, with a First-Come-First-Served
strategy, a total of 470 s is required for all five aircraft to land when all
the traffic arrives on southern runway 26L. In Case 2, after optimizing
the landing sequence for the same runway, a total of 258 s is required.
In Case 3, the total landing time is reduced to 120 s with the possibility
of runway assignment. Runway aircraft assignment enables to increase
overall throughput with less delay comparing with the case where aircraft
have no options to change their landing runway.

Case 2: Optimize landing sequence

Case 3: Optimize landing sequence + landing runway

27R

26L

27R

27R

26L

26L

157 s 60 s 96 s 157 s

60 s 60 s 96 s 96 s

96 s

60 s 60 s

Case 1: First−Come−First−Served
Heavy Medium

Figure 3: Three landing sequences comparison. In Case 1, First-Come-First-Served strategy
is applied; In Case 2, the landing sequence is optimized with regard to wake turbulence
separation requirements; In Case 3, by assigning a landing runway and optimize landing
sequence, less delay is achieved.

For departures, we have to decide the departure runway and the pushback
time:

4. Departure runway for f ∈ D
⋃

AD : rdf is the take-off runway decision
variable for departures. Similarly, it’s possible to yield flights to another
take-off runway when the current assigned one is busy.

5. Pushback time for f ∈ D
⋃

AD : pf ∈ Pf , where

Pf = {P 0
f + j∆T |0 6 j 6 ∆T p

max/∆T, j ∈ N},
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where ∆T p
max is the maximum pushback delay. In contrast to the entering

time decision in the TMA for arrival flights, we can only delay a departure
with regard to its earliest initial off-block time.

To summarize, our decision vector is x = (t,v, l,d,p), where t is the vector
for which the f th component is the decision variable tf , v is the vector for
which the f th component is the decision variable vf , l is the vector for which
the f th component is the decision variable rlf , d is the vector for which the f th

component is the decision variable rdf , and p is the vector for which the f th

component is the decision variable pf .

2.4. Constraints

We have two main constraints: wake turbulence separation, and single-
runway separation for arrivals and departures. Before taking into account these
separations, we first calculate the passage times at which the aircraft passes
each resource (node, link, runway, taxi network, terminal) based on the deci-
sion vector x. Let us denote respectively the passage time at the resource m,
the entering time to the resource m, and the exit time from the resource m by
Tm
f (x), T f,m

In (x), and T f,m
Out (x).

2.4.1. Conflicts detection in the TMA

In this paper, we make the assumption that the arrival and departure routes
are separated in altitude, which corresponds to real-world TMA operations.
Therefore, we detect conflicts separately for arrivals and for departures. Con-
sidering the above-described TMA route network structure, the TMA separation
violation may happen either in the link or in the node:

Table 1: Distance-based separation on approach and departure according to aircraft categories
(in NM). For example, the minimum distance separation between an heavy aircraft followed
by a medium aircraft is 5 NM.

Category
Trailing Aircraft

Heavy Medium Light

Leading Aircraft
Heavy 4 5 6
Medium 3 3 5
Light 3 3 3

• Link conflict: As shown in Fig. 4(a), for two consecutive flights f, g that
are flying through a link l = (u, v), the minimum separation between these
two aircraft, sfg, is obtained based on their respective wake turbulence
category as shown in Table 1. Then, the actual separation distance of
these aircraft at the entry time, dufg(x), and at the exit time of link l,
dvfg(x), are computed and compared with sfg to detect an eventual link
conflict.
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dvfg(x)dufg(x)

u l v

gf f g

(a) Link conflict detection at the entry and
exit of the link. No overtaking is allowed.

Rn

T f,n
In

(x)

T f,n
Out

(x)

T g,n
In

(x)
T g,n

Out
(x)

f

g

n

(b) Node conflict detection. At each time,
only one aircraft passes the detection zone,
i.e., a disk centered at node n with radius
Rn.

Figure 4: Airspace conflict detection illustration

Let us define, the link conflict indicator, Ll
fg(x), for aircraft f and g at

link l:

Ll
fg(x) =

 1,
if Tu

f (x) < Tu
g (x) and (dufg(x) < sfg or dvfg(x) < sfg

or T v
f (x) > T v

g (x))

0, otherwise

where Tu
f (x) is the passage time of flight f at the entry node u of link l,

T v
f (x) is the passage time of flight f at the exit node v of link l.

• Node conflict: If no link conflict is detected, wake-turbulence separation
can be guaranteed. However, at the intersection of two successive links,
violation of the horizontal separation requirement between any two con-
secutive aircraft (3 NM in TMA) may still occur. Therefore, we check
that when an aircraft flies over a node, the horizontal separation with
other aircraft is maintained. Considering a node n and two aircraft f, g
that fly over node n, we consider a disk centered at node n with radius
Rn, defined as a detection zone. Rn can be simply defined as 3 NM for
all the nodes, we have refined this value with regard to intersection angles
of two links at the common node, more details can be found in [19]. We
must ensure that at every moment only one aircraft passes this detection
zone. Suppose that aircraft f enters the zone of node n before aircraft g.
We denote the entering time to and exit time from this zone for aircraft f
(g, respectively) as T f,n

In (x) (T g,n
In (x)) and T f,n

Out (x) (T g,n
Out (x)). A conflict is

detected when T g,n
In (x) < T f,n

Out (x), which means that aircraft g enters the
detection zone before aircraft f exits.
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We define the node conflict indicator for aircraft f (leading) and g (fol-
lowing) as follows:

Nn
fg(x) =

{
1, if T f,n

In (x) ≤ T g,n
In (x) < T f,n

Out (x)
0, otherwise

2.4.2. Runway conflict evaluation

Table 2: Single-runway separation requirements according to aircraft categories and to op-
erations (in seconds). A refers to Arrival, D refers to Departure, and C refers to Crossing.
H refers to Heavy, M refers to Medium, and L refers to Light. For example, the minimum
runway separation between an “A-H” (Arrival-Heavy) and a “D-M” (Departure-Medium) is
60 seconds.

Operation-Category
Trailing Aircraft

A-H A-M A-L D-H D-M D-L C

Leading
Aircraft

A-H 96 157 207 60 60 60 -
A-M 60 69 123 60 60 60 -
A-L 60 69 82 60 60 60 -
D-H 60 60 60 96 120 120 60
D-M 60 60 60 60 60 60 60
D-L 60 60 60 60 60 60 60
C - - - 40 40 40 10

The landing/take-off time difference of any two consecutive aircraft must
respect the time separation. The runway separation rules are calculated by
incorporating the different flight speeds and their impact on the final approach
segment. Here, the separation requirements are shown in Table 2, where A
refers to Arrival, D refers to Departure, and C refers to Crossing. Due to the
runway configuration in CDG, arrivals have to cross departure runways to get
to the terminal. We consider that the crossing time of an arrival is 40 s.

One runway can be modeled as a specific resource with capacity 1. During
high traffic demand periods, the upcoming flights may violate the separation
rules and cause runway congestions. Therefore, we note the number of times
that the separation is violated and the duration of separation violation for all
pairs of aircraft as an indicator for our runway evaluation.

We define the runway conflict indicator between two successive aircraft f
and g as:

Pfg(x) =

{
1, if 0 ≤ T r

g (x)− T r
f (x) < tfg

0, otherwise

where T r
f (x) denotes the time at which aircraft f arrives at the runway

threshold, and tfg is the minimum runway separation between flights f and g
as shown in Table 2.

One particular case must be considered for the departure runway with a
sequence of “Heavy Departure-Crossing-Small/Medium Departure”. As shown
in Fig. 5, each pair of successive flights satisfies to the separation requirement,
however, loss of separation occurs between the aircraft “D-H” and the aircraft
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D−H C D−M

60 s 40 s

Minimum separation 120 s,

         loss of 20 s

Figure 5: Loss of separation in case “Departure-Heavy (D-H) – Crossing (C)– Departure-
Medium (D-M)”. The minimum separation between “D-H” and “C” (“C” and “D-M”) is 60
(40) seconds respectively. However, the minimum separation between “D-H” and “D-M” is
120 seconds, thus it induces 20 seconds loss of separation if only the required separations
between successive aircraft are checked.

“D-M”. Therefore, besides detecting the minimum separation between any two
successive flights, the loss of triangle inequality as shown in Fig. 5 must be
detected too.

The total number of conflicts with regard to decision vector x is defined as
follows:

A(x) =
∑

f,g∈F
f 6=g

 ∑
n∈rf∩rg

Nn
fg(x) +

∑
l∈rf∩rg

Ll
fg(x) + Pfg(x)


The TMA separation and the runway separation are ensured by

A(x) = 0

2.5. Objective

Our objective function is a weighted sum of the overloads for terminal and
for taxi network and flight delays.

• Terminal and taxiway congestion evaluation:

We have two metrics to measure the terminal congestion. First, the maxi-
mum overload number is the maximum value over the period of the differ-
ence between the number of aircraft in the terminal and the given terminal
capacity. This metric gives us an idea of the time at which severe conges-
tion occurs. However, the maximal overload does not provide sufficient
information on the level of congestion. Therefore, another important met-
ric to consider is the average congestion.

Suppose that we have a discretized time window T = {1, 2, ..., |T |}, let us
define the occupancy indicator for i ∈ T :

Om(i) = Card{f |T f,m
In (x) ≤ i ≤ T f,m

Out (x)}
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where T f,m
In (x) and T f,m

Out (x) correspond to the entering time and the exit
time of resource m (i.e., terminal or taxi network). It counts the number
of aircraft at time i. The overload of resource m at time i is then defined
as:

Gm(i) = max{Om(i)−Om, 0}
where Om is the imposed maximum capacity of the resource m.

The average overload is then defined as

∑
i∈T

Gm(i)

|T | .

To conclude, the airside capacity overload is expressed as

S(x) =

∑
i∈T

Gt(i)

|T | + max
i∈T

Gt(i) +

∑
i∈T

Gn(i)

|T | + max
i∈T

Gn(i)

where Gt(i) and Gn(i) are respectively the terminal overload and the taxi
network overload at time i.

Figure 6: Example of terminal congestion evaluation. Five aircraft turnaround in a terminal
with a maximum capacity Ot of 3. The congestion time period is shown in red area.

Let us consider a simple example to show how we propose to measure
the terminal congestion level. As illustrated in Fig. 6, suppose that we
have one terminal with three gates (i.e., the capacity Ot = 3), and 5 flights
turnaround in this terminal during a period of two hours, T = {10 : 00, 10 :
01, ..., 12 : 00}. The upward (respectively, downward) arrow represents the
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in-block (off-block) time of one aircraft, linked by a dotted line. We count
the cumulated number of aircraft in the terminal as time goes by. Here,
the maximum terminal occupancy is 5, therefore the maximum overload
max
i∈T

Gt(i) is 2. We calculate the total overload
∑
i∈T

Gt(i) as well, which is

55 here (the red surface shown in Fig 6). The congestion criterion is 2+
55/120 ' 2.458.

• Flight delays: The flight delays D(x) are defined as the total time devia-
tion between the optimized and initial values of RTA and pushback time,
D(x) =

∑
f∈F

(pf − P 0
f ) +

∑
f∈F

(tf − T 0
f ).

The conflict-avoidance constraint is relaxed into the objective function. Thus,
our objective function, to be minimized is therefore a weighted sum of these
functions:

γaA(x) + γsS(x) + γdD(x)

where γa, γs, and γd are respectively weighting coefficients for the total
number of conflicts in airspace, A(x), the airside capacity overload, S(x), and
the flight delays D(x).

3. Solution approaches

The complexity of the integrated problem would grow compared to the segre-
gated problem, when in practice the computational time is critical. It is known
that the sub-problem of this integrated optimization, aircraft landing schedul-
ing, is NP-hard [22]. Heuristics and hybrid methods may have more potential
than exact approaches for tackling this problem [5]. In this paper, we propose
a time decomposition approach combined with a simulated annealing algorithm
to address the integrated terminal airspace management and airport congestion
management. In the following of this section, the time decomposition approach
and simulated annealing algorithm are introduced and detailed.

3.1. Time sliding-window decomposition approach

The time sliding-window decomposition approach addresses the original prob-
lem by decomposition into several sub-problems using a sliding window in order
to reduce the problem size and consequently the computational burden. This
specific approach is generic and can be extended and applied to other real-time
operation problems.

Suppose that we are given a total time interval, [tINIT, tFINAL], over which we
want to optimize. Let us introduce some notations:

• W : the time length of the sliding window;

• S: the time shift of the sliding window at each iteration;

• Ts(k): the starting time of the kth sliding window, Ts(k) = tINIT + kS;

13
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Figure 7: Sliding windows from iteration 0 to iteration k with a time length W and a time
shift S at each iteration.

• Te(k): the ending time of the kth sliding window, Te(k) = tINIT + kS+W .

Fig. 7 illustrates how the operating window slides along the time axis.
The first sliding window begins at tINIT and, the optimization algorithm (to be
defined later) is applied in the corresponding time interval [Ts(0), Te(0)]. Next,
the sliding window is shifted by time S, and the current optimizing interval
becomes [Ts(1), Te(1)]. Then, we repeat the process until we reach the kth

sliding window such that Te(k) 6 tFINAL − S.
Some parameters are needed to describe the sliding-window approach for

each flight f ∈ F :

• tfs : initial starting time, i.e.,

tfs =

{
T 0
f if f ∈ A

⋃
AD

P 0
f if f ∈ D

• tfs : the earliest starting time, i.e.,

tfs =

{
tfs + ∆tmin if f ∈ A

⋃
AD

tfs if f ∈ D

• tfs : the latest starting time, i.e.,

tfs =

{
tfs + ∆tmax if f ∈ A

⋃
AD

tfs + ∆T p
max if f ∈ D

• tfe : initial ending time, i.e.,

– For f ∈ A , it corresponds to the initial in-block time, which is cal-
culated with regard to initial entry time, STAR route, initial entry
speed, average taxi-in duration;
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– For f ∈ AD , it is the exit time of TMA, calculated with regard to
initial entry time, STAR route, initial entry speed, average taxi-in
duration, turnaround duration, average taxi-out duration, take-off
time, and SID route;

– For f ∈ D , it is also the exit time of TMA, calculated with regard to
earliest off-block time, average taxi-out duration, take-off time, and
SID route.

• tfe : the earliest ending time, i.e.,

– For f ∈ A , it corresponds to the earliest in-block time, which is
calculated with regard to earliest entry time in TMA, maximum entry
speed, STAR route, and average taxi-in duration;

– For f ∈ AD , it is the earliest exit time of TMA, calculated with
regard to STAR route, earliest entry time in TMA, maximum entry
speed, average taxi-in duration, turnaround time, earliest pushback
time, average taxi-out duration, take-off time, and SID route;

– For f ∈ D , it is also the earliest exit time of TMA, calculated with
regard to earliest off-block time, average taxi-out duration, take-off
time, and SID route.

• tfe : the latest ending time, i.e.,

– For f ∈ A , it corresponds to the latest in-block time, which is cal-
culated with regard to latest entry time in TMA, minimum entry
speed, STAR route, and average taxi-in duration;

EntryTime
−minRTA

OffBlockTime ExitTime

maxInBlockTime

approach
Descent and

and taxi
Landing

Turnaround take off
Taxi and

and climb
Departure

maxSpeed+minRTA
LandingTimewith

EntryTime LandingTime InBlockTime
TakeOffTime

EntryTime
+maxRTA

minInBlockTime

LandingTimewith
minSpeed+maxRTA maxPushbackDelay

OffBlockTime+
minExitTime

maxExitTime

Arrival−Departure

Arrival Departure

Figure 8: Arrival-Departure operations in TMA. A flight goes through several phases: descent
following standard terminal arrival route, landing on the runway and taxiing to the gate,
turnaround, push back at the gate, taxiing between the gate and the runway, take-off and
initial climb following standard instrument departure procedure.

– For f ∈ AD , it is the latest exit time of TMA, calculated with regard
to STAR route, latest entry time in TMA, minimum entry speed,
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average taxi-in duration, turnaround time, latest pushback time, av-
erage taxi-out duration, take-off time, and SID route;

– For f ∈ D , it is also the latest exit time of TMA, calculated with
regard to latest off-block time, average taxi-out duration, take-off
time, and SID route.

Fig. 8 gives an overview of the total operations of flight from the entry in
TMA until the exit of this TMA.

Each aircraft is classified with one of the following four statuses, based on
the positions of the parameters of flight f relative to the starting and ending
times of the current sliding window, k:

• Completed flight: tfe 6 Ts(k). The latest ending time for aircraft f , tfe ,
is lower than the beginning time of the kth sliding window, Ts(k), which
means that aircraft f has already finished its operation before the start of
the kth sliding window;

• On-going flight: tfs 6 Ts(k) < tfe . The beginning time of the kth sliding

window, Ts(k), is between the earliest starting time, tfs , and the latest

ending time, tfe , which means that aircraft f has already been assigned,
but it may still impact the next aircraft in terms of decision variables;

• Active flight: Ts(k) < tfs 6 tfs 6 Te(k). The time decision interval of
flight f is included in the sliding window interval [Ts(k), Te(k)];

• Planned flight: Te(k) < tfs . The latest starting time, tfs , is larger than
the ending time of the kth sliding window, Te(k), which means that the
temporal decision variable interval is not totally included in the time win-
dow, so that we could not take decision for aircraft f in this interval. The
flight will be considered later.

The status of flight f is updated and changed according to the sliding window
being considered. Fig. 9 illustrates the four different flight statuses and their
positions relative to the sliding window. The different time positions of the
aircraft and those of the sliding-window are indicated respectively with blue
and red triangles.

At each step, we take into account the active and on-going aircraft in the
sliding window interval to be merged and sequenced. Decisions for the on-going
flights have already been made, but these flights still have some influence on
the decisions to be made for the active flights. On the other hand, the conflicts
involving completed flights have already been resolved and they cannot have any
impact on the active flights, so they can be cleared out of the decision process
and ignored. Then, the optimization window is shifted by the time step S. The
aircraft statuses are updated, a new set of flights waiting to be addressed are
considered, and the optimization process is repeated, as illustrated in Algorithm
1.
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tfs tfetfs tfe

tfs

Ts(k) Te(k)

Ts(k) Te(k)

Ts(k) Te(k)

Ts(k) Te(k)

tfe

tfs

tfs

Completed: tfe ≤ Ts(k)

On-going: tfs ≤ Ts(k) < tfe

Active: Ts(k) < tfs ≤ tfs ≤ Te(k)

Planned: Te(k) < tfs

Figure 9: Four flights status, related to the time position of flight f relative to the current
sliding window (k).

Algorithm 1 Sliding-window management

1: procedure SlidingWindow
2: k ← 0;
3: Ts(k)← tINIT;
4: Te(k)← Ts(k) +W ;
5: Determine each flight status relative to sub-window;
6: FOPT ← Active and on-going flights;
7: while Te(k) < tFINAL do
8: if at least one active flight in FOPT then
9: Subproblem: optimize considering FOPT;

10: end if
11: Ts(k)← Ts(k) + S;
12: Te(k)← Te(k) + S;
13: k ← k + 1;
14: Update each flight status relative to sub-window;
15: Update FOPT;
16: end while
17: end procedure
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3.2. Simulated annealing

Simulated Annealing (SA) [23] is a meta-heuristic that simulates the anneal-
ing of a metal, in which the metal is heated up and slowly cooled down to move
towards an optimal energy state. It can easily be adapted to large-scale prob-
lems with continuous or discrete search spaces. In SA, the objective function
to be minimized is analogous to the energy of the physical problem. A global
parameter T is used to simulate the cooling process. A current solution may be
replaced by a random “neighborhood” solution accepted with a probability e

∆E
T ,

where ∆E is the difference between corresponding function values. We start the
cooling process from a high initial temperature T0 (which can be determined
by a heating process or defined by user), the current solution changes almost
randomly at a higher temperature, thus the algorithm is able to trap out of local
minima. The decrease of temperature may follow different laws, such as linear
law, geometric law, etc. At each temperature step, a number of iterations are
executed. The probability to accept a degrading solution become smaller and
smaller as T decreases. Therefore, at the final stages of the annealing process,
the system will converge to a near-global or global optimum.

To generate a neighborhood solution, instead of simply choosing randomly
a flight f in the active-flight set, we use a method similar to the so-called
roulette-wheel selection. We note for each aircraft the number of conflicts and
the time of congestion as its air and ground performance respectively. Air
performance involves link and node conflicts, and ground performance involves
runway, taxiway network and terminals congestions. Let us take the example of
Fig. 6, in Table 3, we note the total time during which an aircraft is overlapping
with other flights. For example, the overlapping time between the flight F1 and
all the other flights is 50 min; for F5 it is only 6 min.

Table 3: An example of aircraft terminal performance (in minutes)

Flight F1 F2 F3 F4 F5

Terminal performance 50 65 52 34 6

Considering this overload period, it is better to first change the decisions of
aircraft which are mostly involved in congestion (F2, F3, F1) than the ones with
less impact (F5) in order to mitigate the terminal congestion. The performance
metric can help us to better focus on the most charged and congested periods.
The fact that our neighborhood definition is based on the air and ground flight
performance increases the likelihood that a flight involved in many conflicts, or
experiencing severe congestions, will be chosen. As shown in Fig. 10, in the
neighborhood selection, firstly, we record different performance indicators for
each aircraft. Then, we choose a flight using a roulette wheel selection method
based on the conflict performance. Next, we target this flight to decide which
decision variable to be changed. Lastly, we choose randomly a discretized value
for the related decision variable. To summarize, a detailed description is shown
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Algorithm 2 Neighborhood function

Require: For each flight f , we record its airspace performance, paf , runway

performance, prf , ground performance, pgf , the total performance is denoted

as ptf = paf + prf + pgf .

1: The total number of conflicts Pt =
∑
f∈F

ptf ;

2: Generate random number, ν = random(0,1);
3: if Pt > 0 then
4: sum ← 0;
5: target ← Pt × ν;
6: i ← 1;
7: while sum < target do
8: sum ← sum+pti;
9: i← i+ 1;

10: end while
11: else
12: Choose randomly one flight i in the flight set;
13: end if
14: if i ∈ A then
15: if pai > 0 then choose with equal probability between the entering time

and the entering speed in the TMA, then choose randomly one value between
0 and the maximum allowed deviation;

16: else if pri > 0 then choose with equal probability among the entering
time in the TMA,the entering speed in the TMA, and the landing runway;

17: else choose randomly the entering time in Tf ;
18: end if
19: else if i ∈ D then
20: if pgi > 0 then
21: choose randomly the pushback time in Pf ;
22: else
23: choose with equal probability between the pushback time change and

the take-off runway change;
24: end if
25: end if
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Figure 10: Neighborhood generation. We first target one aircraft using a roulette wheel
selection based on number of conflicts. Then, we modify one of its decision variables with
regard to the type of aircraft and its performance indicators.

in Algorithm 2.
The SA terminates the execution if either the maximum number of transi-

tions or the minimum temperature are reached.
Fig. 11 summarizes the overall optimization process. The simulation process

takes the decision proposed by the optimization algorithm and simulates the
associated flight in order to produce the objective function and the vector of
performance. The objective function and the performance indicators provided
by the simulation process guide the optimization module to search for better
solution. The time sliding window manager updates flight status and puts them
into the two previous mentioned modules. The optimization and simulation
processes are repeated.

In the next section, we apply the simulated annealing algorithm combined
with time decomposition approach to resolve the integrated terminal airspace
management problem and airport capacity management problem.

4. Results

In this section we present some test problems and analyze the associated
results. We tested our methodology on a four-hour real data case at Paris
CDG Airport. Numerical results with different settings of (user-defined) algo-
rithm parameters were presented and discussed. The overall process is run on
a 2.50GHz core i7 CPU, under Linux operating system PC based on Java code.

4.1. Real data analysis

A busy winter day on February 18th, 2016 was chosen as our data set.
Fig. 12 shows the initial terminal and taxi network occupancy over the day,
the line color green, blue, orange, and pink respectively represent Terminal 1,
Terminal 2, Terminal 3 and taxi network occupancy. Terminal 1 consists of a
central circular terminal building and seven satellites with boarding gates, thus
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Figure 11: Overall optimization process summary

Figure 12: Initial terminals and taxi network occupancy on February 18th, 2016. Terminal 2
is the main terminal in CDG and receives much more traffic flows compared to the other two
terminals.

cannot handle many aircraft and keeps a stable low traffic over the day. Air
France operates from Terminal 2, and CDG is the principal hub for Air France
(hub airport is used by one airline to concentrate passenger traffic and flight
operations at a given airport), thus Terminal 2 is the main terminal of CDG that
serves the majority of aircraft. Therefore we observed much more traffic flows
in Terminal 2 compared to the other two terminals. Terminal 3 mainly hosts
charter and low-cost airlines, is mainly composed of hangars for night parking,
therefore the departure flights leave the terminal early in the morning and the
arrival flights come late at night, forming the curve in orange color shown in Fig.
12. Peak hour with a maximum gate occupancy was reached between 8 am and
10 am in Terminal 2. Then the terminal occupancy decreased sharply, which
consecutively leaded to a peak in the taxi network. Here we extracted the flight
data of the most dense time period in the day from 6 am to 10 am as our test

21



Table 4: User-defined parameter values specifying the optimization problem

Parameter Value
Discretization time step, ∆T 5 seconds
Discretization speed step, ∆v

f 0.01V 0
f

Maximum delay of RTA at TMA, ∆Tmax 30 minutes
Minimum delay of RTA at TMA, ∆Tmin -5 minutes
Maximum pushback delay, ∆T p

max 15 minutes
Minimum allowable speed, V min

f 0.9V 0
f

Maximum allowable speed, V max
f 1.1V 0

f

Conflicts weighting coefficient, γa 1
Overload weighting coefficient, γs 1
Delay weighting coefficient, γd 0.001

Table 5: Empirically-set parameter values of the simulated annealing algorithm with time
decomposition approach

Parameter Value
Geometrical temperature reduction coefficient 0.99
Number of iterations at each temperature step 100
Initial rate of accepting degrading solutions 0.15
Final temperature 10−6T0
Time length of the sliding window 2 h
Time shift of the sliding window 0.5 h

problem. A total of 332 flights were operated at CDG, including 177 departures
and 155 arrivals, 109 flights were arrival-departures. We have in total 67 Heavy
and 265 Medium aircraft. The fleet mix ratio on this period is 20% for Heavy
aircraft and 80% for Medium aircraft. The parameters chosen for specifying
the optimization problem and the resolution algorithm are respectively given in
Table 4 and Table 5.

We tackle the integrated airport and TMA optimization problem at a macro-
scopic level, the aim is to show that the proposed algorithm can react in the
right direction facing airport capacity reduction. Due to lack of data, we can-
not apply our method to a historic situation. Moreover, directly comparing the
optimized results with the historic situation would somehow be difficult, due to
the simplifications and assumptions from the model. In this paper, we build the
initial occupancy curve by simulating the process using the initial flight data
(initial entering time, initial entering speed, initial pushback time, etc.). We
use this curve as baseline case, and impose a reasonable capacity limit, which
is fair to compare with the results from the optimization process.

Two major aspects were discussed in the rest of the section: First, different
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levels of degradations of the terminal capacity and taxi network capacity were
imposed to verify the impact on flight delays and on other airport components.
Second, we studied the benefits of runway assignment on reducing flight delays
in peak hour when two runways are facing imbalanced throughput.

4.2. Influence of reduced airport capacity to flight delays

(a) Ot = 80 (b) Ot = 75

(c) Ot = 70 (d) Ot = 70, ∆Tmax=60 min

Figure 13: Maximum terminal capacity tests, with Ot=80, 75, 70, and Ot=70, ∆Tmax=60
min respectively. Comparison of initial occupancy and optimized occupancy for terminal and
taxi network.

First, we investigated how the different levels of degradation of the terminal
occupancy and taxi network occupancy would influence the traffic. Two capacity
parameters, the imposed maximum terminal capacity, Ot, and the imposed
maximum taxi network capacity, On, were defined to investigate the airport
congestion problem. In the case of terminal overload, we chose to study the
traffic on Terminal 2, because it is much more occupied than the other two
terminals and has an important peak hour.
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(a) RTA delay comparison for arrivals in case Ot=80, 75, 70, and Ot=70, ∆Tmax=60 min
respectively. The distribution shifts to the right when Ot decreases. In the fourth case, the
dark gray histogram represents the number of flights whose time deviations are greater than
30 minutes.

(b) Pushback delay comparison for departures in case Ot=80, 75, 70, and Ot=70, ∆Tmax=60
min respectively.

Figure 14: Decisions comparison for different maximum terminal capacity Ot

As shown in Fig. 13, the dark gray line and the light gray line respectively
represented the initial terminal occupancy and the initial taxi network occu-
pancy. The initial maximum gate occupancy for this period was 90. Therefore,
we chose Ot = 80, 75, and 70 respectively. We first set a threshold of Ot =
80. After running the algorithm, the maximum capacity was reduced and kept
below the threshold as illustrated in Fig. 13(a). A decrease of the taxi network
occupancy was observed as well. Then we decreased the capacity to Ot = 75,
in a short period the traffic exceeded this threshold as shown in Fig. 13(b).
When the imposed capacity continued decreasing to Ot = 70, we encountered
a bottleneck and the maximum capacity cannot be reduced anymore. This was
due to the inherent maximum allowed RTA delays that we can change. To
make a further test, we set the maximum RTA change, ∆Tmax, to be 60 min-
utes instead of 30 minutes. After launching the algorithm, as shown in Fig.
13(d), this terminal overload was totally absorbed with the cost of more than
20 aircraft whose time deviations were more than 30 minutes as shown in Fig.
14(a). We also observed that the RTA distribution shifted to the right as Ot

decreases, while pushback delay were not influenced significantly as illustrated
in Fig. 14(b).

Similarly, the imposed capacity was applied to taxi network. As shown in
Fig. 15, the initial maximum taxi network occupancy on this period was 35.
We set a threshold of On = 25, 20 and 15 to launch three tests separately. In
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(a) On = 25. (b) On = 20

(c) On = 15 (d) On = 15, ∆Tmax=60 min

Figure 15: Maximum taxi network capacity tests, with On=25, 20, 15, and On=15,
∆Tmax=60 min respectively. Comparison of initial occupancy and optimized occupancy for
terminal and taxi network.

Fig. 15, the dark blue line and the light blue line represented the optimized
terminal occupancy and taxi network occupancy respectively. In Fig. 15(a),
On = 25 was easily reached for the whole period after optimization, also a
decrease of maximum terminal occupancy was observed, even when we didn’t
put any constraints on Ot. A sharp increase or decrease of gate occupancy
would consecutively increase taxi network capacity as well. As our strategy
was to delay the aircraft arrival, the curve was shifted to the right compared
to the initial occupancy curve. With On = 20 in Fig. 15(b), we could see
that the traffic overload cannot be absorbed, there was still a maximum taxi
network occupancy of 22 around 10 am With On = 15 in Fig. 15(c), the limited
flight delays cannot absorb the taxi occupancy either, and the maximum value
remained almost the same as with On = 20. To make a further test, we set
the maximum RTA change, ∆Tmax, to be 60 min instead of 30 min. After
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(a) RTA delay comparison for arrivals in case On=25, 20, 15 respectively. The distribution
shifts to the right when On decreases.

(b) Pushback delay comparison for departures in case On=25, 20, 15 respectively. The number
of flights whose pushback delay decision change is lower than 2 minutes decreases when On

decreases.

Figure 16: Decisions comparison for different maximum taxi network capacity On

launching the algorithm, as shown in Fig. 15(d), this taxi network overload
cannot be absorbed either, in contrast to the terminal overload. This is because
only one congestion period was found in the terminal occupancy, while taxi
network encountered several levels of congestion in different time periods, thus
more unstable and difficult to mitigate under a certain threshold. When we took
a look at the decision changes in Fig. 16, the RTA delay and pushback delay
distribution shifted to the right when On decreased, which indicated that there
were more delays for both arrivals and departures. In such case, the algorithm
kept aircraft as much as possible at the gate and slowed down arriving aircraft
in order to reduce the number of aircraft on the taxi network. Limited capacity
of the taxi network caused more flight delays.

4.3. Influence of runway assignment to flight delays

We investigated the benefits of arrival runway assignment and departure
runway assignment on reducing flight delays in peak hour when two runways
are facing imbalanced throughput.

Paris TMA arrival routes use a four-corner procedure as shown in Fig. 1 in
Section 2. In Table 6, southern flows from OKIPA and BANOX mainly use the
southern landing runway 26L. Northern flows from MOPAR use more 26L as
well, flows from LORNI land more at the northern runway 27R. Moreover, the
flows coming from South sometimes land on the northern runway, and vice versa.
In practice, landing runway changes can be achieved by controllers’ tactical
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Table 6: Landing traffic flow distribution with regard to flight entry point in TMA and landing
runway on February 18th, 2016.

27R 26L Total
MOPAR 39 (6%) 77 (13%) 116 (19%)
LORNI 131 (21%) 73 (12%) 204 (33%)
OKIPA 32 (5%) 165 (27%) 197 (32%)
BANOX 15 (3%) 80 (13%) 95 (16%)

Total 217 (35%) 395 (65%) 612 (100%)

Figure 17: Evolution of the two criteria for different runway decisions

vectoring. The departure runway changes are related to a more detailed level
of ground operations, i.e., how alternate taxi routes are assigned. Thus, in this
paper, we only focus on the benefits of departure runway changes in imbalanced
runway throughput situation.

First, we want to investigate how runway changes can bring benefits to
reduce flight delays. We set three cases:

• Case 1: Both landing runway and take-off runway are decision variables;

• Case 2: Take-off runway is a decision variable, landing runway is prede-
fined and fixed;

• Case 3: Landing runway is a decision variable, take-off runway is prede-
fined and fixed.

Fig. 17 gave an example of one sliding window optimization evolution; it
showed the value of two criteria (number of conflict and total delays) at the end
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(a) Landing throughput for runway 27R and 26L. In
Case 1, landing runway is assigned; In Case 2, initial
landing runway is used.

(b) Take-off throughput for runway 27L and 26R. In
Case 1, take-off runway is assigned; In Case 3, initial
take-off runway is used.

Figure 18: Landing runways (27R and 26L) throughput comparison for Case 1 and Case 2,
and take-off runways (27L and 26R) throughput comparison for Case 1 and Case 3.

Figure 19: RTA and pushback delay decision changes distribution with take-off and landing
runway assignment (Case 1), with only landing runway assignment (Case 2), and with only
take-off runway assignment (Case 3).
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Table 7: Total RTA delay and pushback delay comparison

Total RTA delay (in minutes) Total pushback delay (in minutes)
Case 1 897 443
Case 2 1425 501
Case 3 1293 696

Table 8: Computational time for various problem sizes. The total number of flights are the
sum of type “Active” and “On-going”.

Time period All Dep. Arr. Medium Heavy Run time (s)
6:00-8:00 164 101 63 134 (82%) 30 (18%) 51
6:30-8:30 238 137 101 202 (85%) 36 (15%) 85
7:00-9:00 234 123 111 194 (83%) 40 (17%) 88
7:30-9:30 241 119 122 196 (81%) 45 (19%) 93
8:00-10:00 266 127 139 212 (80%) 54 (20%) 103
8:30-10:30 259 121 138 200 (77%) 59 (23%) 104
9:00-11:00 229 106 123 175 (76%) 54 (24%) 85

of each temperature step during the cooling process of SA. Solid lines represented
the number of conflicts and dashed lines denoted the total delays in minutes.
The number of conflicts in Case 1 converged faster than the other two cases.
Case 1 and Case 2 reached conflict-free solution almost at the same time, while
in Case 3 conflict-free solution cannot be found. Seven SID conflicts with in
total 160 s loss of separation still remained, due to the fact that once the take-
off runway was fixed, one can only adjust pushback time to resolve conflicts,
thus it was more difficult to find a feasible solution in the given pushback delay
period. This result showed that take-off runway assignment did not only balance
runway throughput, but may also reduce controllers’ potential maneuvers in
peak hour for the SID airspace. As for total delays, before conflict-free solutions
were found, delay criteria, for three cases, stayed at a high level to offer more
possibilities for the algorithm to search in the state space to establish first
a conflict free solution. Then, the delay criterion started decreasing. We can
observe that Case 1 reached the lowest delay, while Case 2 remained the highest.

Fig. 18 showed the runway throughput for landings and take-offs. The
period 7 am–8 am corresponded to the higher landing throughput, then after
the turnaround process, the period 9 am–10 am corresponded to the higher
departure throughput. We observed a more balanced traffic for each runway in
Case 1 without reducing the throughput. Fig. 19 showed the distribution of
flights RTA and pushback delays. In Case 1, a total of 102 arrival flights (66%)
modified their RTA within 5 min. While in Case 2 and 3, more RTA delays
were required compared to Case 1, only 46% of the flights RTA was less than
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5 min, and 54% in Case 3. Without the take-off runway changes, much more
pushback delays were requested. Pushback delay didn’t change as significantly
as RTA delay, because we had a low demand between 6 am and 9 am, the major
departure flows occurred between 9 am and 10 am. Regarding the total RTA
delay and pushback delay, as shown in Table 7, a decrease of 37 % (from 1425
min to 897 min) RTA delay was reached for Case 1 compared to Case 2. A
decrease of 36 % (from 696 min to 443 min) pushback delay was reached for
Case 1 compared to Case 3.

The average computational time of our optimization algorithm was 13 min
with in total of 10 sliding windows. As shown in Table 8, the average CPU time
for each window was less than 2 min, which is very promising for tackling such
a complicated problem in practice.

5. Conclusions

To address the connected airport and terminal airspace management prob-
lems, this paper proposed a model to manage the arrival, surface and departure
problems at the macroscopic level. The objective was to resolve conflicts in the
terminal airspace, to reduce airside capacity overload, and to reduce flight de-
lays. First, we proposed a TMA route network structure and a high level airport
abstraction model. Then, a time sliding-window approach combined with a sim-
ulated annealing algorithm was applied to solve the problem. The approach was
implemented in the case of Paris CDG airport and showed some potential ben-
efits: First, reduced terminal capacity until a certain threshold was efficiently
mitigated by RTA and pushback time changes. When the imposed capacity was
more reduced, the overload could not be mitigated anymore, and the airport
could not absorb more demand without imposing delays out of the maximum
range. Similarly to terminal occupancy, a decrease of the maximum taxi network
capacity could be mitigated by delaying arrivals. Second, landing runway as-
signment and take-off runway assignment in peak hour with imbalanced runway
throughputs could significantly reduce the flight delays. Moreover, the conflicts
in the airspace could be resolved also, which may imply that the runway change
did not create many more controller’s workload.

The next steps for this research would integrate a more precise microscopic
level to optimize the ground movements by considering individual flights and
gates. Uncertainties about the flight arrival time, pushback time and taxi du-
ration should be taken also into account as well.
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