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Abstract

We consider the problem of covering a square with exactly 6 identical circles of minimal
radius. In the literature, a covering is presented by Melissen and Schuur, and conjectured to
be optimal. We adress the problem proposing a mathematical programming formulation and
solving it to global optimality. We prove that the conjectured optimal covering is indeed the
global optimum.

1 INTRODUCTION

We consider the problem of optimal covering a square with a given number n of identical circles.
More precisely, in this paper the case of n = 6 circles is considered, and the optimal covering is
corresponding to the one obtained by minimizing the radius of the circles. The problem of covering
a (compact) polygonal set by circles is adressed in the literature for various polygonal sets and
numbers of circles. Some numerical algorithms are proposed, and theoretical results are proved for
some special cases. Optimal coverings are known for n ≤ 5 and n = 7 [5]. For n = 6, Melissen
and Schuur [7, 8] consider the covering of rectangles with various side lengths (including the case
of the square), and show the possible configurations for realizing the covering, each configuration
corresponding to a different way to place the circles. They give some theoretical results for some of
these configurations, and for n = 6 and a square to be covered, they conjecture an optimal covering.
The solution is indeed not proved to be optimal. The authors use a simulated annealing algorithm,
starting from a grid that is gradually refined. Stoyan and Patsuk [11] address the problem of
covering compact polygonal sets, and propose a mathematical model based on Voronoi polygons
and an algorithm specific for the problem. Kazakov et al. [6] deal with the problem of covering in
the context of Logistics, and propose an algorithm based on physical principles due to Fermat and
Huygens. Nurmela and Ostergard [9] propose a computational method for finding good coverings
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of a square with up to 30 equal circles. They use a quasi-Newton method with BFGS secant update
to minimize the uncovered area by moving the circles.
Some applications arising in telecommunication-based problems are presented in [10, 2].

To the best of our knowledge, mathematical programming formulations have not been proposed
for the considered problem. We adress the problem proposing a mathematical programming for-
mulation and solving it to global optimality using a deterministic global optimization method. We
computationally prove that the optimal covering conjectured by Melissen and Schuur is indeed the
global optimal one.

The rest of the paper is organized as follows. We first present our mathematical programming
formulation, that is a mixed-integer nonlinear program. Then, we present the global solution
obtained via a deterministic global optimization method. Finally, we conclude the paper giving
some perspectives.

2 MATHEMATICAL PROGRAMMING FORMULATION FOR
COVERING A SQUARE WITH 6 CIRCLES

In this section, we propose a mathematical programming formulation for the problem of covering
a square with 6 circles. The problem consists in seeking the minimum radius of the circles, and
placing the circles in such a way to entirely cover the considered surface. Decision variables are
then represented by the radius, r, of the circles, and by the coordinates (xi, yi), ∀i = 1, . . . , 6, of
the centers of the circles in an Euclidean space.
The objective function is simply r, to be minimized.

The constraints of the problem have to ensure that the circles are placed in such a way that
the square is entirely covered. In the following, we describe how these constraints are formulated.
Let us first remark that, given a square and six circles to cover it, only a few configurations are
possible. The circles can be organized in two groups of three circles, located, say, on two rows
(equivalently, columns). With this organization of the circles, it has been shown by Tarnai and
Gaspar [12], then by Melissen and Schuur [7], that the configuration having three axes of symmetry,
that one could expect to be optimal, can be improved (other configurations with a smaller radius
can be obtained). Melissen and Schuur [7] proposed a configuration which is symmetric only with
respect to the center of the square, and that has indeed a smaller radius associated. That was the
configuration they conjectured being optimal. Another possibility (see [9]) is to place a circle in the
center of the square and the other ones around it, but the corresponding result does not improve
the above conjectured optimal solution. We then consider the circles arranged on two rows and do
not seek for a completely symmetric configuration. Let us consider the coordinates of the vertices
of the square be (clockwise): (0, 0), (1, 0), (1, 1) and (0, 1). Without loss of generality, we name the
circles Ci, with centers (xi, yi), starting from i = 1 for the circle on the upper row, and increasing
i from left to right. The 4 “external” circles, C1, C3, C4 and C6, must have centers whose distance
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from the square vertices is no more than r:

(x1 − 0)2 + (y1 − 1)2 ≤ r2 (1)

(x3 − 1)2 + (y3 − 1)2 ≤ r2 (2)

(x4 − 0)2 + (y4 − 0)2 ≤ r2 (3)

(x6 − 1)2 + (y6 − 0)2 ≤ r2 (4)

Then, in order to cover all sides of the square, we impose the following constraints to ensure that
all circles intersect each other (on the horizontal and on the vertical axis):

y1 −
√
r2 − x21 ≤ y4 +

√
r2 − x24 (5)

y3 −
√

r2 − (1− x3)2 ≤ y6 +
√
r2 − (1− x6)2 (6)

x2 −
√

r2 − (1− y2)2 ≤ x1 +
√
r2 − (1− y1)2 (7)

x3 −
√

r2 − (1− y3)2 ≤ x2 +
√
r2 − (1− y2)2 (8)

x5 −
√

r2 − y25 ≤ x4 +
√
r2 − y24 (9)

x6 −
√

r2 − y26 ≤ x5 +
√
r2 − y25 (10)

(11)

where the coordinates of the considered points are computed by simply applying the Pythagorean
theorem. For example, the third of these constraints concerns the two triangles, each having a vertex
in the center of C1 and C2 respectively, and having sides of length r, 1 − y1 and

√
r2 − (1− y1)2

for the first triangle and r, 1− y2 and
√
r2 − (1− y2)2 for the second one. The constraint imposes

that the vertex of the second triangle, which is at the extremity of the side r and is not coinciding
with the center (x2, y2), has an abscissa less than or equal to the one of the vertex of the other
triangle which is at the extremity of the side r and is not conciding with the center (x1, y1).
Auxiliary variables are then introduced to represent the coordinates (xjk, yjk) of intersection points
of two circles Cj and Ck, with (j, k) = (1, 4), (2, 5), (3, 6), and (xjk, yjk) having superscript {[1], [2]}
where there are two intersections. Their defining constraints are added as follows:

(xjk − xj)
2 + (yjk − yj)

2 = r2 (j, k) = (1, 4), (2, 5), (3, 6) (12)

(xjk − xk)2 + (yjk − yk)2 = r2 (j, k) = (1, 4), (2, 5), (3, 6) (13)

Then, to ensure the covering, the above intersection points are constrained to belong to the

neighboring circles: (x14, y14) must belong to C2 or C5, (x
[1]
25 , y

[1]
25 ) must belong to C1 or C4, (x

[2]
25 , y

[2]
25 )

must belong to C3 or C6, and (x36, y36) to C2 or C5. Binary auxiliary variables zjk, j = 1, 3, k =

4, 6 and z
[s]
jk , j = 2, k = 5, s = 1, 2 are introduced to model the disjunction, and corresponding
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constraints added to the formulation:

z14
(
(x14 − x2)

2 + (y14 − y2)
2 − r2

)
≤ 0 (14)

(1− z14)
(
(x14 − x5)

2 + (y14 − y5)
2 − r2

)
≤ 0 (15)

z
[1]
25

(
(x

[1]
25 − x1)

2 + (y
[1]
25 − y1)

2 − r2
)
≤ 0 (16)

(1− z
[1]
25 )
(

(x
[1]
25 − x4)

2 + (y
[1]
25 − y4)

2 − r2
)
≤ 0 (17)

z
[2]
25

(
(x

[2]
25 − x3)

2 + (y
[2]
25 − y3)

2 − r2
)
≤ 0 (18)

(1− z
[2]
25 )
(

(x
[2]
25 − x6)

2 + (y
[2]
25 − y6)

2 − r2
)
≤ 0 (19)

z36
(
(x36 − x2)

2 + (y36 − y2)
2 − r2

)
≤ 0 (20)

(1− z36)
(
(x36 − x5)

2 + (y36 − y5)
2 − r2

)
≤ 0 (21)

This completes the proposed formulation, that is mixed-integer and nonlinear (MINLP), due to
the presence of continuous as well as binary variables and to nonlinearities arising in the constraints:
quadratic terms, square roots, and products of binary and continuous variables. Note that the
bilinear products involving binary and continuous variables can easily be reformulated using the
Fortet’s linearization [3].

3 GLOBALLY SOLVING THE PROBLEM

The proposed model is implemented using the AMPL modeling Language [4]. We are interested
in the global exact solution of the problem at hand, and we solve it by the deterministic MINLP
solver COUENNE [1], which implements a spatial-Branch-and-Bound. This solver is used with its
default setting.

We obtain a global solution which is guaranteed to be optimal and corresponds to a radius
r = 0.298727.

The global optimal solution is illustrated in Figure 1, and the corresponding center coordinates
(xi, yi) of the circles Ci, i = 1, . . . , 6 are given in Table 3. Note that this solution is symmetric only
with respect to the center point of the square.

C1 C2 C3 C4 C5 C6

xi 0.141625 0.459783 0.818138 0.181862 0.540217 0.858379
yi 0.737 0.758985 0.763011 0.236989 0.241015 0.262998

Table 1: Coordinates of the centers of the circles in the global optimal solution.
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Figure 1: Covering a square with 6 circles: global optimal solution.

4 CONCLUSIONS

In this paper, we prove, using mathematical programming and deterministic global optimization,
that the Melissen and Schuur conjecture for the covering of a square with 6 circles of minimal
radius is indeed optimal. We propose a MINLP formulation that is solved to global optimality by
a deterministic global optimization solver. Future work will adress the case of a rectangle to be
covered by six circles. In this case, a larger number of configurations are possible for the circles,
and the best configuration changes according to to the rectangle side-length value range. We will
investigate mathematical programming formulations for identifying the optimal way to place the
circles and their minimum radius.
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