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Abstract: The main objective of this paper is how to make the best use of remaining available actuators when an aircraft with an 

aerodynamic actuator failure tries to perform a guidance maneuver. Considering the flight dynamics of a transportation aircraft 

can be expressed as an input affine nonlinear system, a two-stage control approach is adopted here. At the first stage, nonlinear 

inverse control technique is used to generate virtual inputs related to the intended maneuver. At the second stage, an actuator 

reassignment problem how to achieve necessary virtual inputs by remaining available actuators is considered. Taking into 

account the physical limits of the remaining actuators and of the aircraft structure, the problem is formulated as a quadratic 

programming problem to get the corresponding control signals sent to the remaining actuators. The proposed solution method for 

this quadratic mathematical programming problem is based on a primal-dual path following interior point method. Numerical 

simulation studies based on the nonlinear aircraft models show that the proposed solution approach appears to provide 

acceptable response times to perform accurately the guidance maneuver.  

Key Words: Fault tolerant control, Flight control, Two-stage approach, Interior point method, Actuator reassignment 
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1 Introduction 

In this paper, we consider the situation in which a main 

aerodynamic actuator of a transportation aircraft fails while 

it has to perform a guidance maneuver. To make the best use 

of the remaining operational actuators, a two-stage control 

approach [1] is adopted. Using dynamic inversion of flight 

dynamics, the virtual inputs necessary to perform a given 

guidance maneuver are computed, and then an optimization 

problem is considered to generate on-line reference values 

for the remaining actuators. This represents the main 

difference with other previous approaches to actuator fault 

management [2-4]. In the case considered here, an on-line 

linear quadratic programming formulation of the 

optimization problem can be adopted and an interior point 

approach to get an on-line solution is discussed. The 

approach is also different from the one we proposed in [5] 

which is based on the use of a neural network dynamic 

solver. 

2 A Two-stage Control Approach 

In this paper, a two-stage control approach proposed in [1] 

is adopted. The following is a simple introduction of this 

two-stage control approach. For the detail, see ref. [1].  

Many nonlinear dynamical systems such as aircraft can be 

modeling as an input affine form: 
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where x is the state vector representing the system dynamics, 

u is the control inputs vector, y is the chosen independent 

outputs, f(x) and gi(x), i=1 to m, are smooth vector fields of x. 

h(x) is a smooth vector field of x. It is supposed that p < n and 

p < m. 

Normally, the desired maneuver for the dynamical systems 

can be expressed analytical by standard differential 

equations of desired outputs y. So we hope the actual outputs 

can follow the desired trajectory. When the output variables 

are chosen so that there are no internal dynamics left, the 

system will be governable. Then, these systems can be fault 

tolerant trajectory following by the two-stage control 

approach illustrated by Fig. 1. 
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Fig.1 Proposed fault tolerant trajectory tracking scheme. 

In the two-stage control approach, the control signal 

synthesis is split into a virtual inputs synthesis problem for 

system (1) and a control allocation problem to distribute the 

virtual inputs among the remaining operational inputs. The 
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benefits of adopting such strategy can be stated as: When 

solving the virtual inputs control problem, it is not yet 

necessary to take into account the physical constraints 

attached to each operational actuator. This is fortunate since 

few control techniques are able to take explicitly into 

account input constraints. Then the actuator constraints as 

well as other operational limitations can be taken more easily 

into account when solving the control allocation problem. 

Moreover, additional constraints can be taken into account in 

the control allocation problem. 

At the first stage, when control law is chosen as nonlinear 

inverse control, the desired virtual inputs can be written as: 

  ( 1) ( ) ( )

0

( )
i

i
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r
r k k

i di ik i di

k

v y c y y F X

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where ydi, i = 1 to p, is the desired output trajectory while the 

coefficients cik are chosen so that the dynamics of the 

tracking error defined by ei = yi – ydi, i = 1 to p, is 

asymptotically stable and converges towards zero. ri is the 

relative degree of output i. X is a vector of j
th

 order 

differential of yi, j = 0 to ri. Fi(X) is a function of vector X. 

In Eq. (3), assume there are some actuators fail, the actual 

virtual inputs will be generated by the physical control 

inputs: 

 ( ) ( )o o f fv D X u D X u     (4) 

here matrix op m

oD R


  is the distribution matrix associated 

to the identified failure case, om

ou R  is the vector of the 

remaining operational control inputs, fp m

fD R


  is the 

control effectiveness matrix related to the failed control 

inputs, fm

fu R  is the vector of the failed control inputs 

which are no more active and whose values are supposed 

known. 

Then, at the second stage, a control allocation problem can 

be formed as how to distribute effects of available actuators 

to generate the desired virtual inputs as well as to satisfy the 

physical constraints related to actuators or controlled system. 

The equality satisfied by efforts distribution can be written 

as: 

 ( ) ( )o o f fD X u D X u v


     (4) 

3 Virtual Inputs Generation for Fast Flight 

Control 

The fast flight dynamics is also an affine system, so the 

approach discussed above can be applied when some 

actuators failure. 

3.1 Aircraft rotation dynamics 

The equation for the angular movement of a rigid 

aircraft in the body reference frame can be expressed as: 

  m mM I I    &  (5) 

where   'M L M N , L , M , N  are respectively 

the roll, pitch, and yaw aerodynamic torques, mI  is the 

matrix of inertial moments,   is the inertial rotational 

velocity written in the body reference (p, q, r)’ where p is the 

roll rate, q is the pitch rate and r is the yaw rate, & is the 

inertial rotational acceleration in the body-fixed axis system, 
× is the cross product operator. 

The aerodynamic moments along each body axis are 

given by:  

21
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2
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2
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where Cl, Cm and Cn are respectively the roll, pitch and 

yaw dimensionless aerodynamic coefficients. Here V is the 

airspeed,  is the density of air, S and l are respectively 

reference area and length specific to the considered aircraft. 

The dimensionless coefficients of the main axis 

aerodynamic torques can in general be expressed such as: 

Cm = Cm0 + Cm + Cmqql/V + Cmthsths + Cmq’q (7a) 

Cl = Cl0 + Cl + Clppl/V + Clrrl/V + Clp’p+Clr’r (7b) 

Cn = Cn0+Cn+Cnppl/V+Cnrrl/V + Cnp’p + Cnr’r (7c) 

where  is the angle of attack,  is the side slip angle, δp, δq, 

δr are respectively the aileron, elevator and rudder 

deflections while ths is the deflection of the trimmable 

horizontal stabilizer, if any. 

3.2 Effectiveness of redundant actuators 

Considering mainly the size of modern transportation 

aircraft as well as the reliability issue, an 

over-redundancy for actuators which contribute to the roll, 

pitch and yaw moments around three main axes, often 

exists on modern transportation aircraft. The 

effectiveness of these actuators appears through the 

contributions of their angular deflections to these 

moments through dimensionless coefficients as in 

equations (6a), (6b) and (6c). According to the 

relationship between aerodynamic derivatives and 

aerodynamic torques, the expressions of the different 

aerodynamic torques generated by these control surfaces 

can be approximated by affine forms with respect to the 

corresponding deflections of the different aerodynamic 

actuators, so that equations related to torques and 

deflections can be expressed as: 
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with 
a L M NI I I I   , where I

L
 is the set of actuators 

generating some roll moment, I
N
 is the set of actuators 

generating some yaw torque, while I
M

 is the set of actuators 

generating pitch moments. Here the current values L
0
(t), M

0
(t) 

and N
0
(t) as well as ( )L

iC t , ( )M

iC t  and ( )N

iC t  depend on 

the airspeed V, the flight level and on the values of , , p, q 

and r. Global aerodynamic torques generated by aircraft 

aerodynamic actuators can be rewritten in a global affine 

form as: 

 
0M M C       with  

aI
R    and 

3 aI
C R


  (9) 

3.3 Generation of virtual inputs 

Eq. (5) can be rewritten as: 
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It is clear that the p, q and r outputs have zero relative 

degree with respect to L, M and N which can be chosen as 

virtual inputs. Assuming the aircraft perform a pure roll 

maneuver where three body angular rates follow the first 

order dynamics such as: 

 p cp p p  &  
(11a) 

 0q 
 

(11b) 

 ( / )sinr r r g V  &  
(11c) 

Then, applying the nonlinear inverse control approach, the 

necessary online values for each aerodynamic torque can be 

written as: 
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where Ixx, Ixz, and Izz, are the main inertial moments of the 

aircraft. These necessary online values can be obtained 

through distribute redundant actuators according to (9). 

Here is considered some actuators failure, as expressed in 

Eq. (4), fault tolerance will exist thanks to the existing 

actuator redundancy, so the next problem is how to 

reassignment the remaining effective actuators to produce 

the required virtual inputs. 

4 Linear Quadratic Formulation for Control 

Allocation Problem 

When some actuators fail, the maneuver will be performed 

still in a standard way, otherwise, an approximate maneuver 

will be performed. In order to get a feasible control 

allocation which avoids too fast or too large solicitations of 

the actuators which could activate some structural modes of 

the aircraft, solutions as close as possible to the solution 

adopted at the previous control period will be privileged. 

Also, it is admitted that when the standard maneuver can no 

more be performed, a close maneuver, in fact a slightly 

degraded maneuver, will be retained as a running solution. 

So, instead of considering the pure satisfaction of the 

moment constraints (8a), (8b) and (8c), a quadratic objective 

function to measure the degree of satisfaction of these 

constraints is introduced. Finally the following linear 

quadratic problem is proposed to solve online: 
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where 
a
kI

R %  (
a L M N

k k k kI I I I   ) denotes the 

deflection position of actuators after failure k, denoted by 

subscript k, happens. 

with the following constraints: 
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 with    0
ji

 %  if 
kj FFi I ,  , , ,j p q r ths  (16a) 

 and   
j ji i %  if 

kj FPi I ,  , , ,j p q r ths  (16b) 

where wing a

k kI I  is the set of remaining operational 

actuators on wing after failure k, constraints (14) are related 

to total wing bending and torsion moments and should be 

satisfied to assure the structure integrity. 
kF

I  is the set of 

fully operational actuators after failure k, 
kFLI , 

kFSI  are 

respectively the set of actuators whose angular positions, 

angular speed are subject to addition limitations after failure 

k, 
kFPI  is the set of actuators which are stuck at a known 

angular position after failure k, 
kFFI  is the set of actuators 

which are not subject to a torque from their servo-control and 

with a zero deflection after failure k. wL, wM and wN are 

positive weighting parameters to priority different torques. 

To get an accurate and timely solution for the above linear 

quadratic (LQ) programming problem, different numerical 

methods exist. Interior point method mainly studied and 

examined here. 

5 Interior Point Method Applied to Linear 

Quadratic Optimization Problems 

Interior point methods and active set methods are the most 

commonly employed approaches for solving general 

quadratic programming problems.  For a review, see [9], [10]. 

The main advantage of interior point methods over active set 

method is their scalability [11]. We concentrate in the 

present study on interior point methods.  

The idea of interior point methods is to approach the 

solution of the Karush-Kuhn-Tucker (KKT) equations by 

successive descent steps. Each descent step is a Newton-like 

step and is obtained by solving a system of linear equations.  

First, the original problem (14-17) can be written as: 

  
1
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2

T Tf Q c


      (17) 

   s.t.    0g A b     (18.1) 

       (18.2) 

where δ, ξ 
-
, ξ 

+
, c are n1 column vectors, b is a m1 column 

vector, Q is a n n matrix, and A is a mn matrix, superscript 

T means the transpose. In our case, n, m are the numbers of 

actuators and structural constraints respectively. To turn 

problem (17, 18) into a standard form, let 

 x     (19) 

Substituting (19) in (17) and (18), and omitting the 

constant item in the objective function which will not impact 

the final result, the original problem is equivalent to the 

following problem: 
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x
f x x Qx x c  % (202) 

   s.t.    0g x Ax b  %  (21.1) 

 0 x x   (21.2) 

where c Q c  % , b A b  %  and x      .  

Adding slack variables y, z to turn inequalities into 

equalities, we get the following formulation: 

 
1

min  
2

T T

x
x Qx x c % (22) 
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One of the basic ideas behind the interior point methods is 

to use barrier functions to satisfy the bound constraints. Then 

the modified Lagrangian of problem (22, 23) is expressed as: 
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where 0   is referred to as the barrier parameter and is 

used to guide the solution along a trajectory called the 

central path. Equation (24) approximates the Lagrangian of 

problem (22, 23) more and more closely as τ goes to zero [9]. 

Here μ, φ are the dual variables associated to the equality 

constraints (23.1). Adopting the modified Lagrangian 

function (24), the necessary and sufficient conditions for the 

global minimum of convex problem (24) i.e. the KKT 

condition [13] can be derived as: 

 0T

xL Qx c A        %  (25.1) 
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 0L x z x
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 0, 0, 0, 0, 0, 0x y z          (25.7) 

where X, Y, and Z are diagonal matrices whose diagonal 

elements are x, y, z respectively. Here λ is another dual 

variable. The quantity T T Tx y z     is termed as duality 

gap [9]. 

Applying Newton’s method to the above system of 

equations (25), we obtain the linear system: 
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where Λ, Μ and Φ are diagonal matrices whose diagonal 

elements are λ, μ and φ, respectively. The Id· matrices are 

identity matrices with appropriate dimensions. The residuals 

ri are defined as: 
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Equation (26) can be solved progressively as: 
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 (28.1) 

where   1 1 1TH Q X A Y A Z          (28.2) 

 1 1 1 1 1T T

t x y zr r A Y r Z r X r A Y r Z r  

             (28.3) 

Since Q is positive definite, A is full row rank and during 

iterate x, y, z, λ, μ, φ remain greater than zero, H is an 

invertible matrix. 

Various algorithms can be derived depending on whether 

solving the primal and dual variables and on the choice of the 

initial point x
0
. Following [12], we can choose the values of 

x
0
, z

0
, λ

0
, μ

0
, φ

0
 such that rx=0 and rφ=0. In our case, x

0
 may be 

chosen as the vector of the mean values of the upper and 

lower bounds or the values at the previous instant. Then, the 

values of z
0
, λ

0
, μ

0
, φ

0
 are chosen based on the values of x

0
. 

Moreover, under normal situation, (23.1) can be strictly 

satisfied with a positive vector y0 and z
0
. 

Based on [14], we state a feasible-initialization 

primal-dual path-following algorithm such as: 

Step 0 Initialization 

set index k = 0, initialize the parameters σ1, σ2, σ3 and the 

tolerance level ε,. Choose the values of x
0
, y

0
, z

0
, λ

0
, μ

0
, φ

0
 

such that x
0
>0, y

0
>0, z

0
>0, λ

0
>0, μ

0
>0, φ

0
>0 and the 

equations rx=0, rφ=0 and rμ=0 are satisfied. 

Step 1 Compute the duality gap,  

Compute 
T T Tk k k k k k kd x y z     , if kd  , the optimal 

solution is given by k kx     and stop, otherwise continue 

to step 2. 

Step 2 Update the barrier parameter τ
k
 and the search 

direction according to: 

Compute  1 2min ,k k k       where  2k kd n m   . 

Compute residuals using (27) and update search directions 

using (28). 

Step 3 Define the step size α
k
 and update the variables. 

Compute α
k
 using (29), and update the primal and dual 

variables using (30) 

 3 min

k    (29.1) 

where           min min , , , , ,x y z           (29.2) 

with     

 
   

 

 

 with 0
min ,

, , , , ,

, , , , ,

i
i ii

x y z

x y z



  

  


 

      



      


 (29.3) 



 

 

 

and update variables according to equations: 

 
1 1 1

1 1 1

, ,

, ,

k k k k k k k k k

k k k k k k k k k

x x x y y y z z z  

           

  

  

        

        
  (30) 

Set k= k +1, and repeat step 1. 

6 Numerical Simulation 

This example is taken from [15], which is concerned with 

the control of the unstable lateral/directional dynamics of the 

X-33 vehicle at critical conditions during the entry flight. By 

assuming that a linear relationship exists between the 

rotational speed vector v and the actual actuators deflections, 

[15] formulates the problem as: 

  v= B (31) 

where v = [p q r]
T
,  = [δrevi, δlevi, δrbf, δlbf, δrvr, δlvr, δrevo, δlevo]

T
 

with δrevi, δlevi = right and left inboard elevons; δrbf, δlbf = right 

and left body flaps; δrvr, δlvr = right and left rudders; and δrevo, 

δlevo = right and left outboard elevons and B is a 38 real 

valued matrix. Here we assume the rate limits for each 

actuator to be equal to 60 deg/s. 

Now to satisfy (29) as well as control surfaces limits such 

as maxmin

iii    i{revi, levi, rbf, lbf, rvr, lvr, revo, levo}, 

we formulate a quadratic programming problem in 

accordance with formation (17, 18) by handling (31) like 

(13). For that, we choose the following optimality criterion at 

time t+Δt: 

          
T T

t t vf v B W v B                (32) 

where Wv is a diagonal matrix with diagonal positive 

elements wp, wq, wr., Π is a diagonal matrix with diagonal 

positive elements πi i∈I.  

6.1 Soft Fault Scenario 

Here we present a simulation scenario where the proposed 

on line optimization algorithm is applied to perform a 

succession of complex roll maneuvers as shown in Fig 2. 

There it is assumed that all actuators are fault free except for 

the rate limits of the left inboard elevon which changes to 20 

deg/s at 1.5s. The sampling time adopted by the digital 

control system of the different actuators is taken equal to 

0.05s. The parameters for the interior point algorithm are 

chosen as σ1= 0.1, σ2= 100, σ3= 1-10
-6

. wq = 1, wr = 1, πi = 1. 

The weights of the optimality criterion (34) are chosen as,  = 

10
6
, wp = 10, wq = 1, wr = 1, πi = 1, where the high value of  

is chosen such that equality constraints such as (11) are 

prioritized. In Fig 2 to Fig 11, the star symbol denotes the 

failure instant. From Fig 2, we can see that the algorithm 

reallocates actuators successfully to generate the desired 

angular rates. The time evolution of actuators position is 

shown in Fig 3. The number of iterations and error between 

desired and combined command signals are displayed in Fig 

4 and Fig 5 respectively. From Fig 4, the algorithm finds the 

optimal solution very fast except when only a degraded 

objective is obtained. This degradation can be seen from Fig 

5 even if the error between the generated and the desired 

command signals can be tolerated. From (34), it is clear that 

the error is introduced by the presence of the penalty 

function in the criterion and the error can be reduced by 

setting  larger. Fig 6 displays the speed of the failed actuator 

which reaches at different stages its speed limit. 
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Fig 2. Time evolution of angular rates under the soft fault scenario 
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Fig 3. Time evolution of actuators positions under the soft fault 

scenario 
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Fig 4. Number of iterations for convergence under the soft fault 

scenario 
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Fig 5. Angular rate errors under the soft fault scenario 
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Fig 6. Example of the speed of actuator under soft fault scenario 

It appears that the interior point method can handle the 

failure situation satisfactory even if many realistic factors 

such as the dynamics of the actuators and dynamic inversion 

controller time lags have not been considered.  

6.2 Hard Fault Scenario 

A more serious failure case occurs when an actuator 

remains stuck. Since a box constraint is considered by the 

interior point algorithm, the column corresponding to the 

stuck actuator must be deleted from the control effectiveness 

matrix and the virtual control input and limits should be 

changed accordingly. We simulate the case where the left 

inboard elevon is stuck at its previous position at 1.5s. 

Simulation parameters are the same as in section 6.1, except 

that the maximum amplitude of angular rate p is now 10 

deg/s for the sake of realism. The corresponding results are 

displayed in Fig 7 to Fig 11. 
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Fig 7. Time evolution of angular rates under hard fault scenario 

From Fig 8 and Fig11, it can be concluded that the 

proposed algorithm achieves to deal effectively with a faulty 

actuator stuck at a fixed position. From Fig 7 and Fig 10, it 

appears that the resulting angular rates are sufficiently close 

to the desired ones. More importantly, the algorithm finds 

the optimal solution very fast from Fig 9. 
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Fig 8. Evolution of actuators positions under hard fault scenario 
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Fig 9. Number of iterations for convergence under hard fault 

scenario 
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Fig 10. Error between desired and resulting angular rates under 

hard fault scenario 

 

7 Conclusion 

In this paper, a two-stage approach is applied to manage 

the control surfaces of an aircraft under an actuator failure 

scenario. The main objective has been to maintain as much 
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Fig 11. Example of the speed of actuator under hard fault scenario 



 

 

 

as possible the maneuverability of the aircraft through the 

fault free actuators while limiting the structural strain 

(maximum wing bending and flexion torques) of the aircraft. 

At the first stage, the necessary aerodynamics forces and 

torques to perform a maneuver have been synthesized by 

nonlinear inverse control. At the second stage, allocation of 

each remaining actuator to the aerodynamic forces and 

torques can be optimized on-line by using an interior point 

method which solves successive linear quadratic 

optimization problems. Two scenarios have been considered, 

one where a soft failure occurs and one where a hard failure 

occurs, the numerical simulation results applied to a large 

aircraft display the feasibility of the proposed approach. 
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