CLASS Surveillance of UAS traffic

Mission: a stepping stone for surveillance of UAS

- Merge existing technologies to build core functions of U-Space
- Increase maturity level of these technologies
- Define Use Case Scenarios and Key Performance

Implementation

Merge and increase maturity level of:

- Airbus' Drone-It! cooperative surveillance system
- Indicators (KPIs) to assess the performance of future U-Space systems
- Provide baseline results through live and simulated trials

Scenarios and KPIs

Stakeholders' requirements gathered in a workshop yielded 6 design scenarios and 17 Key Performance Areas

Scenarios:

- GNSS failure leading to intrusion in an airport
- Instrument Landing System calibration
- Conflicts in an emergency situation
- Aerial work on high voltage linesUrban pollution sampling

- NTNU's Data fusion between
- Drone-It! and Aveillant's radar
- Unifly's Real-time UTMS
- Drones built and flown by ENAC with its Paparazzi open source autopilot.

KPIs:

Extract of KPIs relating to Accuracy, Detectability and False Classifications

KPI Name	KPI Definition	KPI Description
Horizontal Position Error (ePosH)	$RMS(pos_{H}^{T} - pos_{H}^{R})$	pos_{H}^{T} = Tracker Horizontal position
		pos_{H}^{R} = Reference Horizontal position
Vertical Position Error (ePosV)	$RMS(pos_V^T - pos_V^R)$	pos_V^T = Tracker Vertical position
		pos_V^R = Reference Vertical position
Probability of Update (PU)	$\frac{N_{DD}^{T}}{N_{DD}^{R}}$	N_{DD}^{T} = Drone Detections from Tracker
		N_D^R = Total Drone Detections from Reference
Mean Gap per track (mGAP)	$\frac{1 - PU}{N_{DT}^{T}}$	N_{DT}^{T} = Drone Tracks from tracker
False Positive Rate (FPR)	$\frac{N_{AT}^T - N_{DT}^T}{\Delta t}$	N_{AT}^{T} = All tracks from tracker Δt = time duration

Testing

- 2 real flight campaigns:
 June 2018: training the radar with 2 fixed wing drones.
 Paparazzi logs provides the reference data
- October 2018: Integration of Drone-It and Unifly systems to

the CLASS architecture

The Free Autopilot

Deconfliction

CLASS deconfliction takes place at a tactical level - i.e. during the flight - and before Detect and Avoid.

Airbus is working on a drone-drone tactical deconfliction algorithm, but the notion of "conflict" needs to be refined.

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement 763719.

ONTNU UNIFLY ARBUS AVEILLANT

Fabien BONNEVAL – fabien.bonneval@enac.fr , Jim SHARPLES, Yannick JESTIN, Mohammed Jahangir – mohammed.jahangir@aveillant.com