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Abstract— Low-cost single frequency Real-Time Kinematics 

(RTK) modules have recently been released by several 

manufacturers. This type of receivers allows to obtain much 

better accuracy, reaching decimeter-level accuracy, than 

traditional low-cost receivers, thus opening the world of precise 

GNSS positioning to a new sector. However, while  this type of 

system will provide very good relative positioning accuracy, the 

absolute positioning accuracy might be degraded if the position 

of the RTK base station is not estimated with sufficient 

accuracy. Any bias on the RTK base station position will 

introduce the same bias on the RTK rover position. This paper 

proposes a modification to the position estimation algorithm 

that includes the real-time estimation of the RTK base station 

position error, by combining both the Single Point Positioning 

Solution and the RTK solution. The algorithm is illustrated 

using 2 types of real data:  first, for a fixed reference station 

using GNSS observations only, then for a moving vehicle using 

a sensor fusion algorithm between GNSS, inertial and odometer 

observations. Performance analysis shows that the bias affecting 

the absolute position of the RTK rover can be estimated using 

the proposed algorithm, decreasing the horizontal bias from a 

few meters to a few decimeters. 

Keywords—GNSS, RTK 

I. INTRODUCTION 

Low-cost single frequency Real-Time Kinematics (RTK) 
modules have recently been released by several manufacturers 
[1]. This type of receivers allows to obtain much better 
accuracy, reaching decimeter-level accuracy, than traditional 
low-cost receivers, thus opening the world of precise GNSS 
positioning to a new sector. Examples of applications that 
could benefit from the access to low-cost precise positioning 
are manifold: emergency mapping in disaster-relief scenarios, 
unmanned delivery by terrestrial or aerial vehicles, automated 
localization of goods, programmed inspection of real estate by 
automated, unmanned vehicles. In this type of missions, the 
RTK system is often deployed on-the-go, just before the 
mission, and the precise positioning of the base station may 
not be available. Indeed, only a few hours or even minutes of 
single frequency GNSS measurements could be collected in 
order to position the base station, resulting in a possible error. 

It has also been observed consistently that the receiver 
location of some International GNSS Service (IGS) stations 
indicated in the header of RINEX files contained some error, 
which would be reported to the rover position using this IGS 
station as base station. In order to remove this error, RTK 
users are often encouraged to use the IGS position computed 
by a dedicated Analysis Center [2]. 

While relative positioning with respect to the RTK base 
station is obtained with great accuracy, absolute positioning in 
the Earth-Centered Earth-Fixed frame will be affected directly 
by the error on the base station position. Experiments 
performed by the authors have shown repeatedly that such 
errors can reach several meters in a scenario where fast 
deployment of the RTK system is required. 

This paper proposes a modification to the position 
estimation algorithm that includes the real time estimation of 
the RTK base station position error by combining both the 
Single Point Positioning (SPP) solution and the RTK solution. 

The structure of the paper is the following: the theoretical 
aspect of the estimation algorithm will be presented, including 
the SPP and RTK observation model and the application of 
the state augmentation principle to a Weighted Least Squares-
based and a Kalman Filter-based position estimation. The 
proposed algorithm will then be evaluated on real data: in a 
first place, GNSS data from a fixed GNSS network will be 
used, and in a second place, the proposed algorithm will be 
included in a sensor fusion algorithm using data from multiple 
sensors recorded on a terrestrial vehicle moving on an airport. 

II. BASE STATION POSITION ERROR ESTIMATION 

A. Theoretical observation models 

The GNSS measurements that are used in the positioning 
engine are GNSS 3D positions. This choice, as opposed to 
using GNS code pseudorange and carrier phase 
measurements, is justified by the latter use of a loosely-
coupled architecture for a hybridization algorithm, and also by 
the fact that many actors targeted by low-cost RTK systems 
are not GNSS experts and may not want to deal with the 
complexity of using GNSS raw measurements. The GNSS 3D 
positions come in two types, the Single Point Positioning 
(SPP) solution and the RTK solution. 

The SPP solution is the one computed from the code 
pseudorange measurements only, usually obtained from a  
Weighted Least Squares algorithm and using standard 
corrections transmitted in the GNSS navigation message. 

 𝐩𝑆𝑃𝑃 = 𝐩𝑡𝑟𝑢𝑒 + 𝐧𝑆𝑃𝑃 

where 𝐩𝑆𝑃𝑃 is the 3D position estimated by the SPP solution, 

𝐩𝑡𝑟𝑢𝑒 is the true 3D position, 

𝐧𝑆𝑃𝑃 is a 3D random noise term, assumed Gaussian, 
centered and with a covariance matrix 𝚺𝑆𝑃𝑃 
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The RTK solution is the one computed by combination of 
carrier phase and code pseudorange measurements, using 
differential corrections sent by a reference station, usually 
obtained from a Kalman Filter estimating both the position 
and the integer ambiguities. 

There are normally two types of RTK solutions, namely 
the float solution and the fixed solution, depending on the 
status of the estimation of integer ambiguities. If not 
estimated, the RTK solution is in float mode and the RTK 
engine is in a convergence phase. Once convergence is 
finished, the integer ambiguities are fixed and the solution is 
in fixed mode. The accuracy of the RTK solution is better than 
the one of the SPP position, with the fixed mode better than 
the float mode, but the RTK solution is biased by any error on 
the base station position. 

 𝐩𝑅𝑇𝐾 = 𝐩𝑡𝑟𝑢𝑒 + 𝐛𝑅𝑇𝐾 + 𝐧𝑅𝑇𝐾 

where 𝐩𝑅𝑇𝐾  is the 3D position estimated by the RTK 
solution 

𝐛𝑅𝑇𝐾 is the error on the reference station position 

𝐧𝑅𝑇𝐾  is 3D random noise term, assumed Gaussian, 
centered and with a covariance matrix 𝚺𝑅𝑇𝐾 

 

B. Theoretical formulation of the estimation by a WLS 

algorithm 

A Weighted Least Squares (WLS) algorithm can be used 
in order to estimate both the true position and the base station 
position error. This simple estimation technique serves to 
illustrate the principle and the models used for the baste station 
position error estimation. The models will then be used in 
more elaborate estimation techniques in the next sections. 

Consider the following notations for a state vector 𝐱 and a 
measurement vector 𝐲: 

 𝐱 = [𝐩𝑡𝑟𝑢𝑒 𝐛𝑅𝑇𝐾]𝑇 

 𝐲 = [𝐩𝑆𝑃𝑃 𝐩𝑅𝑇𝐾]𝑇 

We then have a linear Gaussian measurement model 
linking these two vectors: 

 𝐲 = 𝐇𝐱 + 𝐧 

with 𝐇 = [
𝐈3 𝟎3

𝐈3 𝐈3
] 

𝐈3  and 𝟎3 are respectively the 3x3 identity and null 
matrices  

𝐧 = [𝐧𝑆𝑃𝑃 𝐧𝑅𝑇𝐾]𝑇  is a noise vector with a 

covariance matrix 𝐑 = [
𝚺𝑆𝑃𝑃 𝟎3

𝟎3 𝚺𝑅𝑇𝐾
] 

SPP and RTK positions are assumed to be uncorrelated. 
This assumption might be discussable because the positions 
are obtained using the same signal sources (the satellites) and 
a trilateration principle. The geometric impact of the satellite 
constellation, often referred to Dilution of Precision, will 

therefore be shared for the two types of position. However, the 
SPP solution is mainly based on code pseudoranges 
measurements, while the RTK solution mixes both the code 
pseudoranges and the carrier phase measurements, with a 
large impact of the carrier phase measurements due to their 
improved accuracy. Additionally, the positioning algorithms 
used to obtain both solutions differ significantly. Therefore, 
the assumption of absence of correlation between both 
solutions is deemed acceptable. 

The joint estimation of the position and the base station 
position error by the WLS algorithm is then: 

 𝐱̂ = (𝐇𝑇𝐑−1𝐇)−1𝐇𝑇𝐑−1𝐲 

The associated covariance matrix 𝐏 of the estimated state 
vector is approximated by (see Annex 1 for the details of the 
computation): 

 𝐏 ≈ [
𝚺𝑆𝑃𝑃 −𝚺𝑆𝑃𝑃

−𝚺𝑆𝑃𝑃 𝚺𝑆𝑃𝑃
] 

 

The result of this estimation process is that the accuracy of 
the estimated position is the one of the SPP position, which is 
quite disappointing since RTK measurements are available. 
The base station position error is also estimated with the SPP 
accuracy. 

In order to improve these estimation, a Kalman Filter 
approach can be used. 

 

C. Theoretical formulation of the estimation by a KF 

algorithm 

In the Kalman Filter approach, an additional assumption is 
made on the time evolution of the estimated states. 

The true position is assumed to be a random walk. This 
assumption is voluntarily simple, in order to be able to 
facilitate the formulation of the estimation performances. This 
means that the discretized evolution model of the true position 
is: 

 𝐩𝑡𝑟𝑢𝑒[𝑘] = 𝐩𝑡𝑟𝑢𝑒[𝑘 − 1] + 𝐧𝐩[𝑘] 

Where 𝐧𝐩[𝑘] is a centered gaussian noise with a covariance 

matrix 𝚺𝐩 

The base station position error is assumed to be fixed. 
Indeed, the base station position is a parameter entered as a 
parameter in the RTK system and does not evolve during the 
operation of the RTK system. So, if an error is present during 
the set-up of the RTK system, it will remain constant 
throughout the operation. In this case, the discretized 
evolution model of the base station position error is: 

 𝐛𝑅𝑇𝐾[𝑘] = 𝐛𝑅𝑇𝐾[𝑘 − 1] 

These evolution models are used to define the state 
transition matrix 𝐹 and the state noise covariance matrix 𝑄: 



 𝐱[𝑘] = 𝐅𝐱[𝑘 − 1] + 𝐧𝐱[𝑘] 

where 𝐱[𝑘] is the true state vector value at epoch 𝑘 

𝐅 = [
𝐈3 𝟎3

𝟎3 𝐈3
] is the state transition matrix 

𝐧𝐱[𝑘]  is the state noise vector, with a covariance 

defined by 𝐐 = [
𝚺𝐩 𝟎3

𝟎3 𝟎3
] 

The joint estimation of the true position and the base 
station position error at epoch 𝑘 by the KF algorithm is then: 

𝐱̂[𝑘] = 𝐱̂−[𝑘] + 𝐊𝑘(𝐲[𝑘] − 𝐇𝐱̂−[𝑘]) 

where 𝐱̂−[𝑘] = 𝐅𝐱̂[𝑘 − 1] is the predicted state 

𝐊𝑘 = 𝐏𝑘
−𝐇𝑇(𝐇𝐏𝑘

−𝐇𝑇 + 𝐑)−1 is the Kalman Gain 

𝐏𝑘
− = 𝐅𝐏𝑘−1𝐅𝑇 + 𝐐 is the predicted state covariance 

matrix 

𝐏𝑘−1  is the estimated state covariance matrix at 
estimation epoch 𝑘 − 1 

The associated state covariance matrix at epoch 𝑘 is given 
by: 

 𝐏𝑘 = (𝐈6 − 𝐊𝑘𝐇)𝐏𝑘
− 

The initialization of the filter is done by considering the 
available position (SPP or RTK) for 𝐩[0] = 𝐩𝑆𝑃𝑃  𝑜𝑟 𝐩𝑅𝑇𝐾 
and a null position error for the base station: 𝐛𝑅𝑇𝐾[0] =
[0,0,0]𝑇. 

The initial covariance matrix associated to the position 
state is the one associated to the SPP or RTK position, which 
is provided by the GNSS receiver. The initial covariance 
matrix associated to the base station position error should be 
of the order of an SPP position accuracy, to account for the 
possibly low quality of the base station position determination 
during the system installation phase. 

For our particular problem, it is possible to evaluate the 
analytical form of the final estimation covariance for any filter 
initialization value, if we make the additional assumptions that 
𝚺𝐩 = 𝜎𝐩

2𝐈3 , 𝚺𝑆𝑃𝑃 = 𝜎𝑆𝑃𝑃
2 𝐈3 , and 𝚺𝑅𝑇𝐾 = 𝜎𝑅𝑇𝐾

2 𝐈3 . The 

demonstration of the formula is given in Annex 2. 

For simplicity reason, we restrain the analysis to the 
covariance of the estimated position. The final estimation 
position covariance is 𝐏1:3,1:3

∞ = 𝜎𝐩
2𝐈3, with 

 𝜎𝐩
2 =

𝜎𝐩
2 𝜎𝑅𝑇𝐾

2 𝜎𝑆𝑃𝑃
2

𝜎𝑅𝑇𝐾
2 +𝜎𝑆𝑃𝑃

2  

𝜎𝐩
2+

𝜎𝑅𝑇𝐾
2 𝜎𝑆𝑃𝑃

2

𝜎𝑅𝑇𝐾
2 +𝜎𝑆𝑃𝑃

2  

≈
𝜎𝐩

2𝜎𝑅𝑇𝐾
2

𝜎𝐩
2+𝜎𝑅𝑇𝐾

2  (13) 

Eq. 13 shows that the final estimated position covariance 
is negligibly degraded by the inclusion of the SPP position and 
the addition of the base station position error states in the 
estimation process. 

III. ILLUSTRATION OF THE ALGORITHM ON REAL DATA 

A. Illustration on a GNSS only data collect 

To illustrate the estimation process, the algorithm is 
applied to some data collect from fixed reference stations. The 
GNSS observables of the TLSG station, operated by the 
Institut National de l’Information Géographique et Forestière 
(IGN, French National Institute of Geographic and Forest 
Information), were used, over a duration of 24h on the 6 th of 
May 2018. 

The data was processed using RTKLIB [3] in the 2 modes 
of interest: Single Point Positioning and Single Frequency 
Real-Time Kinematics. For the RTK processing, the 
International GNSS Service (IGS) station TLSE was used as 
a reference station. 

Two positions were considered for the base station 
position: the one given in the RINEX header, and the one 
given by the CNES/CLS processing center for IGS (referred 
to as GRG). The two positions are given in TABLE I.  

TABLE I.  POSITION OF THE TLSE STATION 

TLSE 

station 

position 

ECEF X 

coordinate 

ECEF Y 

coordinate 

ECEF Z 

coordinate 

RINEX 4627851.8992 119638.5464 4372993.5372 

GRG 4627851.6614638 119640.28334713 4372993.6984122 

 

The two positions differ by a vector of approximately 
[−1.74 ;  −0.25 ;  0.03]  m expressed in East-North-Up 
(ENU) coordinates, which is reported as an error on the RTK 
solution when using the RINEX base station coordinates. 

The algorithm described in the previous section is applied 
with the parameters described as follows: 

• 𝚺𝐩 = 𝜎𝑝
2𝐈𝟑,     with 𝜎𝑝 = 1 m 

• 𝚺𝐒𝐏𝐏 = 𝜎𝑆𝑃𝑃
2 𝐈𝟑,  with 𝜎𝑆𝑃𝑃 = 1 m 

• 𝚺𝐑𝐓𝐊 = 𝜎𝑅𝑇𝐾
2 𝐈𝟑, with 𝜎𝑅𝑇𝐾 = 0.1 m 

Fig. 1 shows the estimated 2D position error using the 
different estimation algorithm, considering the RTK position 
using the GRG base station position as the reference. 

Fig. 2 shows the absolute position error of the different 
considered solutions. The SPP solution is affected by a large 
standard deviation, but the bias over a one-day collect tends to 
be small. The RTK solution using the RINEX base station 
coordinates is affected by a low standard deviation, but by an 
important constant bias. The proposed solution, referred to as 
‘Augmented States (RINEX)’, combines both SPP and 
(biased) RTK solutions, resulting in a lower bias than the 
original RTK solution, at the expense of a higher standard 
deviation. For comparison, the proposed solution using the 
unbiased RTK position referred to as ‘Augmented States 
(GRG)’ is also plotted. 

Statistics on the position error for the different solutions 
are given in TABLE II.  

It may be concluded that the proposed solution using a 
correct unbiased RTK solution is degraded compared to the 
correct RTK position. This is due to the fact that the SPP 
position is actually not centered on the true position, but is 



affected a slow varying bias. This bias affecting the SPP 
position is then attributed to a base station position error, 
degrading the overall solution. 

It can also be noticed that the ‘Augmented States (RINEX) 
and ‘Augmented States (GRG)’ solutions are similar after a 
few tens of epochs. This shows that the residual error in the 
‘Augmented States’ solutions is mainly coming from the SPP 
solution. 

However, for applications requiring a good absolute 
position accuracy, the proposed algorithm is better than an 
RTK solution with erroneous base station position, if the error 
on the base station position is larger than the SPP error 
experienced by the rover. 

TABLE II.  STATISTICS ON THE POSITION ERROR FOR THE DIFFERENT 

SOLUTIONS 

Solution Parameter 
Mean 

(m) 

Standard 
Deviation 

(m) 

Root Mean 
Square 

(m) 

SPP 

East -0.24 0.49 0.55 

North 0.39 0.57 0.69 

Up -0.39 1.33 1.38 

Average 

3D RMS 
1.44 

RTK 

RINEX 

East -1.74 0.00 1.74 

North -0.25 0.00 0.25 

Up 0.03 0.01 0.03 

Average 

3D RMS 
1.76 

RTK 

GRG 

East 0.00 0.00 0.00 

North 0.00 0.00 0.01 

Up 0.00 0.01 0.01 

Average 

3D RMS 
0.01 

Augmented 

States 

RINEX 

East -0.13 0.12 0.18 

North 0.38 0.07 0.39 

Up -0.10 0.41 0.42 

Average 

3D RMS 
0.58 

Augmented 

States 

GRG 

East -0.13 0.12 0.17 

North 0.39 0.07 0.39 

Up -0.10 0.41 0.42 

Average 

3D RMS 
0.58 

 

Fig. 1. Comparison of horizontal position of a fixed GNSS receiver 

obtained from different positioning solutions  

 

Fig. 2. Comparison of RMS error for different positioning solusions  

B. Results on real data collect in a localization sensor 

fusion algorithm 

1) Sensor fusion architecture 
A hybridization algorithm has been developed, largely 

inspired by [4], which combines observations GNSS position, 
velocity and velocity-derived attitude, 6 degrees of freedom 
Inertial Measurement Unit (IMU) and Wheel Speed Sensor. 
The hybridization algorithm is based on an Extended Kalman 
Filter. 

The coupling between the GNSS and IMU follows a loose-
coupling architecture, with a feedback loop on the estimated 
IMU systematic error (bias and scale factor). The loose-
coupling approach was chosen because it allowed to use the 
RTK system without entering deeply in the precise positioning 
algorithm, for easy integration on an existing robotic platform, 
4MOB, manufactured by the company Sterela (Fig. 3).  

The initial filter estimates 22 states: 3 positions, 3 
velocities, 3 attitude angles, 3 accelerometer biases, 3 
accelerometer scale factors, 3 gyrometer biases, 3 gyrometer 
scale factors, 1 wheel speed sensor scale factor. 

Additional motion constraints are also considered to take 
into account the particularities of a ground vehicle similar to a 
car: non-holonomic constraint (no sideslip and no vertical 
jump) and zero angular rate update. These are taken into 
account as additional observations. 

The overall sensor fusion algorithm is summarized in Fig. 
4, where the proposed state augmentation of the estimated 
RTK base station position error, shown in red, has been added. 
This adds 3 new states to the state vector, bringing the number 
of estimated states from 22 to 25. 

 

Fig. 3. Photo of the Sterela 4MOB robotic platform 



 

Fig. 4. Hybridization architecture (loose coupling, closed loop). The 

proposed state augmentation of the estimated RTK base station position error 

is added (in red) 

2) Data collect analysis 
A measurement campaign was held on the 23 rd of 

November 2017, on the Francazal airport (LFBF) near 
Toulouse. Our robotic platform was remotely piloted on the 
taxiway of the airport, providing a favorable open sky 
environment required by a RTK solution. The analyzed data 
collect consists of approximately 25 minutes. 

The reference trajectory was obtained thanks to a Novatel 
SPAN system, consisting of a dual-frequency dual-
constellation GNSS receiver, a high quality GNSS antenna 
and a tactical grade IMU. By using advanced post-processing 
algorithm, the reference trajectory is obtained with a 
centimeter-level accuracy. 

Unfortunately, no SPP solution or GNSS raw 
measurements were collected during the data collect. In order 
to implement the proposed algorithm, a SPP solution was 
generated synthetically, using the reference position and 
adding a Gaussian noise, with a standard deviation of 5 meters 
on the horizontal axes and 10 meters on the vertical axis. 

Comparing the reference trajectory with the RTK solution 
in post-processing, a bias of [−2.60 ;  0.32 ;  −0.50]  m 
(expressed in the ENU frame) was observed. 

Three hybridization algorithms were tested on this data 
set: 

1. The original Extended Kalman Filter, using the 
biased RTK position as GNSS observation, and 
named Initial EKF in the following; 

2. The Augmented States EKF, using both the biaised 
RTK position and the SPP position as GNSS 
observations, and implementing the proposed state 
augmentation to estimate the base station position 
error; 

3. The Initial EKF, using the RTK position corrected by 
the base station position error obtained in post-
processing using the reference trajectory, and named 
the Corrected EKF. 

 

Fig. 5 shows the position error over the trajectory’s 
duration, projected in the horizontal plane (East-North) and 
centered on the reference trajectory. It is possible to see that 
the starting position starts a few meters away from the 
reference position and slowly converges towards a final 
position. The convergence corresponds to the period during 
which float RTK solution is provided by the receiver. The 
Initial EKF solution convergences towards a point 
corresponding actually to the base station position error 
vector, while the Augmented States solution converges – more 
slowly – towards a position closer to the reference position. 

 

 

Fig. 5. 2D position error of the Initial EKF and Augmented States EKF, 

projected in an ENU frame 

Fig. 6 shows the estimated base station position error 
(colored curves) as well as the true value of this parameters 
obtained using the reference trajectory and post-processing 
(black asterisks). It is observed that the estimated states slowly 
converge toward the true value, dwelling at intermediate 
plateaus at some periods. This behavior is suspected to be 
linked to the actual maneuver followed by the vehicle, which 
impacts the observability of these additional estimated states. 

Fig. 7 and TABLE III. show respectively the Cumulative 
Distribution of the absolute horizontal error, and the 50th, 95th  
and 99th percentiles of the error distribution. This shows 
quantitative information with regards to the benefits of the 
Augmented States EKF implementation compared to the 
Initial EKF. A 5-fold accuracy increase is obtained the 50th 
percentile and a 2-fold increase for the 95th percentile. The 
corrected EKF is mentioned as a benchmark in case of absence 
of an error on the base station position. 

TABLE III.  CENTILES OF THE 2D ABSOLUTE POSITION ERROR 

Absolute 

Horizontal Error 
Initial EKF 

Augmented 
States EKF 

Corrected 
EKF 

50th centile 2.60 m 0.51 m 0.06 m 

95th centile 2.72 m 1.41 m 0.28 m 

99th centile 2.85 m 2.20 m 3.44 m 



 

Fig. 6. Base station position error estimated by the Augmented States EKF 

 
Fig. 7. 2D position error of the Initial EKF and Augmented States EKF, 

projected in an ENU frame 

IV. CONCLUSION 

The issue of a wrong RTK base station position has been 
observed repeatedly, either during rapid deployment of a low-
cost experimental system onboard a robotic platform, or even 
by using IGS station as RTK base stations and using the 
coordinates mentioned in the RINEX header. A bias on the 
RTK base station position will result in a bias of the RTK 
rover position. 

To tackle this issue, a modification to the positioning 
algorithm has been proposed, consisting of augmenting the 
estimated state vector with the RTK base station position 
error, and using both the SPP and RTK positions as 
observations. The algorithm modification has been applied to 
the Weighted Least Squares and Kalman Filter algorithms 
using GNSS only measurements, and to an Extended Kalman 
Filter performing hybridization from multiple sensors (GNSS, 
IMU, WSS). For all algorithms, the proposed state 
augmentations allowed to reduce the absolute position 
accuracy when a bias affected the RTK position, from meter-
level accuracy to decimeter-level accuracy. 

It has been observed that the proposed solution may not 
bring improvement when the SPP solution is biased, which is 
usually the case in practice, while it was assumed centered in 
the problem formulation. Future works could try to reduce the 

SPP bias by using corrections from reliable sources such as 
PPP or SBAS. Some additional states to estimate the SPP bias 
could also be added to the Kalman Filter, but it is believed that 
observability between the SPP and the RTK biases will be 
low, and would require longer convergence time. 

Future works could also focus on the observability 
analysis of these additional states. Indeed, it is perceived that 
the RTK position bias will be better observed if the lever-arm 
between the GNSS antenna and the IMU center is accurately 
known. If not, a motion diversity, notably through heading 
diversity, may be necessary to distinguish the lever arm and 
the base station position error states. 

Finally, the proposed algorithm could be applied to the 
processing of raw GNSS measurements (code pseudo-range) 
instead of the GNSS receiver solution (position), in a PVT 
algorithm when processing GNSS only observations, or in a 
tight-coupling architecture when fusing information from 
multiple sensors. 
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ANNEX 1 DETAILED ANALYSIS OF THE ESTIMATION 

COVARIANCE OF THE WLS ALGORITHM 

We would like to compute the following matrix: 

𝐏 = (𝐇𝑇𝐑−1𝐇)−1 

Let us first compute its inverse: 

𝐇𝑇𝐑−1𝐇 = [
𝐈3 𝐈3

𝟎3 𝐈3
][

𝚺𝑆𝑃𝑃
−1 𝟎3

𝟎3 𝚺𝑅𝑇𝐾
−1

][
𝐈3 𝟎3

𝐈3 𝐈3
] 

= [
𝚺𝑆𝑃𝑃

−1 𝚺𝑅𝑇𝐾
−1

𝟎3 𝚺𝑅𝑇𝐾
−1

][
𝐈3 𝟎3

𝐈3 𝐈3
] 

= [
𝚺𝑆𝑃𝑃

−1 + 𝚺𝑅𝑇𝐾
−1 𝚺𝑅𝑇𝐾

−1

𝚺𝑅𝑇𝐾
−1 𝚺𝑅𝑇𝐾

−1 ] 

A useful relation to compute the inverse of this block 
matrix is the following: 

[
𝐴 𝐵
𝐶 𝐷

]
−1

= [
(𝐴 − 𝐵𝐷−1𝐶)−1 −(𝐴 − 𝐵𝐷−1𝐶)−1𝐵𝐷−1

−𝐷−1𝐶(𝐴 − 𝐵𝐷−1𝐶)−1 𝐷−1 + 𝐷−1𝐶(𝐴 − 𝐵𝐷−1𝐶)−1𝐵𝐷−1] 

Let us apply it to our problem, considering 𝐴 = 𝚺𝑆𝑃𝑃
−1 +

𝚺𝑅𝑇𝐾
−1  and 𝐵 = 𝐶 = 𝐷 = 𝚺𝑅𝑇𝐾

−1 : 

𝐏 = [
𝚺𝑆𝑃𝑃 −𝚺𝑆𝑃𝑃

−𝚺𝑆𝑃𝑃 𝚺𝑅𝑇𝐾 + 𝚺𝑆𝑃𝑃
] 

http://www.igs.org/about/analysis-centers


Considering the noise RTK solution noise as negligible 
compared to the SPP solution noise, we finally obtain: 

𝐏 ≈ [
𝚺𝑆𝑃𝑃 −𝚺𝑆𝑃𝑃

−𝚺𝑆𝑃𝑃 𝚺𝑆𝑃𝑃
] 

 

ANNEX 2 DETAILED ANALYSIS OF THE POSITION ESTIMATION 

COVARIANCE OF THE KF ALGORITHM 

For this demonstration, we use an alternative form of the 
discrete Kalman filter equation, mentioned in [5], on equation 
(6.2.6) on p 247: 

 𝐏𝑘
−1 = (𝐏𝑘

−)−1 + 𝐇𝑘
𝑇𝐑𝑘

−1𝐇𝑘 (14) 

Let us make the additional assumptions that: 

𝚺𝐩 = 𝜎𝐩
2𝐈3, 

𝚺𝑆𝑃𝑃 = 𝜎𝑆𝑃𝑃
2 𝐈3, 

𝚺𝑅𝑇𝐾 = 𝜎𝑅𝑇𝐾
2 𝐈3. 

With these assumptions, it is possible to reduce the 
dimensionality of our problem: the position and base station 
error vector can both be associated to a scalar. The state 
covariance matrix is then a 2 by 2 matrix and the variance 
associated to the estimated position is noted 𝜎𝐩

2 

This simplifies our problem to: 

𝐇𝑘 = 𝐇 = [
1 0
1 1

] 

𝐑𝑘 = 𝐑 = [
𝜎𝑆𝑃𝑃

2 0

0 𝜎𝑅𝑇𝐾
2 ] 

𝐅 = 𝐈2 

𝐐 = [
𝜎𝐩

𝟐 0

0 0
] 

To compute the first term of Eq (14), we need to compute 
the predicted state covariance matrix, using the traditional 
equation, recalled in Eq (11) of this paper. 

𝐏𝑘
− = 𝐅𝐏𝑘−1𝐅𝑇 + 𝐐 

= 𝐏𝑘−1 + 𝐐 

Let us further assume that the state covariance matrix 𝐏𝑘−1 
is a diagonal matrix. This assumption is necessary for the sake 
of the demonstration, in order to make 𝐏𝑘

− invertible. The 
justification of the zero non-diagonal terms is made for 
simplicity reasons. In simulation, it was observed that the non-
diagonal terms tend towards zero. 

The process noise is also driving the prediction accuracy 
after the filter convergence, ie for large values of 𝑘. 

𝐏𝑘
− = [

𝑝11 0
0 𝑝22

] + [
𝜎𝐩

𝟐 0

0 0
] 

≈ [
𝜎𝐩

𝟐 0

0 𝑝22

] 

The second term of Eq (14) is: 

𝐇𝑇𝐑−1𝐇 = [
1 1
0 1

] [
(𝜎𝑆𝑃𝑃

2 )−1 0

0 (𝜎𝑅𝑇𝐾
2 )−1][

1 0
1 1

] 

= [
(𝜎𝑆𝑃𝑃

2 )−1 + (𝜎𝑅𝑇𝐾
2 )−1 (𝜎𝑅𝑇𝐾

2 )−1

(𝜎𝑅𝑇𝐾
2 )−1 (𝜎𝑅𝑇𝐾

2 )−1
] 

Therefore, we have: 

𝐏𝑘
−1 = (𝐏𝑘

−)−1 + 𝐇𝑇𝐑−1𝐇 

= [
(𝜎𝐩

2)
−1

+ (𝜎𝑆𝑃𝑃
2 )−1 + (𝜎𝑅𝑇𝐾

2 )−1 (𝜎𝑅𝑇𝐾
2 )−1

(𝜎𝑅𝑇𝐾
2 )−1 𝑝22

−1 + (𝜎𝑅𝑇𝐾
2 )−1

] 

Inverting this 2 by 2 matrix, we obtain: 

𝐏𝑘 =
1

𝑑
[
(𝜎𝑅𝑇𝐾

2 )−1 + 𝑝22
−1 −(𝜎𝑅𝑇𝐾

2 )−1

−(𝜎𝑅𝑇𝐾
2 )−1 (𝜎𝐩

2)
−1

+ (𝜎𝑆𝑃𝑃
2 )−1 + (𝜎𝑅𝑇𝐾

2 )−1
] 

, with 𝑑 the determinant of 𝐏𝑘
−1 

𝑑 = det(𝐏𝑘
−1) 

= ((𝜎𝐩
2)

−1
+ (𝜎𝑆𝑃𝑃

2 )−1 + (𝜎𝑅𝑇𝐾
2 )−1)(𝑝22

−1 + (𝜎𝑅𝑇𝐾
2 )−1)

− (𝜎𝑅𝑇𝐾
2 )−1(𝜎𝑅𝑇𝐾

2 )−1 

= ((𝜎𝐩
2)

−1
+ (𝜎𝑆𝑃𝑃

2 )−1 + (𝜎𝑅𝑇𝐾
2 )−1)𝑝22

−1

+ (𝜎𝑅𝑇𝐾
2 )−1 ((𝜎𝐩

2)
−1

+ (𝜎𝑆𝑃𝑃
2 )−1) 

= ((𝜎𝐩
2)

−1
+ (𝜎𝑆𝑃𝑃

2 )−1)(𝑝22
−1 + (𝜎𝑅𝑇𝐾

2 )−1)

+ (𝜎𝑅𝑇𝐾
2 )−1𝑝22

−1 

The variance of the estimated position error 𝜎𝐩
2 

corresponds to the term at the first row and the first column of 
𝐏𝑘, we obtain the following relation: 

𝜎𝐩
2 = [𝐏𝑘]11

=
𝑝22

−1 + (𝜎𝑅𝑇𝐾
2 )−1

((𝜎𝐩
2)

−1
+ (𝜎𝑆𝑃𝑃

2 )−1)(𝑝22
−1 + (𝜎𝑅𝑇𝐾

2 )−1) + (𝜎𝑅𝑇𝐾
2 )−1𝑝22

−1

=
1

(𝜎𝐩
2)

−1
+ (𝜎𝑆𝑃𝑃

2 )−1 +
(𝜎𝑅𝑇𝐾

2 )−1𝑝22
−1

(𝑝22
−1 + (𝜎𝑅𝑇𝐾

2 )−1)

 

Additionally, 𝑝22 → 0, since the reference station bias is a 
constant parameter and that no process noise is present in the 

prediction model, so 𝑝22  becomes negligible compared to 

𝜎𝑅𝑇𝐾
2 . Then 𝑝22

−1 + (𝜎𝑅𝑇𝐾
2 )−1 ≈ 𝑝22

−1. 

So 
(𝜎𝑅𝑇𝐾

2 )
−1

𝑝22
−1

(𝑝22
−1+(𝜎𝑅𝑇𝐾

2 )
−1

)
≈ (𝜎𝑅𝑇𝐾

2 )−1 

And 

𝜎𝐩
2 ≈

1

(𝜎𝐩
2)

−1
+ (𝜎𝑆𝑃𝑃

2 )−1 + (𝜎𝑅𝑇𝐾
2 )−1

 

≈
1

(𝜎𝐩
2)

−1
+

𝜎𝑅𝑇𝐾
2 + 𝜎𝑆𝑃𝑃

2

𝜎𝑅𝑇𝐾
2 𝜎𝑆𝑃𝑃

2

 

≈

𝜎𝐩
2 𝜎𝑅𝑇𝐾

2 𝜎𝑆𝑃𝑃
2

𝜎𝑅𝑇𝐾
2 + 𝜎𝑆𝑃𝑃

2  

𝜎𝐩
2 +

𝜎𝑅𝑇𝐾
2 𝜎𝑆𝑃𝑃

2

𝜎𝑅𝑇𝐾
2 + 𝜎𝑆𝑃𝑃

2  

 

 

This formula was also verified using Monte-Carlo 
simulations. 


