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Functional airspace blocks (FAB) concept is adopted by the European airspace to

allows cooperation between airspace users to manage the air tra�c �ow, while ensuring

e�ciency, safety, and fairness without the constraints of geographical boundaries. This

integration of airspaces allow for �exibility in airspace management and aircraft tra-

jectory planning. This paper proposes a distributed air-tra�c �ow management model

to address four-dimensional (4D) trajectory planning over the European FAB. The

proposed method is based on a meta-heuristic approach which uses a hybrid algorithm

of simulated annealing and hill-climbing local search to separate a given set of aircraft

trajectories in space and time domain (we term this as �ight interaction), by allocating

an alternative �ight plan (route and departure time) to each �ight. An innovative data

structure, termed as FAB-Flight interaction matrix, captures the �ight interaction in-
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formation between and within FABs. The proposed distributed model is implemented

and tested with two air tra�c data sets comprising of 4,000 �ights (3 hours tra�c) and

26,000 �ights (one full day tra�c data over the European airspace). The performance

of the model is then compared with a centralized air-tra�c �ow management model

on scalability and interaction minimization. Results indicates that, though both the

approaches were able to achieve interaction-free trajectory planning within computa-

tional time acceptable for the operational context, distributed model converges faster

to interaction-free solution as tra�c size increases; which shows the viability of the

distributed model for e�ective FAB implementation.

I. Introduction

The main objective of an Air Tra�c Flow Management (ATFM) system is to ensure safety,

reduce delays, and balance demand and capacity among di�erent components of the air transporta-

tion system [1]. In European airspace, ATFM activities are carried out by Eurocontrol's Network

Manager Operations Centre (NMOC, previously called CFMU) which acts as a coordinator between

air navigation service providers (ANSPs) and key stakeholder, such as airlines, airports, and the

military.

However, fragmentation of airspace along national boundaries creates structural ine�ciencies,

sub-optimal �ight routing and makes implementation of ATFM strategies quite challenging as high-

lighted by Button et al. 2013 [2] and Dubot et al. 2015 [3]. To address these challenges, a concept

of Functional Airspace Blocks (FAB) is being developed by Eurocontrol. A FAB is de�ned in the

Single European Sky legislative package as �an airspace block based on operational requirements and

established regardless of state boundaries, where the air navigation services and related functions

is performance-driven and optimised through enhanced cooperation among ANSPs or an integrated

provider" [4].

As illustrated in Figure 1, nine FAB initiatives have been taken: UK-Ireland FAB, Baltic FAB,

BLUE MED FAB, Danube FAB, Denmark-Sweden FAB, FAB CE, FABEC, North European FAB
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Fig. 1 European airspace is divided into nine Functional Airspace Blocks viz. UK-Ireland

FAB, Baltic FAB (Lithuania, Poland), BLUE MED FAB (Albania, Cyprus, Greece, Italy and

Malta), Danube FAB (Bulgaria, Romania), Denmark-Sweden FAB, FAB CE (Austria, Bosnia

& Herzegovina, Croatia, Czech Republic, Hungary, Slovak Republic, Slovenia), FABEC (Bel-

gium, France, Germany, Luxembourg, the Netherlands and Switzerland), North European

FAB (Estonia, Finland, Latvia, and Norway) and South West FAB (Portugal, Spain).

and South West FAB, two of these have already been implemented, namely the UK-Ireland and

Denmark-Sweden FABs and rest are in progress [5].

Establishment of FABs will have consequences for NMOC operations. Angenendt, 2005 [6] has

argued that one of the key challenges will be to implement the centralized ATFM strategies in the

individual FAB and to develop the basis for the cooperation among the FABs. Delegation of ATFM

to individual FABs can lead to demand-capacity imbalances as each FAB may try to optimize tra�c

�ow in its own airspace without considering other FAB requirements.

As per regulation (EC) No 551/2004 of the European Parliament on the organization and use of

the airspace in the single European sky by European Commission, one of the speci�c requirements

for the implementation of FABs is that there implementation should be supported by a safety case

i.e. implementing of FAB must not result in increased instances of loss of separation. Subsequent
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evaluation of Functional Airspace Block initiatives and their contribution to performance improve-

ment by Eurocontrol Performance Review Report 2008 [7], Adler et al., 2014 [8] and Luppo et al.,

2016 [9] have concluded that without increased coordination and information exchange amongst

Airlines, ANSPs, Military and Airports FAB may not be able to deliver its objectives.

Arijana et al., 2014 [10] in their analysis of expected ATM changes in central Europe have

concluded that higher degree of collaboration amongst the ANSPs and that the states must ensure

that ATM can provide services in conjunction with their neighbors with greater deal of cooperation.

Button and Neiva, 2013 [2] examined the economic e�ciency of functional airspace blocks and found

that greater local coordination of ANSPs may play in the longer-term policies of establishing a full

Single European Sky. Alvarez et al., 2013 [11] suggested that one of the indicators of FAB success

is that ATM performances at network level are achieved in a collaborative distributed decisions

making context.

The above research motivated us to establish a distributed ATFM model which forms the basis

of interaction and information exchange among FABs to implement ATFM strategies. The goal

of distributed ATFM model will be to generate strategic 4D trajectories which minimize �ight

interaction, a concept which considers both space and time elements of overlapping trajectories.

Thus we attempt to address both, the safety and coordination, issues in FAB implementation.

The proposed method is based on a meta-heuristic approach which uses a hybrid algorithm

of simulated annealing and hill-climbing local search to separate a given set of interacting aircraft

trajectories by allocating an alternative �ight plan (route and departure time) to each �ight. The

distributed decision making for �ight interaction resolution stems from an innovative data structure,

termed as FAB-Flight interaction matrix, which captures the �ight interaction information between

and within the FABs.

Simulated Annealing belongs to a special class of search methods, known as evolutionary algo-

rithms which were introduced by Holland in 1992 [12]. Since, air tra�c �ow management problems

are di�cult to solve by other traditional methods because of non-convex, non-linear, or non-analytic

characteristics, evolutionary search methods o�ers an e�ective approach of addressing open research

problems in this domain [13]. Further, seminal work of Cheng et al., [14], Du et al. [15] and Delahaye
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et al., [16] on optimization of airspace sectoring, airspace network optimization, tra�c assignment,

and en-route con�ict resolution has added empirical support for evolutionary algorithms as an op-

timization methodology that is both e�ective and e�cient in analyzing complex air tra�c �ow

management problems.

The paper also extends a trajectory planning method, based on route and departure-time al-

location technique, developed by co-authors in Chaimatanan, 2014 [17] by including a local search

strategy for better exploitation of search knowledge and a neighborhood structure for e�ective iden-

ti�cation of FABs and associated �ights which causes high interaction. This enables interaction

resolution of �ights from FABs which causes higher interaction in the overall airspace. This leads

to faster convergence of algorithm especially when number of �ights is large.

The paper is organized as follows: Section II describes the concept of the proposed distributed

ATFM model for Functional Airspace Blocks. Section III presents the proposed model and method-

ology in a mathematical framework. Then, a method to compute interaction between trajectories

is presented in Section IV. Resolution algorithm to the problem is explained in Section V. Finally,

numerical results are presented and discussed in Section VI.

II. Concept Description

Centralized ATFM though o�ers a fair distribution and demand-capacity balance at a global

level but stakeholder can only provide inputs and are not part of decision making. It may also

lead to large number of pairwise reversals, i.e., the resulting sequence of �ight arrivals can be quite

di�erent as compared to the original published �ight schedules [18]. Because of this deviation from

the original �ight ordering, it may becomes di�cult to implement such a solution locally.

In a distributed ATFM the decision-making responsibilities are shared between a number of

airspace users (airlines, ANSPs, Military, Airports). Some examples of distributed ATFM are Ration

by Schedule (RBS) [19] and Ground Delay Program (GDP) [20, 21]. However the current state-

of-the art is limited mostly to strategic planning, and the users' participation in planning reduces

as the planning interval becomes smaller. With the gradual implementation of FAB concept in the

European airspace, any distributed ATFM systems must also take into consideration multiple FAB
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Fig. 2 Trajectory planning and op-

timization for FABs in Centralized

ATFM.

Fig. 3 Trajectory planning and op-

timization for FABs in Distributed

ATFM.

interactions.

Figure 2 and 3 illustrates the di�erence in the centralized and distributed ATFM approach in

terms of trajectory planning and optimization. In centralized ATFM the optimization algorithm

controls the vector of decision variables, X, which are used by the simulation process in order to

compute the performance (quality), y, of such decisions. However, In this approach, evolutionary

algorithms may not be adapted to address such problems, mainly when the simulation environment

requires huge amount of memory space as is often the case in nowadays real-life complex systems. As

a matter of fact, in the case of a evolutionary algorithm based approach, the simulation environment

has to be duplicated for each individual of the population of solutions, which may require an excessive

amount of memory. In order to avoid this drawback, one may think about having distributed

approach where only one simulation environment which could be used each time a point in the

population has to be evaluated as follows. In order to evaluate one population, one �rst consider

the �rst individual. Then, the simulation environment is initiated and the simulation associated

with the �rst individual is run. The associated performance is then transferred to the optimization

algorithm. After that, the second individual is evaluated, but the simulation environment must

be �rst cleared from the events of the �rst simulation. The simulation is then run for the second
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individual, and so on until the last individual of the population is evaluated. In this case the memory

space is not an issue anymore, but the evaluation time may be excessive and the overall process too

slow, due to the fact that the simulation environment is reset at each evaluation.

In a FAB scenario, the tra�c �ow management will be highly interdependent and will demand

a signi�cant cooperation with other FABs. One way to achieve this is by having distributed 4D

trajectory planning amongst FABs which can ensures con�ict-free trajectory for each aircraft. This

will then translates into trajectory based operations where aircraft are required to �y a negotiated

con�ict-free trajectory through respective FABs.

In long term planning, airline operation center (AOC) generates �ight schedules and �ight plans

and takes into consideration seasonal demand/trends, passenger projection, spoke-hub con�gura-

tions, maintenance Schedule, pilots/Technical sta� roster and available slots at airports. While

in medium term planning Air Navigation Service Providers project tra�c loads based on airline

schedules and �ight plans for 2 to 12 Hours and takes in to consideration weather patterns. In

Europe, this is done centrally by Eurocontrol Central Flow Management Unit (CFMU), now known

as NMOC, for all the member states. CFMU also ensures that in the medium term all �ight plans

are con�ict and congestion free. In short term planning (Airspace Flow Planning) �ight coordina-

tion is done on a regional scale with 30 Minutes to 2 Hour Timescale. Flow restrictions are used

for overcrowding which includes Miles-in-Trail and Time-in-Trail. While in Tactical planning (Sec-

tor Tra�c Planning) Sector Air Tra�c Controller Executive (R-Side) is responsible for managing

aircraft through the use of radar (5 minutes interval) and Sector Air Tra�c Controller Planning (D-

Side) is responsible for coordinating hand-o�s with surrounding sectors (5 to 20 Minute Timescale).

The focus of this paper is on medium term planning where we envision that the demand and

capacity balancing and initial �ight planning will be taken care by NMOC and the responsibilities

of ensuring that the �ight plans are con�ict and congestion free will rests on individual FABs where

the �ight is originating (i.e. the controlling FAB). This is a loose form of distributed air tra�c

�ow management where the decision of de-con�iction/de-congestion (collectively, we call it �ight

interaction) rests with FAB and not with a centralized body.
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A. Proposed Model

The main idea proposed in the paper is a distributed decision making model which can enable

e�ective information sharing among the FABs for 4D trajectory planning which are interaction free.

The goal of the proposed method is to separate a given set of aircraft trajectories in space and time

domain by allocating an alternative �ght plan (route and departure time) to each �ght in a given

FAB.

Fig. 4 Proposed Concept for information sharing among the FABs for interaction-free trajec-

tory planning.

Since the focus of this paper is on medium-term planning, we assume that the problem of

demand-capacity balancing are addressed in the strategic long-term planning. In medium term

planning the key issues is minimizing the interaction between trajectories. An interaction between

trajectories occurs when two or more trajectories have an e�ect on each other; for instance, when

trajectories occupy the same space at the same period of time. Therefore, contrary to the concept of

con�ict, the measurement of interaction does not only refer to the violation of minimum separation
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requirements; it also allows us to take into account other separation criteria such as minimum

separation time between aircraft crossing at the same point.

The proposed concept is developed as follows: as illustrated in Figure 4, airspace users (airlines,

airports, ANSPs etc.) submits relevant information (�ight plan, slots, capacity) to NMOC, which

then applies centralized tra�c �ow management strategies to match demand with capacity and

other airspace constraints and generate revised �ight plans. These �ight plans are then used as an

input to a FAB-Flight interaction Matrix. It is a 2D matrix which captures the �ight interaction

information between and within FABs. One dimension of the matrix is termed Controlling FABs

and the other dimension is termed Intermediate FABs. A Controlling FAB is de�ned as a FAB where

a given �ight is originated or activated (in case of an enroute �ight entering European airspace),

whereas an intermediate FAB is de�ned as a FAB through which a given �ight traverse (over �y),

terminates (lands) or exits the European airspace.

Fig. 5 An airspace divided into three FABs (FAB A, FAB B and FAB C) with four �ight ( A,

B, C and D) scenario.

As illustrated in Figure 5, Flight A enters FAB B from outside so it is the Controlling FAB.

Flight A traverse through FAB A and terminates in FAB C so they are termed as Intermediate

FAB. Similarly, for Flight B originates and terminates in FAB B, so FAB B is both Controlling

and Intermediate FAB for �ight B. For Flight C the origin is in FAB A (Controlling FAB) and it

traverse through FAB C (intermediate FAB) before exiting the airspace. Thus a �ight may have
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multiple intermediate FABs but will have only one controlling FAB.

The FAB-Flight interaction Matrix captures how many interactions are caused by �ights from

Controlling FAB in the Intermediate FABs. The �ight interactions can then be resolved by imple-

menting time-space separation in the Controlling FAB (from where the �ight originated/activated)

and the �ight plans are updated accordingly. Once resolved, �ight interactions are recomputed (us-

ing revised �ight plans) and the FAB-Flight Interaction Matrix is updated. This process continues

until all the �ight interactions are resolved.

B. FAB-Flight Interaction Matrix

The FAB-Flight Interaction Matrix is developed as follows: as illustrated in Figure 6, for N

FABs in a given airspace A, a 2D matrix of N rows and N columns is developed. The row vector

of the matrix represents the number of �ight interactions caused by a Controlling FAB Cj in the

Intermediate FABs Ii for i = 1 to N . The column vector of the matrix represents the number of

�ight interactions caused by the Controlling FABs Cj for j = 1 to N in an Intermediate FAB Ii

Fig. 6 FAB-Flight Interaction Matrix

Ii =

[
INT (Cj , IA) INT (Cj , IB) ... INT (Cj , Ii)

]
(1)
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Cj =



INT (CA, Ii)

INT (CB , Ii)

....

INT (CN , Ii)


(2)

For example, as illustrated in Figure 6, �ight interactions due to �ights controlled by FAB

CA in the Intermediate FAB IA is given by row FAB CA and column FAB IA and denoted by

INT (CA, IA). Similarly, the number of �ight interactions due to �ights controlled by FAB CC in

the same intermediate FAB i.e. FAB Ic is given by row FAB Cc and column FAB Ic.

Therefore, the total number of �ight interactions U , in a given FAB i, can be given by summing

the column vector:

Ui =

N∑
j=1

INT (Cj , Ii) (3)

The total �ight interaction V in a given airspace A (which comprises of N FABs) can be given

by

V =

N∑
j=1

Uj (4)

The average contribution of each FAB, in overall �ight interactions, for a given airspace A can

be given by:

Ujrel = Uj/V (5)

for j = 1 to N.

C. Tra�c Flow Management Strategy

The distributed Tra�c Flow Management strategy is developed as follows: �rst the Intermediate

FAB with highest number of �ight interaction is identi�ed as a candidate FAB (equation 6).

FAB Ii = MAX(UA, UB ..., UN ) (6)
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Then, for the FAB Ii, the Controlling FAB Cj which generated highest number of �ight inter-

action is identi�ed (equation 7).

FAB Cj = MAX(INT (CA, Ii), INT (CB , Ii), ..., INT (CN , Ii)) (7)

The ATFM strategies (Space-Time separation) are then applied on randomly selected (�tness-

proportional selection) �ights in Controlling FAB Cj . The �tness proportional method implies

that the probability of a �ight to be selected is simply proportionate to the number of interactions

it causes. Flight interactions are recomputed given the revised �ight plans and the FAB-Flight

Interaction Matrix is updated. This process is repeated until the FAB-Flight Interaction Matrix is

interaction free. Figure 7 illustrates the updated process, where the decision made by each FABs are

evaluated by the optimization process. Then, the information of interaction based on FABs-Flight

interaction matrix is feed back to each FABs, which then make new decision and repeat the process

until a solution that leads to minimum overall interaction is reached.

Fig. 7 FAB-Flight Interaction Matrix update process.

III. Mathematical Modelling

This section sets the mathematical framework of the distributed air tra�c �ow management

methodology we are proposing. First, a de�nition of interaction between trajectories is given.
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Fig. 8 Interactions, Φi,k, at sampling point Pi,k of trajectory i.

Then, the route / departure-time allocation techniques adapted for the distributed ATFM model is

presented.

A. Interaction between trajectories

Interaction between trajectories indicates, when two or more trajectories occupy the same space

at the same period of time. It is di�erent from the con�ict situation, which corresponds simply to a

violation of the minimum separation (i.e. 5 NM horizontally and 1,000 ft vertically). In this paper,

the concept of interaction takes into consideration the duration of con�ict. However, additional

separation conditions, such as time separation, topology of trajectory intersection, distance between

trajectories, etc. can also be taken into account.

Consider a given set of N discretized 4D trajectories, where each trajectory i is a time sequence

of 4D coordinates, Pi,k(xi,k, yi,k, zi,k, ti,k), specifying that aircraft must arrive at a given point

(xi,k, yi,k, zi,k) at time ti,k, for k = 1, . . . ,Ki, and Ki is the number of sampling points of trajectory

i.

Consider a point k of trajectory i, interactions at point Pi,k, denoted Φi,k, may be de�ned as the

total number of times that the protection volume around point Pi,k is violated. Figure 8 illustrates

interaction in the horizontal plane between N = 3 trajectories measured at point Pi,k.

The interaction associated with trajectory i, denoted Φi, is therefore de�ned to be:

Φi =

Ki∑
k=1

Φi,k. (8)

Finally, the total interaction between trajectories, Φtot, for a whole tra�c situation is simply de�ned
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as:

Φtot =

N∑
i=1

Φi =

N∑
i=1

Ki∑
k=1

Φi,k. (9)

One can observe that the measurement of the interaction between trajectories implicitly take

into account the duration of con�ict between trajectories. A practical methodology to compute the

value of the interaction between trajectories in a large-scale context is presented in Section IV.

B. Route/Departure-time allocation

In order to separate the trajectories in 3D space and time domain, we formulate a

route/departure-time allocation techniques based on [17]. The objective is to �nd alternative 4D

trajectory for each �ight, so as to minimize the total interactions between trajectories.

Given data. A problem instance is given by:

• A set of initial N discretized 4D trajectories with associated controlling FAB;

• The discretization time step, ∆t;

• The number of allowed virtual waypoints, M ;

• The maximum allowed advance departure time shift of each �ight i, δia < 0;

• The departure time shift step size, δs;

• The maximum allowed delay departure time shift of each �ight i, δid > 0;

• The maximum allowed route length extension coe�cient of each �ight i, 0 ≤ di ≤ 1;

• The length of the initial en-route segment of each �ight i, Li,0.

The alternative departure time and the alternative route to be allocated to each �ight are

modelled as follows.

Alternative departure time. The departure time of each �ight can be shifted by a positive

(delay) or a negative (advance) time shift. Let δi ∈ ∆i be a departure time shift attributed to �ight

i, where ∆i is a set of acceptable time shifts for �ight i. The departure time ti of �ight i is therefore

ti = ti,0 + δi, where ti,0 is the initially-planned departure time of �ight i. The departure time shift
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Fig. 9 Initial and alternative trajectories with rectangular-shape possible location of M = 2

virtual waypoints.

δi will be limited to lie in the interval ∆i := [δia, δ
i
d]. Common practice in airports conducted us

to rely on a discretization of this time interval using time-shift step size δs. This yields N
i
a :=

−δia
δs

possible advance slots and N i
d :=

δid
δs

possible delay slots of �ight i. Therefore, we de�ne the set, ∆i,

of all possible departure time shifts of �ight i by

∆i :={−N i
a.δs,−(N i

a − 1).δs, . . . ,

− δs, 0, δs, . . . , (N i
d − 1).δs, N

i
d.δs}.

(10)

Alternative trajectory design. In this work, an alternative trajectory is constructed by

placing a set of virtual waypoints, denoted

wi = {wmi |wmi = (wmix′ , w
m
iy′)}Mm=1, (11)

near the initial en-route segment and then by reconnecting the successive waypoints with straight-

line segments as illustrated in Fig. 9. To limit the route length extension, the alternative en-route

pro�le of �ight i must satisfy:

Li(wi) ≤ (1 + di), (12)

where Li(wi) is the length of the alternative en-route pro�le determined by wi. Fig. 9 illustrated

initial and alternative trajectories, constructed with M = 2 waypoints, where the location of each

waypoint is constrained to be in a rectangular-shape possible location. Let Wm
ix′ be a set of all

possible normalized longitudinal locations of the mth virtual waypoint on trajectory i. For each

15



trajectory i, the normalized longitudinal component, wmix′ , is set to lie in the interval:

Wm
ix′ :=

[(
m

1 +M
− bi

)
,

(
m

1 +M
+ bi

)]
, (13)

where bi is a (user-de�ned) parameter that de�nes the range of possible normalized longitudinal com-

ponent of the mth virtual waypoint on trajectory i. To obtain a regular trajectory, the normalized

longitudinal component of two adjacent waypoints must not overlap, i.e.

(
m

1 +M
+ bi

)
<

(
m+ 1

1 +M
− bi

)
(14)

and hence the user should choose bi so that

bi <
1

2(M + 1)
. (15)

Let Wm
iy′ be a set of all possible normalized lateral locations of the mth virtual waypoint on

trajectory i. Similarly, the normalized lateral component, wmiy′ , is restricted to lie in the interval:

Wm
iy′ := [−ai, ai], (16)

where 0 ≤ ai ≤ 1 is a (user-de�ned) model parameter that de�nes the range of possible normalize

lateral location of the mth virtual waypoint on trajectory i, chosen a priori so as to satisfy (12).

Let us set the compact vector notation: δ := (δ1, δ2, . . . , δN ), and w := (w1, w2, . . . , wN ),

We shall denote by ui the components of u. It is a vector whose components are related to the

modi�cation of the ith trajectory, thereby our decision variable is:

u := (δ,w).

Finally, the interaction minimization problem can be formulated as a mixed-integer optimization

problem, as follows:
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min
u=(δ,w)

Φtot(u)

subject to

δi ∈ ∆i,

wmix′ ∈Wm
ix′ ,

wmiy′ ∈Wm
iy′ ,

for all i = 1, . . . , N,m = 1, . . . ,M,

(P1)

where Wm
ix′ , and W

m
iy′ are de�ned by (13), and (16) respectively.

IV. INTERACTION DETECTION

In order to evaluate the objective function, at a candidate solution, (u), one needs to compute

interaction between the N aircraft trajectories. To avoid the N(N−1)
2 time-consuming pair-wise

comparisons, which are prohibitive in our continental-scale application context, we use a grid-based

interaction detection scheme [17] which is implemented in a so-called hash table.

First, the airspace is discretized using a four-dimensional grid (3D space + time) for con�ict

detection, as illustrated in Figure 10, as a time series of 3D grids which is sampled with discretization

time step ∆t = tn− tn−1. The size of each cell in the 3D grids is de�ned by the minimum separation

requirements (Nh andNv).. The size of each cell in the 4D grid is de�ned by the minimum separation

requirement and the discretization time step, ∆t (see below). Then, for each given 4D coordinate

Pi,k(xi,k, yi,k, zi,k, ti,k) of each trajectory i, we identify which cell, says Ci,j,k,t, of the 4D grid contains

Pi,k(xi,k, yi,k, zi,k, ti,k).

Next, we consider each such cell Ci,j,k,t and we successively check its surrounding cells (there

are 33 = 27 such neighbouring cells, including cell Ci,j,k,t itself). If one cell is occupied by an aircraft

other than aircraft i itself, the horizontal distance (dh) and the vertical distance (dv) between the

corresponding aircraft coordinates are measured. A violation of the protection volume is identi�ed

when both dh < Nh and dv < Nv.

In order not to underestimate interaction, and to avoid using small value to ∆t which leads

to large number of trajectory samples and long computational time, we propose an inner-loop
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Fig. 10 Four-dimension (3D space + time) grid for con�ict detection, illustrated as a time

series of 3D grids.

algorithm, detecting interaction between two sampling times, t and t+ ∆t, by interpolating aircraft

positions with a su�ciently small step size, tinterp. The interpolation is performed only if no

interaction is detected at time t. Then, one checks each pair of these interpolated points. The

algorithm stops when an interaction is identi�ed or when every pair of the interpolated points has

been checked.

V. RESOLUTION ALGORITHMS

The 4D trajectory planning methodology for a distributed ATFM model, presented in this

paper, relies on the interaction minimization problem introduced in Section III whose objective

function values are obtained by simulation through the interaction detection scheme developed in

Section IV. To solve the problem, a hybrid metaheuristic approach adapted to handle an air-tra�c

assignment problem at the continent scale is used. It relies on a classical simulated annealing (SA)

algorithm and two di�erent local-search (LS) modules. The LS allows the system to intensify the

search around a potential candidate solution while the SA allows the system to escape from a local

trap and thereby ensuring the exploration of the solution space.

The concept of Simulated annealing (SA) in combinatorial optimization was introduced by S.

Kirkpatrick et al. in 1983 [22]. It is a metaheuristic stochastic method of optimization that is well

known for its ability to escape from local minima by allowing occasional moves that deteriorate

the value of the objective function, such deteriorating moves being less and less as the number of

iterations grows.
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The concept of SA is based on a strong analogy with the physical annealing of materials. This

process involves bringing a solid to a low energy state after raising its temperature. It can be

summarized by the following two steps

• Bring the solid to a very high temperature until melting of the structure;

• Cool the solid according to a very particular temperature decreasing scheme in order to reach

a solid state of minimum energy.

In the liquid phase, the particles are distributed randomly. It is shown that the minimum-

energy state is reached provided that the initial temperature is su�ciently high and the cooling

time is su�ciently long. If this is not the case, the solid will be found in a metastable state with

non-minimal energy; this is referred to as hardening, which consists in the sudden cooling of a solid.

Temperature in a physical system is analogues to Control parameters in the optimization problem,

where the objective function of the problem is analogous to the energy state of the system. As,

from an initial solution, Simulated Annealing algorithm can proceeds in several iterations and at

each iteration, a random neighbor is generated. Moves that improve the cost function are always

accepted. Thus, at a given temperature, the lower the increase of the objective function, the more

signi�cant the probability of accepting the move and higher the temperature, the more signi�cant

the probability of accepting a worst move.

The proposed hybrid algorithm combines the SA and the local search algorithm such that the

LS is considered as an inner-loop of the SA, which will be performed when a pre-de�ned condition

is satis�ed. The structure of the proposed hybrid algorithm of SA and LS methods is illustrated in

Figure 11.

Previously, hybrid optimization algorithm have been applied to solve 4D trajectory planning at

continent scale in [17], however the air tra�c �ow were managed based on a centralized decision

making. In order to apply the proposed hybrid SA-LS algorithm to distributed ATFM model, the LS

search strategy and the neighborhood structure are modi�ed according to proposed ATFM strategy,

as described in Subsection IIC.

For our problem, the simulated annealing proceeds as follows. First, we evaluate the objective

function at the current con�guration (w, δ)C . It is denoted ΦC . Then a neighboring solution,
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Fig. 11 Structure of the proposed hybrid algorithm of simulated annealing and hill-climbing

local search methods.

(w, δ)N , is generated by a neighborhood function. Then, a new solution for this chosen �ight is

generated according to a pre-de�ned neighborhood structure. If the neighborhood solution improves

the objective function value, then it is accepted. Otherwise, it is accepted with a probability e
−∆Φ

T ,

where ∆Φ = ΦN −ΦC is the di�erence of energy between current state C and new state N . When

the maximum number of iterations, nT , at a given temperature is reached, the temperature is

decreased according to the user-provided pre-de�ned schedule, and the process is repeated until the

pre-de�ned �nal temperature, Tfinal, is reached. More detail on simulated annealing can be found,

for instance, in [23].

Local search modules. The local search modules we use are heuristic methods that accepts

a new solution only if it yields a decrease of the objective function. The process repeats until no

further improvement can be found or until the maximum number of iterations nTLOC
is reached.

The two local-search modules correspond to the two following strategies:

• Intensi�cation of the search on one Particular Trajectory (PT). Given a �ight i,

this state-exploitation step focuses on improving the current solution by applying a local

change from the neighborhood structure only to �ight i (only the decision variables (wi, δi)

are a�ected).

• Intensi�cation of the search on the Interacting Trajectories (IT). Given a �ight i,

this state-exploitation step applies a local change, from the neighborhood structure, to every

�ight that is both subjected to the same controlling FABs as �ight i, and currently interacting

with �ight i.
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Neighborhood structure The proposed hybrid algorithm relies on a neighborhood structure

to determine the next move. First, the controlling FAB, which generates the highest proportion of

interaction, is identi�ed. Then, a �ight from the identi�ed FAB is chosen such that the interaction

associated with trajectory i, Φi ≥ τ ·Φavg, where τ is a user-de�ned parameter and Φavg = Φtot/N

is the average value of interaction.

In order to generate a neighborhood solution for a given �ight, i, from the current con�guration

(wi, δi)C , one has to determine whether to modify the location of waypoints or to modify the

departure time in the next move. In general, searching for the solution in the time domain would

be more preferable since it does not induce extra fuel consumption. However, empirical tests show

that limiting the search to only that degree of freedom results in prohibitive computational time.

Therefore, we introduce a user-de�ned parameter Pw to control the probability to modify the location

of the waypoints wi and such that the probability to modify rather the departure time is 1 − Pw.

For a given �ight i, the neighborhood operator generates a new set of virtual waypoints or a new

alternative departure time according to this probability Pw.

Hybrid algorithm (SA and LS). Here is how the above-mentioned methods are combined.

The methods are carried out according to pre-de�ned probabilities, which are proportional to the

control temperature, T . The probability to carry out simulated annealing step, PSA, is:

PSA(T ) = PSA,min + (PSA,max − PSA,min) · T0 − T
T0

, (17)

where PSA,max and PSA,min are the maximum and minimum probabilities to perform the SA (pre-

de�ned by the user). The probability of running the LS module, PLoc, is given by:

PLoc(T ) = PLoc,min + (PLoc,max − PLoc,min) · T0 − T
T0

, (18)

where PLoc,max and PLoc,min are the maximum and minimum probabilities to perform the local

search (de�ned analogously). And, �nally the probability of carrying out both SA and the local

search (successively), PSL, is:

PSL(T ) = 1− (PSA(T ) + PLoc(T )). (19)

A key factor in tuning this hybrid algorithm is to reach a good trade o� between exploration

(diversi�cation) and exploitation (intensi�cation) of the solution space.
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VI. Numerical experiments

The proposed distributed ATFM model is implemented in Java. The overall methodology is

tested with air tra�c data involving �ights over the European FABs, consisting of nine FABs listed

in Table 1. First, it is tested with a set of tra�c consisting of 4,000 �ights over the European FABs

on a UNIX platform with 1.7 GHz processor and 8 GB memory. The parameter values chosen

to specify the optimization problem are given in Table 2. The parameter values that specify the

resolution algorithm are given in Table 3. Then, it is tested with a full day of en-route air tra�c

over the European FABs consisting of 26,122 �ights on a UNIX platform with 2.4 GHz processor

and 32 GB memory, using the same parameters as given in Table 2 and 3, except that this time the

number of iteration NI is set to 2,700.

Table 1 European FABs.

No. FAB name

1 Baltic FAB

2 Blue Med

3 FAB Central Europe

4 Danube FAB

5 FAB Europe Central

6 NEFAB

7 NUAC FAB

8 SW Portugal-Spain FAB

9 FAB UK Ireland

Table 2 Chosen (user-de�ned) parameter values for the optimization problem.

Parameter Value

Discretization time step, ∆t 20 seconds

Discretization time step for possible departure-time shift, δs 20 seconds

Maximum departure time shift, deltaia = δid := δ 120 minutes

Maximum allowed route length extension coe�cient, di 0.20

Maximum allowed �ight level shifts, li,max := lmax 2

Maximum number of virtual waypoints, M 3
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Table 3 Empirically-set (user-de�ned) parameter values of the resolution methodology.

Parameter Value

Minimum probability to perform SA step, PSA,min 0.8

Maximum probability to perform SA step, PSA,max 0.9

Minimum probability to perform local search step, PLoc,min 0.4

Maximum probability to perform local search step, PLoc,max 0.6

Number of iterations at each temperature step, NI 400

Number of iterations of the inner-loop local search step, nTLOC 5

Geometrical temperature reduction coe�cient, β 0.99

Final temperature, Tf (1/500).T0

Inner-loop interpolation sampling time step, tinterp 5 seconds

Probability to modify horizontal �ight pro�le, Pw 1/3

Probability to modify �ight level, Pl 1/3

Threshold value, Φτ 0.5 Φavg

The parameters in Table 2 which were domain dependent, were chosen based on the feedback

from domain experts. For example, the number of �ight level changes is kept at maximum of two

�ight levels (2000 feet) to minimize major changes in originally �led cruise �ight level. Similarly,

the maximum departure time shift is kept to two hours keeping in line with airline practices. The

parameters in Tables 2 and 3 are adopted from the centralized AFTM methodology developed by

co-authors in [17]. These parameters were determined by initial set of experiments and �ne tuning.

These parameters are kept same in this paper for comparison purpose.

Table 4 Initial and �nal interaction between 4,000 trajectories.

case N ATFM initial �nal solved no. of cpu time

strategy ΦDtot ΦDtot interactions iterations (mins)

Distributed 0 100% 8,306 2.47

1 4,000 48,272

Centralized 0 100% 5,035 2.08

Distributed 0 100 % 509,924 369.67

2 26,122 266,318

Centralized 0 100% 632,002 563.53
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We have used following matrices for comparison:

• Initial and �nal interaction between trajectories,

• The number of iterations performed resolves the interactions,

• The computation time to resolve the interactions,

• How the solution converged (Color Map)

Time to converge and resolution of interactions for continental scale tra�c were the two key

metrics for the algorithm evaluation. Since this paper also introduces a new data structure- FAB-

Flight Interaction matrix, which forms the basis for information exchange and identi�cation of the

�ights that need interaction resolution, one of the key hypothesis is how the distributed algorithm

will scale with increase in tra�c from country level (4,000 �ights) to continent level (26,000 �ights)

tra�c sample.

The initial and �nal total interaction between trajectories, the computation time, and the num-

ber of iterations performed to solve the distributed problems compared to the one solved based on

centralized decision making methodology (proposed in [17]) are reported in Table 4. The FAB-Flight

interaction matrix is presented as color map showing the number of interaction caused by control-

ling FAB into the Intermediate FAB. To better visualize the evolution of interaction resolution, the

FAB-Flight interaction matrix color maps are reported at four key stages of experimentation: at

the start, at 30%, 70% and at the end of the process.

A. Small Flight Sample: 4000 �ights

Results indicate that, in terms of iterations the distributed model takes 8,306 iterations as

compared to 5,035 iterations in centralized model to solve 48,272 interactions with 4000 �ights.

However in terms of CPU time the di�erence between the two approaches is not signi�cant.

Figure 12 and Figure 14 presents the color map showing how interactions are resolved at di�erent

stages of the optimization process. Initially, the FAB that has the highest level of initial interaction

is FAB 5 (FAB Europe Central). The controlling FABs which generates the highest number of

interactions in FAB 5 are FAB 1 (Baltic FAB),4 (Danube FAB), and 5 (FAB Europe Central). In
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Fig. 12 Evolution of FAB-�ight interaction matrix for 4,000 trajectories using distributed

ATFM model.

Fig. 13 Evolution of interaction in each FAB for 4,000 trajectories using distributed ATFM

model.

the case of distributed model, the resolution algorithm tries to minimize the interaction by modifying

�ight plans of �ights associated to FAB number 1, 4, and 5 before resolving interactions in other

FABs.

25



Fig. 14 Evolution of FAB-�ight interaction matrix for 4,000 trajectories using centralized

ATFM model.

Fig. 15 Evolution of interaction in each FAB for 4,000 trajectories using centralized ATFM

model.

Figure 13, and Figure 15 presents the resolution of interaction over number of iterations in each

FAB during the optimization process for distributed and centralized models respectively. It can

be seen that for with small tra�c sample (4,000 �ights) the centralized model converges faster to
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interaction-free trajectories than distributed model. In distributed model, after 900 iteration, the

number of interactions in FAB 5 were down to 1.05 × 104 as compared to distributed model, where

the interactions in FAB 5 were reduced to 0.75 × 104. This was expected, as centralized model

do not takes into consideration the underlying FAB structure and the interactions among them

for trajectory identi�cation and resolution decision making. With large tra�c sample (continental-

scale tra�c), a scenario this algorithm is speci�cally intended to address, the distributed algorithm

converges faster than the centralized algorithm. In distributed model, the FAB-Flight Interaction

matrix information processing overhead which dynamically updates the �ight interaction informa-

tion after each trajectory resolution results in better performance with large tra�c sample.

B. Large Flight Sample: 26,000 �ights

Results indicate that, in terms of iterations the distributed model takes 509,924 iterations as

compared to 632,002 iterations in centralized model to solve 266,318 interactions with 26,122 �ights.

Distributed algorithm demonstrate approx 20% improvement in performance over centralized model

with large tra�c sample. In terms of CPU time, the di�erence between the two approaches is

signi�cant at 194 minutes (over 3 hours). This is a signi�cant improvement over centralized approach

as in medium term planning Air Navigation Service Providers project tra�c loads based on airline

schedules and �ight plans for 2 to 12 Hours and takes in to consideration weather patterns.

Figure 16 and Figure 18 shows the color map of trajectory interaction and their subsequent

resolution at the start of process, 30%, 70% and at the end of process. The start of the process

shows that both the algorithms start with the same set of interactions. At the end of 30% of the

process, it can be observed that the distributed model �rst resolves the high interactions caused

by the controlling FAB (for example FAB 5) on other intermediate FABs. The color map also

demonstrate the advantage of incorporating the Local Search (LS) strategy with neighbourhood

search to facilitate the exploration of the problem search space initially (till 70% of process) and

then exploitation of knowledge gained as demonstrated in quick resolution of most of the interaction

during last stage of optimization process.

Figure 17 and Figure 19 shows the resolution of interaction over number of iterations in each FAB
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Fig. 16 Evolution of the FAB-�ight interaction matrix for 26,122 trajectories using distributed

ATFM model.

Fig. 17 Evolution of the interaction in each FAB for 26,122 trajectories using distributed

ATFM model.

during the optimization process for distributed and centralized models respectively with large tra�c

sample. Though Centralized model initially able to resolve higher number of interaction but slows

down as less �ights with interacting trajectories are left. Whereas, in Distributed model the e�ective
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Fig. 18 Evolution of the FAB-�ight interaction matrix for 26,122 trajectories using centralized

ATFM model.

Fig. 19 Evolution of the interaction in each FAB for 26,122 trajectories using centralized

ATFM model.

search mechanism of identi�cation of FAB and interacting �ights leads to better convergence.
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VII. Conclusion

In this paper, we have presented a distributed air tra�c �ow management model, aiming at

minimize interactions between aircraft 4D trajectories at continent-scale. The objective was to

develop a basis of information exchange and interaction among FABs for implementing distributed

AFTM with a population based search method based on Simulated annealing and local search.

The overall methodology is implemented and tested on a continent-size air tra�c over the Eu-

ropean FABs, and then compared with the one obtained using centralized ATFM model. Although

the trajectories can be separated only by modifying the horizontal �ight pro�le and the departure

time of each �ight, the resolution algorithm �nds an interaction-free solution in both the cases.

In distributed model, the resolution algorithm tries to minimize the total interaction by modi-

fying �ight plans of �ights associated with the FABs that generate high interaction in the overall air

tra�c. While, in the centralized model case, the resolution algorithm modi�es �ight plans of �ights

that involves high interaction, without taking into account the FAB-Flight interaction information.

The convergence rate of the distributed model is much better than centralized model and is viable

for strategic planning as well as pre-tactical planning purpose.

In the case of small data set, the computation time to reach interaction-free solution is not signif-

icantly di�erent in the distributed and centralized model. However, when the tra�c size increases,

the distributed model converges to interaction-free solution 3 hours faster than the centralized

model. This is a signi�cant improvement over centralized model as in medium term planning Air

Navigation Service Providers project tra�c loads based on airline schedules and �ight plans for 2

to 12 Hours and takes in to consideration weather patterns.

The proposed method of distributed air tra�c �ow management using FAB-Flight interaction

matrix demonstrate that a trade-o� between exploration and exfoliation in a population based search

method for interaction resolution yields better results that the centralized tra�c �ow management

approach. This trade-o� is achieved using a heuristic algorithm consisting of a population based

search method augmented with a local search and a neighbourhood search function. This approach

dynamically assess trajectory interactions from origination and controlling FABs while resolving

them. This ensures that the convergence time, speci�cally when it comes to plan continental scale
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tra�c, is small. However, in practice, interfaces and di�erent implementations, time delays and so

forth need to be managed which present di�culties. These di�culties may not be compensated by

these theoretical advantages.
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