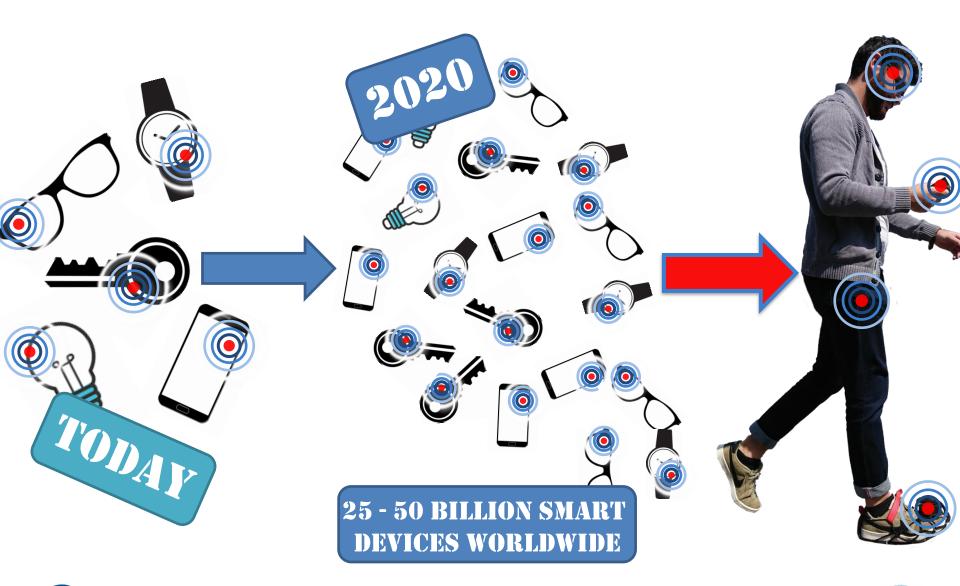


Integrating human dimension in the development of pedestrian navigation

Dr. Valérie Renaudin

15 November 2018, Toulouse, France



Development driven by market needs

Promote multimodal transport with the following priority rules: at first pedestrians, then cyclists, then motorists

Use crowdsourced data collected by a wide range of stakeholders to produce accessibility maps

Expand the prescription sports-health program to integrate the practice of walking and cycling in the treatment of patients

Technology Push &

Sensors' Location on Human **Body**

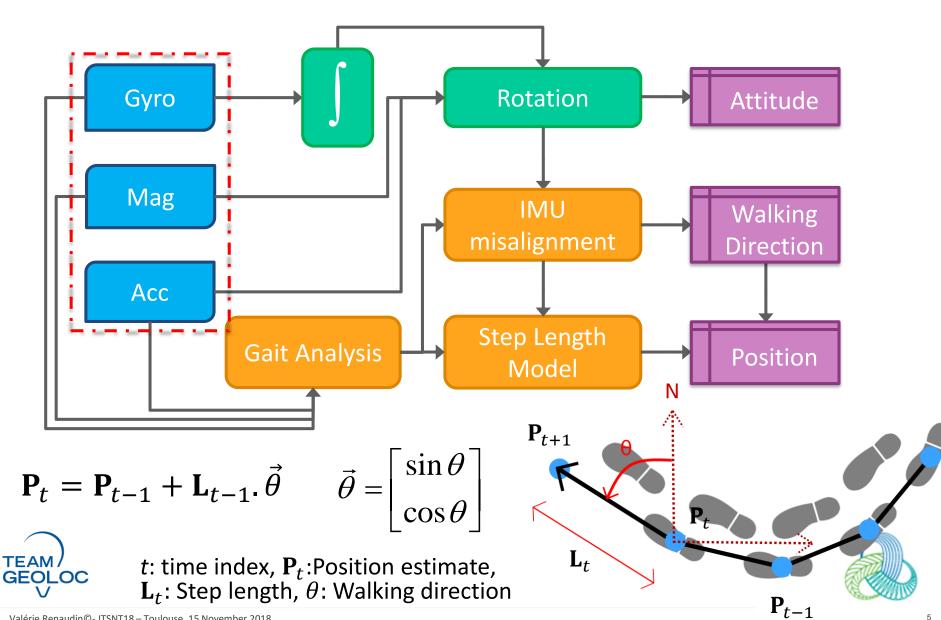
Light Fidelity

Infrastructure based motion detection

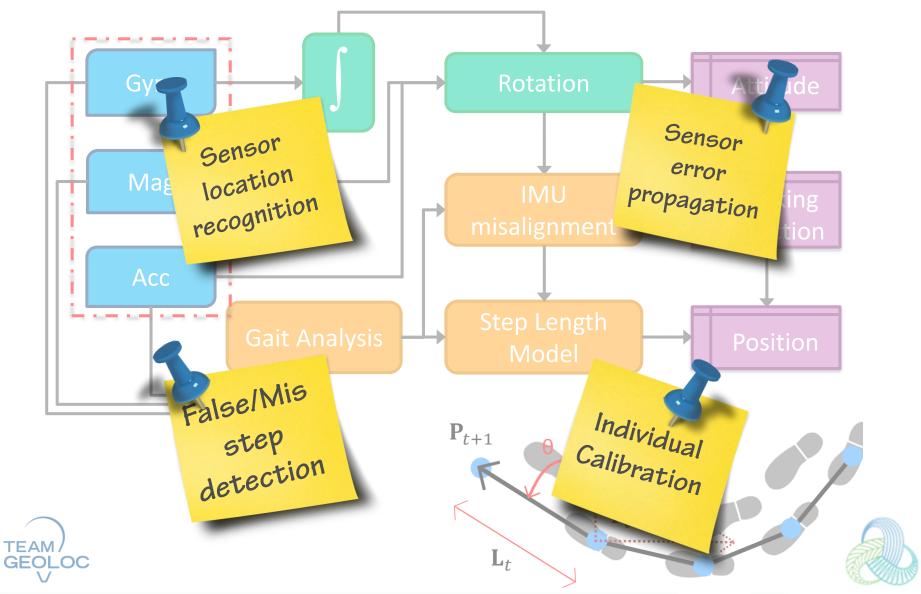
Camera, mono, stereo, depth, ...

Sounds, radiowave, ...

Pedestrian Dead Reckoning



Pedestrian Dead Reckoning



Assisted Monocular Visual Odometry

Context

Monocular vision

Tracking Method

Visual odometry

Problem

Scale ambiguity

Solutions

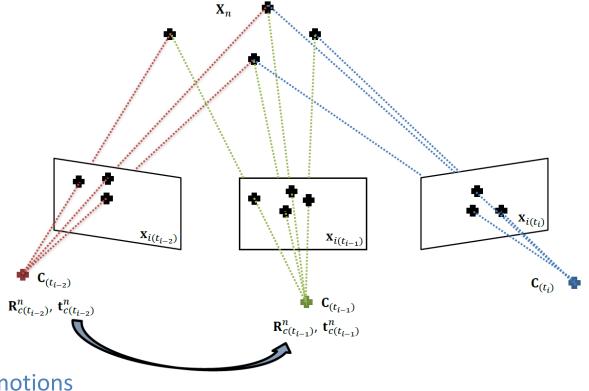
State-of-the-art

Use of perfectly known 3D objects (GIS)

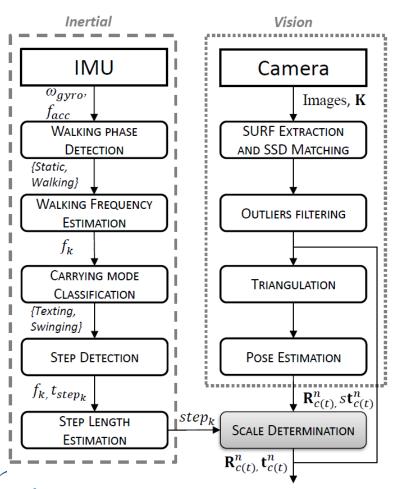
Calibration on known motions

Proposition

Using PDR step length estimates to solve for the ambiguity



Monocular Visual Odometry



Vision (VO)

SURF features extraction

Matching with SSD between $x_i(t_{i-2})$,

 $x_i(t_{i-1})$ and $x_i(t_i)$

Outliers filtering with MSAC

Triangulation

Relative pose estimation

Inertial (PDR)

PDR processing

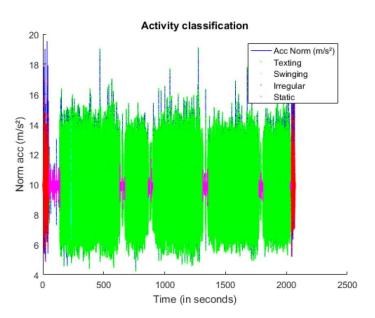
Fusion Vision/Inertial

Scale Determination

$$s_{t_{im}} = \frac{D_{PDR}(t_{im})}{D_{VO}(t_{im})}$$

Review of visual odometry: types, approaches, challenges, and applications, M. O. A. Agel et al. SpringerPlus vol. 5, 2016.

Step Length Model

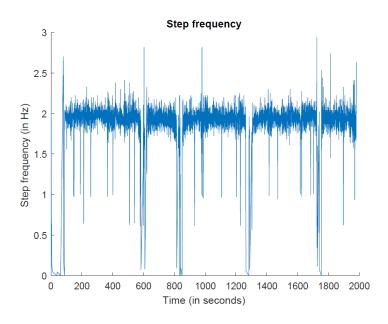


Step frequency estimation (STFT, Energy in sub-bands): f_k

Step detection: t_{step_k}

Step length modeling:

$$step_k = h_{ped} * (a * f_k + b) + c$$



Synchronization between step events and visual odometry is important

Height changes extracted from Digital Terrain Model considering a fixed height of the hand

Mode Recognition and Step Detection Algorithms for Mobile Phone Users, M. Susi et al. Sensors, 2013.

Step Length Estimation Using Handheld Inertial Sensors, V. Renaudin et al., Sensors, 2012.

Experimentation

Scenarios

800 m walk in urban environment Stops in front of 2 reference objects 3 pedestrians

Hardware

Handheld IMMU: **ULISS** (Ubiquitous Localization with Inertial Sensors and Satellites) at 200 Hz

1920*1080 visual measurements at 10 Hz with a Garmin monocular Camera

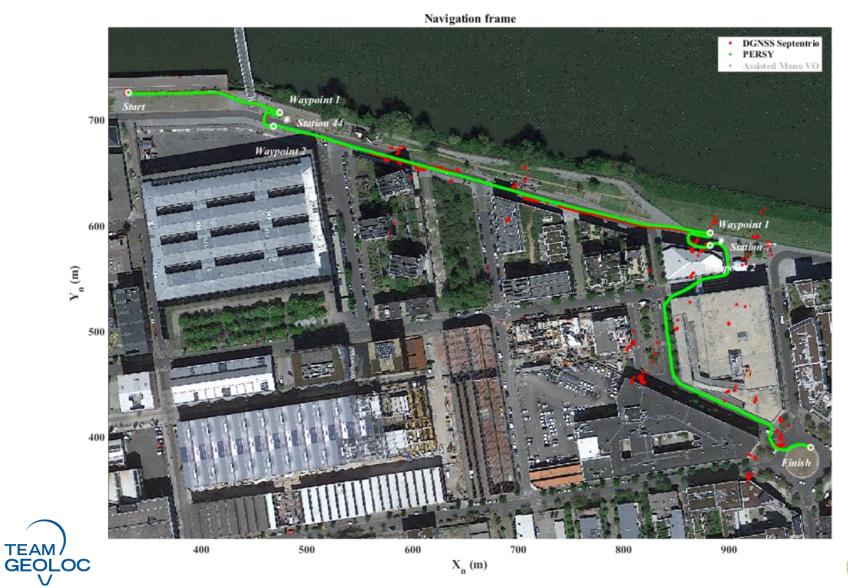
Reference

Differential GNSS (handheld helicoidal antenna + Septentrio)

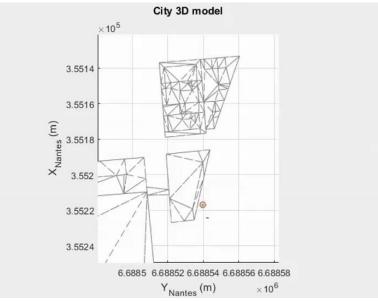
Foot mounted **PERSY** (PEdestrian Reference SYstem): positionning error 0,3% traveled distance

A new PDR navigation device for challeng. urban environments, M. Ortiz et al., Sensors, 2017 Foot-mounted pedestrian navigation reference with tightly coupled GNSS carrier phases, inertial and magnetic data, J. Le Scornec et al., IEEE Proceedings IPIN 2017

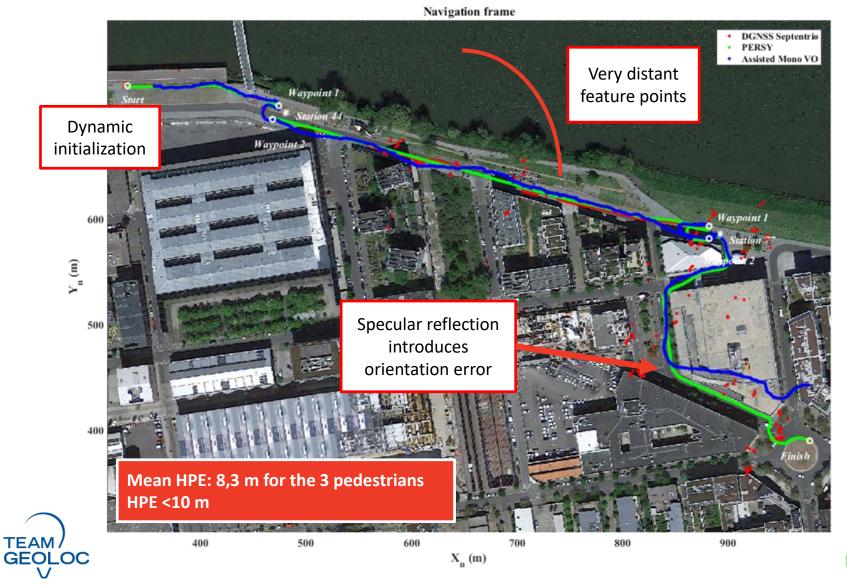
Pedestrian path in urban environment



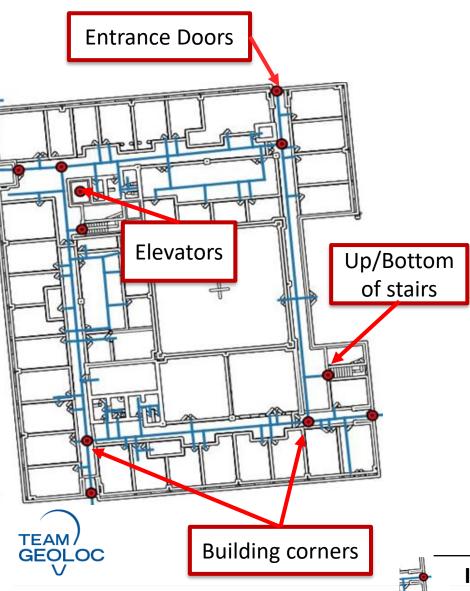
Accurate Vision/PDR PVT Estimates



Pedestrian path in urban environment



Position updates by means of human motion signal patterns recognition



Context

Pedestrian navigation with GIS content

Tracking Method

Particle Filter combined with topological graph

Problems

Graph mis-matching PDR error mitigation

Solutions

State-of-the-art

Heading correction with principal bulding directions/corners

Position correction with lift locations

Adjust dynamic model to motion context (staircase, lift, ...)

Proposition

Ν

Associate recognized human motions with map regions (Point of Interest)

Graph Mis-Matching Mitigation

Collect data

Learn signal patterns

Link POIs to the map

- 4 women & 4 men
- Different motion speeds
- Six Buildings

- Feature Selection
- Different dataset for test and validation
- SVM, Random Forest, Neural Network

- 5 POI types
- Online signal segmentation & classification
- Online POI detection

Supervised Learning

PDR error mitigation

Particle Filter Design

Graph design

Correction of step length estimates

Correction of over/mis-step detection

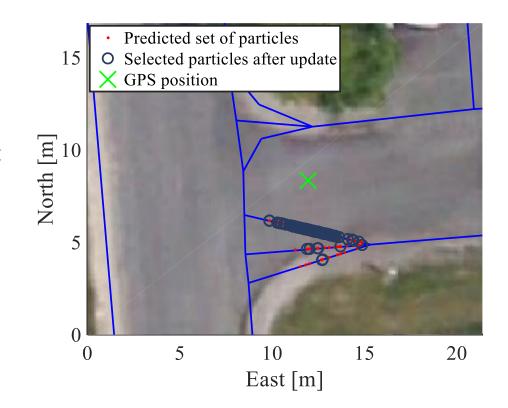
Correction of heading misalignment

Mechanization

PDR

Updates

Proximity distance between POI/GPS positions and graph Likelihood between PDR heading and graph

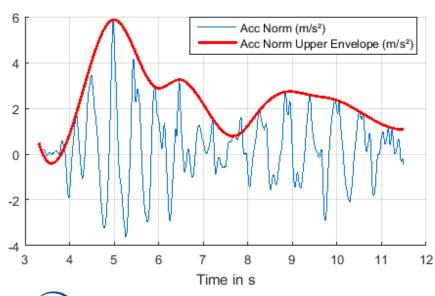


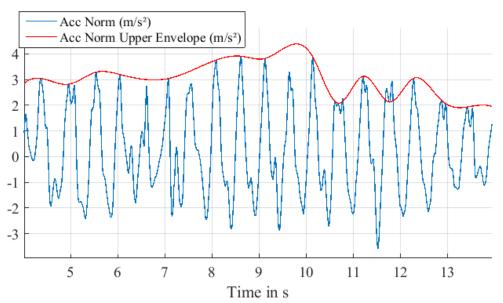
Pedestrian dead reckoning navigation with the help of A*-based routing graphs in large unconstrained spaces, F. T. Alaoui et al, Wirel. Commun. Mob. Comput., 2017

Signal patterns: indoor/outdoor transition (1/2)

IO transition event is marked by a parabolic form of the acc. norm upper envelope: deceleration - quasi-static phase - acc.

The duration of pattern depends on doors' type: shorter for sliding doors





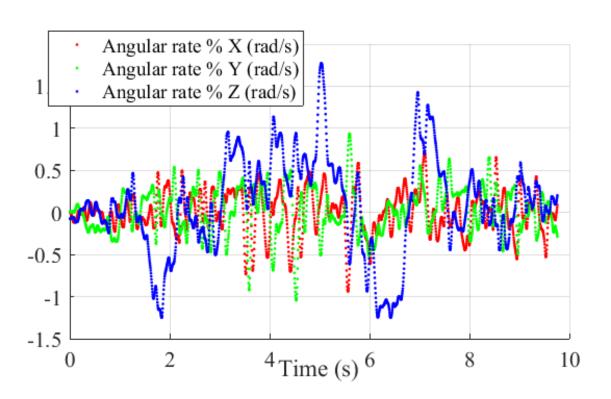
TEAM)
GEOLOC

Swinging door (6-9s)

Sliding door (10-12s)

Signal patterns: indoor/outdoor transition (2/2)

In a texting mode, the vertical component of the angular rate has a greater variance during the indoor/outdoor transition



Swinging doors (4-6 s)

Finding the Right POI Using Signal Pattern

Motion classes = Normal walking, Descending/Mounting stairs, Taking an elevator down/up, Corridor change, Entering/Exiting a building Considering Considering motion sequence motion class Normal walking + Descending stairs > Top of stairs Mounting stairs + Normal walking Corner Normal walking + Mounting stairs **→** Bottom of stairs Elevator Descending stairs + Normal walking **Building Gate** Search for POIs' POI types candidates Nav. Filter **GEOLOC** Selection of the nearest POI

Valérie Renaudin©- ITSNT18 - Toulouse, 15 November 2018

Supervised Learning Perf. Assessment

Features selected using Mutual Information

Best performance obtained with Random Forest, especially for the indoor/outdoor transition case

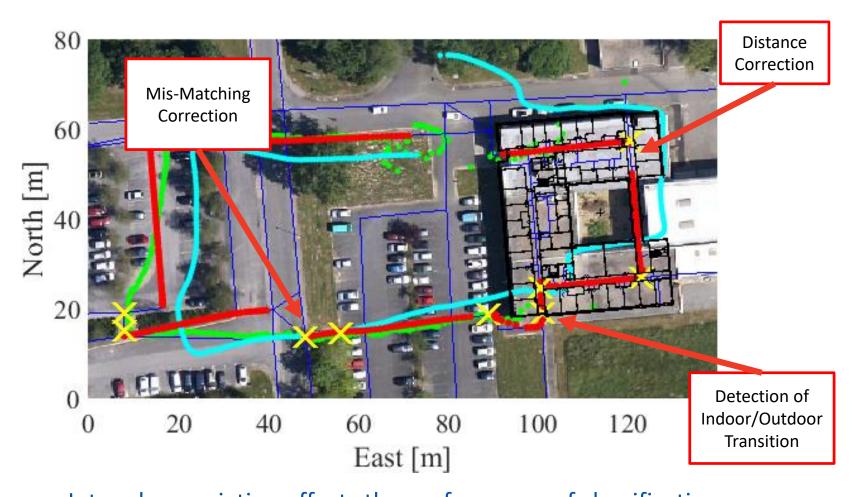
Corner	Entry / Exit	Down Stairs	Elevator Down / Up	Normal Walk.	Up Stairs
91.67	100	96.84	100	98.71	98.13
100	96.36	97.87	100	98.71	97.22

Precision: True positive / (True Positive + False Positive)

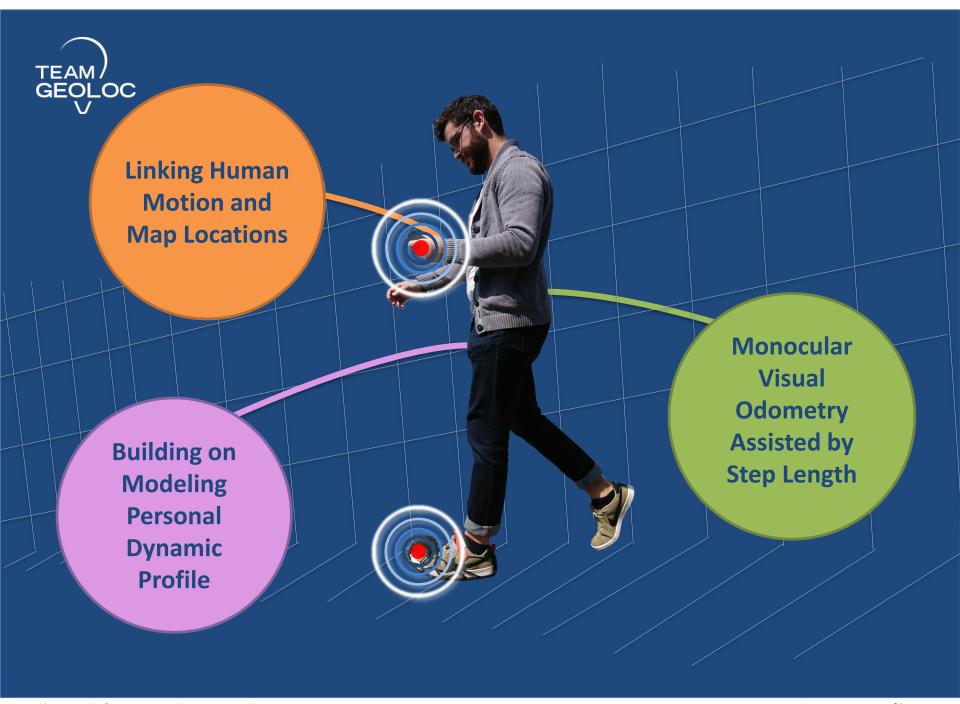
Sensitivity: True positive / (True Positive + False Negative)

Overall Detection/CLassification Accuracy: 98.41M

Experimental Assessment



Intra-class variation affects the performance of classification Intra-class variation is significantly related to cross-individual dispersion (Speed, Gait patterns, etc.)



Embedding Personal Dynamics Pattern in the Navigation Filters

Context

Improving personal mobility (transport) with mass market devices

Tracking Method

Kalman Filter, Complementary Filter, Machine Learning aiding

Problems

Varying physiological features Impact of environmental changes (ground slopes)

Solutions

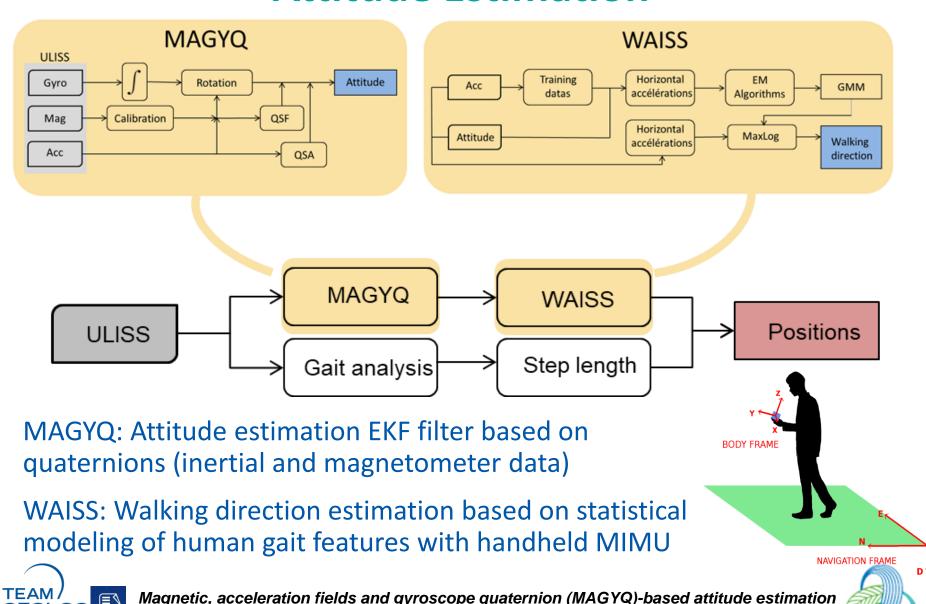
State-of-the-art

Calibration by fusing multiple signals
Calibration on known paths

Proposition

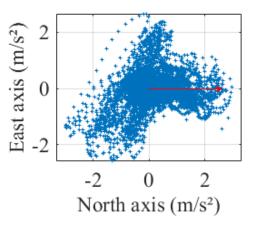
Modeling personal way of holding the sensor in hand to construct navigation filters

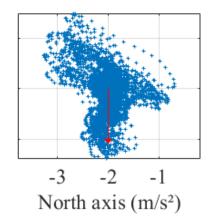
Attitude Estimation

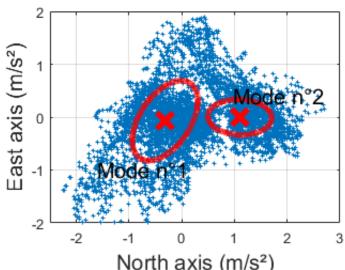


with smartphone sensors for indoor pedestrian navigation, V. Renaudin et al., Sensors, 2014

WAISS Method: Building Individual Models







Distribution of horizontal accelerations depends on the walking direction

Distribution modeling with a Gaussian Mixture

$$f_{acc}(\mathbf{x}) = \sum_{k=1}^{q} \tau_k \mathcal{N}(\mathbf{x}, \mathbf{m}_k, \mathbf{P}_k)$$

Straight-line data set with 0° walking direction

Expectation Maximization algorithm

$$\left(Z_{i} \middle| \mathbf{x}_{i}, \left(\tau_{k}^{c}, \mathbf{m}_{k}^{c}, \mathbf{P}_{k}^{c}\right)\right) = \frac{\tau_{k}^{c} \mathcal{N}\left(\mathbf{x}_{i}, \mathbf{m}_{k}^{c}, \mathbf{P}_{k}^{c}\right)}{\sum_{j=1}^{p} \tau_{j}^{c} \mathcal{N}\left(\mathbf{x}_{i}, \mathbf{m}_{j}^{c}, \mathbf{P}_{j}^{c}\right)}$$

$$L\left(\left(Z_{i}\right)_{1 \leq i \leq n}, \left(\mathbf{x}_{i}\right)_{1 \leq i \leq n}, \mathbf{\Psi}\right) = \sum_{i=1}^{n} \sum_{k=1}^{p} t_{ik} \log\left(\tau_{k} \mathcal{N}\left(\mathbf{x}_{i}, \mathbf{m}_{k}, \mathbf{P}_{k}\right)\right)$$

$$L\left(\left(Z_{i}\right)_{1\leq i\leq n},\left(\mathbf{x}_{i}\right)_{1\leq i\leq n},\mathbf{\Psi}\right) = \sum_{i=1}^{n}\sum_{k=1}^{p}t_{ik}\log\left(\tau_{k}\mathcal{N}\left(\mathbf{x}_{i},\mathbf{m}_{k},\mathbf{P}_{k}\right)\right)$$

Walking direction estimation based on statistical modeling of human gait features with handheld MIMU, C. Combettes et al., IEEE/ASME Trans. Mechatronics, vol. 22, 2017

WAISS Method: Walking Direction Estimation

Maximization of model likelihood with observations corresponding to one stride

$$L((\mathbf{x}_i)_{1 \le i \le n}, \theta) = \sum_{i=1}^{n} \log(f_{accM}(\mathbf{x}_i, \theta))$$

$$\theta_{w} = \arg\max_{\theta} \left(L\left(\left(\mathbf{x}_{i}\right)_{1 \le i \le n}, \theta\right) \right)$$

Experimental Assessment

Use of PERSY as angular reference

$$\alpha = \operatorname{atan}\left(\frac{Y_{P2} - Y_{p1}}{X_{P2} - X_{p1}}\right) \left| R = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

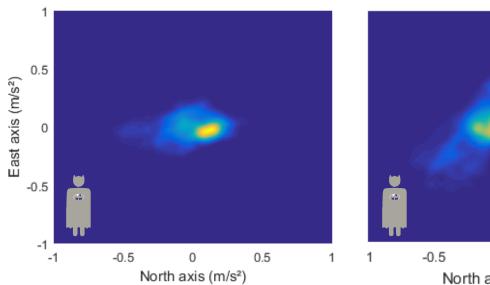
Test different types of carrying modes: texting / swinging Create individual models appropriate to the person's walking style

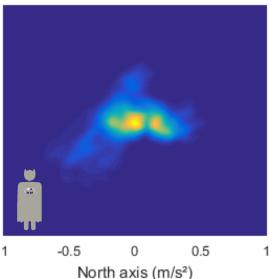
Choosing the right GMM

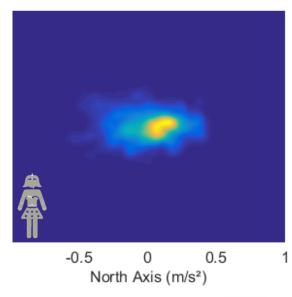
Different distributions for different persons

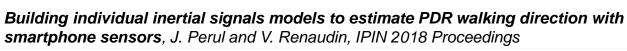
Need to adapt the number of GMM modes for each individual

Use of criterions

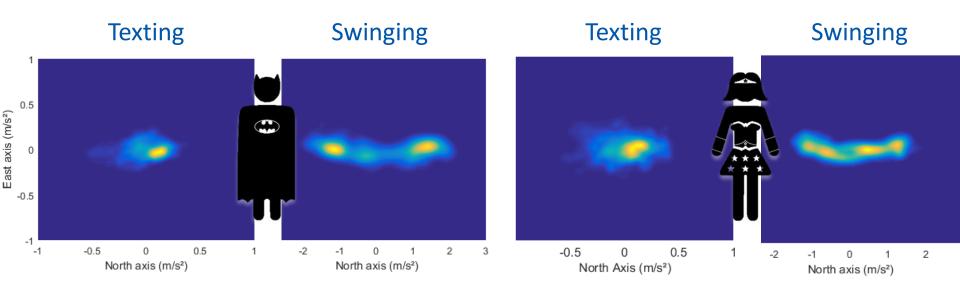








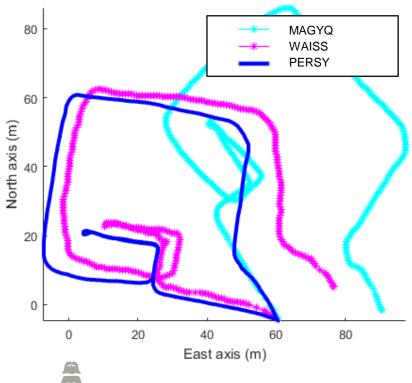
Impact of the Carrying Mode on Modeling



Different distributions for the same person

Need to adapt the number of modes for each individual and for each carrying mode

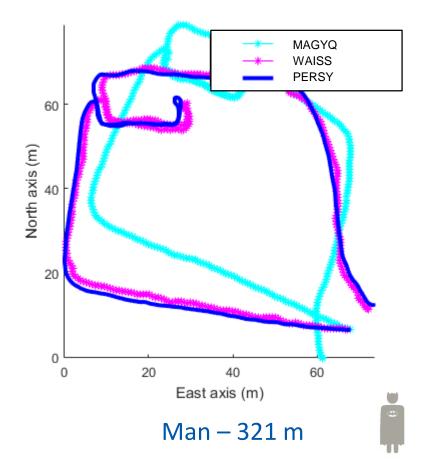
Assessment: Texting Mode with Misalignment



GEOLOC

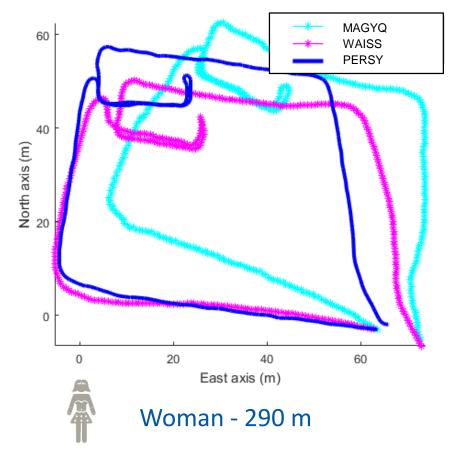
Woman - 291 m

Error	MAGYQ	WAISS
μ	19.7°	11.2°
σ	11.1°	12.4°

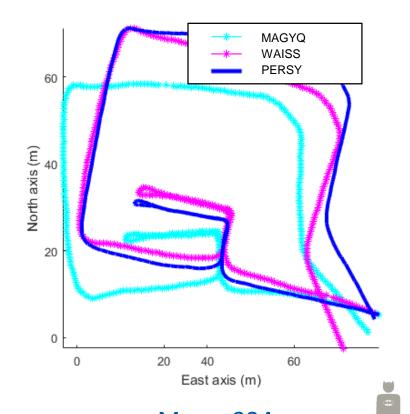


Error	MAGYQ	WAISS
μ	34.1°	13.7°
σ	14.6°	17.3°

Assessment: Swinging Arm



	Error	MAGYQ	WAISS
	μ	20.9°	8.6°
TEAM	σ	16.7°	9.9°
GEOLOC			



Man	_	324	m

Error	MAGYQ	WAISS
μ	16.1°	8.8°
σ	13.1°	10.3°
		C-XIII

CONCLUSIONS

Human diversity challenges personal navigation technology

What scientific approach can solve it? Modeling, artificial intelligence, ...?

Is the hypothesis of an average human being possible?

