COSPAS-SARSAT MEOSAR Presentation Yoan GREGOIRE – 14/11/2018

SUMMARY

Introduction to Cospas-Sarsat and current status

- General introduction and history
- User, space and ground segment status

MEOSAR Highlights

- MEOSAR benefits compared with LEOSAR
- Location processing and moving beacons issue
- Second generation beacon standard

System evolution: RLS and ELT(DT)

Russian COSPAS acronym can be translated in: "Space System for the Search of Vessels in Distress"

Cospas-Sarsat is an international space system to detect and localize users in distress.

Overall statistics:

- 12 000 SAR events and 42 000 rescued people since 1982
- An average of 6 people/day are rescued since 2010

Cospas-Sarsat: an international cooperation

- 4 Parties (founding members)
- 29 Ground segment providers
- 9 User States
- 2 Organisations

Canada

France

Cospas-Sarsat: missions of the system

- The International Cospas-Sarsat Programme provides accurate, timely, and reliable distress alert and location data to help search and rescue authorities assist persons in distress.
- To achieve this objective, Cospas-Sarsat Participants implement, maintain, coordinate and operate a satellite and ground system capable of detecting distress alert transmissions from radiobeacons that comply with Cospas-Sarsat specifications and performance standards, and of determining their position anywhere on the globe. The distress alert and location data is provided by Cospas-Sarsat Participants to the responsible SAR services.
- Cospas-Sarsat co-operates with the International Civil Aviation Organization (ICAO), the International Maritime Organization (IMO), the International Telecommunication Union (ITU) and other international organizations to ensure the compatibility of the Cospas-Sarsat distress alerting services with the needs, the standards and the applicable recommendations of the international community.

Cospas-Sarsat: history

- 1979 : a Memorandum of Understanding covering the system development was signed between the space agencies of four founder states : the former USSR, USA, France and Canada
- 1982 : first Soviet instrument mounted on Cosmos 1383 satellite and in March 1983 first French and Canadian instrument mounted on the American NOAA-8 satellite
- 1982 : first rescue in Canada after an aircraft crash
- 1987: launch of the first GEOSAR satellite
- 1988 : the 4 founder states sign an International Cospas-Sarsat Programme Agreement (ICSPA) which ensures service continuity and availability of the system to all States on a non-discriminatory basis
- * 2005 : Cospas-Sarsat Secretariat moves to Montréal, Canada (status as an International Organization)
- 2010 : 1 million of 406 MHz beacons are deployed
- 2012 : first GALILEO spacecraft launch with a SAR payload (GSAT0103 and GSAT0104)
- **2016** : broadcasting of the first MEOSAR operational alerts (Early Operational Capability phase)
- 2019: MEOSAR enters Initial Operational Capability ?

Overview

Distress beacons

3 types of beacons (currently)

- ELT for aeronautics
- EPIRB for maritime
- PLB for personal use

Yearly Production : around 200,000 beacons

- 70,000 only in 2005
- ✤ 44% EPIRBs, 15% ELTs, 41% PLBs

Geographical Distribution of manufacturers :

- ✤ Europe: 49 %
- USA et Canada: 30 %
- Asia et Australia: 21 %

Population:

End of 2017: 1.6 millions of registered beacons, 2.1 millions estimated population

Distress beacons

160 ms

Main beacon signal characteristics

> A pure carrier preamble (160ms), total burst length = 520 ms

PDF-1

(61 bits)

- A distress message (bi-phase L, 1.1 modulation index) at 400 bps composed of 144 bits
- One burst transmitted every 50s

Frame

sync

Uniquely identified (15 HexID)

How Cospas-Sarsat system works

Space segment

- LEO satellites: Low Earth Orbit (altitude = 800 km typically, polar orbits)
- GEO satellites: Geostationary Earth Orbit (altitude = 36000 km, equatorial orbits)

☆ MEO satellites : Medium Earth Orbit → GNSS satellites at 20000 km typically

Current status of space segment:

- **5** operational LEO satellites (NOAA-15, NOAA-18, NOAA-19, MetOp-A, MetOp-B)
 - Equipped with both SARR (SAR Repeater) and SARP (SAR Processor)
 - SARP measures FoA (Frequency of Arrival) upon successive transmitted signals in order to compute the beacon location
- ✤ 6 operational GEO satellites (GOES-13, GOES-15, MSG-1, MSG-2, MSG-3, INSAT-3D)...
 - ... and satellites in orbit spare or under testing (GOES-14, MSG-4, GOES-16, GOES-17, Electro-L 2, Louch-5A, Louch-5V, INSAT-3DR, GSAT-17)
 - Equipped with SARR repeater only, no independent location possibility

Current status of MEO space segment:

- * 16 Galileo SAR payloads commissioned at FOC level + 4 to be approved soon
 - Equipped with nominal L-band payload (downlink at 1544.1 MHz), SART (SAR Transmitter)

19 GPS/DASS SAR payloads

- Equipped with non-nominal S-band payloads (downlink at ≈2.3 GHz)
- Initially planned for testing purpose but now used operationally

I GLONASS SAR payload used for testing purpose

MEOSAR payload example

Galileo FOC (Copyright ESA)

Galileo FOC SAR antenna (Copyright ESA)

Ground segment

- LUT: Local User Terminal
 - ► LEOLUT: tracks, receives data from LEO satellites (successively), and computes Doppler locations → 56 operational LEOLUTs distributed worldwide
 - ➢ GEOLUT: tracks and receives data from GEO satellite → 26 operational GEOLUTs distributed worldwide
 - MEOLUT: tracks, receives data from MEO satellites (simultaneously), and computes independent location based on TOA/FOA measurements
 - 12 MEOLUT commissioned at EOC level
 - 15 additional MEOLUT planned to be available or commissioned in 2019
 - and more in the coming years...

MEOLUT Illustration

« Classical » MEOLUT architecture 1 dish antenna tracks 1 MEO satellite « Innovative » MEOLUT architecture 1 phase array antenna tracks all in view MEO satellites

(17) © cnes

MEOSAR benefits compared to LEOSAR:

- Instantaneous location capability
 - With a sufficient number of MEO satellites

and MEOLUTs, a beacon can be located on a single burst

LEOSAR coverage example

- Instantaneous global coverage
 - With a sufficient number of MEO satellites and MEOLUTs, beacons can be located everywhere on Earth, at every time

In brief: MEOSAR greatly enhances the time to locate a distress (few minutes instead of up to 2 hours with LEOSAR)

Location processing

- MEOSAR localization technique uses:
 - Frequency of Arrival (FoA), same as LEOSAR

t_t: time of beacon burst transmission, f_t: frequency of beacon burst transmission, $\overrightarrow{X_s^i} = [x_s^i, y_s^i, z_s^i]$: the position vector of the ith satellite, $\overrightarrow{V_s^i} = [vx_s^i, vy_s^i, vz_s^i]$: the velocity vector of the ith satellite, $\overrightarrow{X_b} = [x_b, y_b, z_b]$: the position vector of the beacon, $\overrightarrow{V_b} = [vx_b, vy_b, vz_b]$: the velocity vector of the beacon.

$$FOA_{i} = f_{t} - \frac{f_{t}}{c} \cdot \left(\overrightarrow{V_{s}^{i}} - \overrightarrow{V_{b}}\right) \cdot \frac{\left(\overrightarrow{X_{s}^{i}} - \overrightarrow{X_{b}}\right)}{\left\|\overrightarrow{X_{s}^{i}} - \overrightarrow{X_{b}}\right\|}$$
(typical measurement noise $\sigma_{\text{FOA}} = 0.2 \text{ Hz}$)

> Time of Arrival (ToA) \rightarrow estimation of ToA is performed at the MEOLUT

$$TOA_i = t_t + \frac{\left\| \overrightarrow{X_s^i} - \overrightarrow{X_b} \right\|}{c}$$
 (typical measurement noise $\sigma_{TOA} = 20 \ \mu s$)

Location processing

- Generally used assumptions
 - Use of TDOA/FDOA instead of TOA/FOA as the time/frequency of transmission are no known (this process also simplifies multi-burst processing)
 - > Beacon is on the ground \rightarrow 2D location only (latitude, longitude)
 - > Beacon velocity is small compared to satellite velocity $\rightarrow Vb_x$, Vb_y , $Vb_z = 0$? not so easy...
- While MEOSAR nominal performance was extensively studied with static beacons, it was quickly realized that moving beacons were located with a significantly degraded performance (even slow moving beacon, such as a beacon bobbing in waves...).

Location processing

- Moving beacon issue: theory
 - > Location is generally computed with a classic iterative approach:

 $X_b^{n+1} = X_b^n + (H^T. W. H)^{-1}. H^T. W. \Delta Y$

> With:

 X_b^n : the estimated beacon location produced from iteration n,

H: the Jacobian matrix, containing partial derivatives,

W: a weighting matrix (weighting coefficients for TOA and FOA measurements),

 ΔY : the difference vector between the TOA/FOA measurements and the TOA/FOA values that would have resulted from the beacon location as evaluated at the last iteration (n).

Location processing

Moving beacon issue: theory

λT

If assuming the beacon to be static in the location process, the beacon motion creates a bias that depends on beacon velocity, satellite geometry and relative weights on ToA/FoA measurements:

$$\Rightarrow \Delta x = \frac{f_t}{c} \cdot \sum_{j=1}^{N} p_{1,j} \cdot (\overrightarrow{V_b}, \overrightarrow{U_j})$$
$$\Rightarrow \Delta y = \frac{f_t}{c} \cdot \sum_{j=1}^{N} p_{2,j} \cdot (\overrightarrow{V_b}, \overrightarrow{U_j})$$
$$\Rightarrow \Delta z = \frac{f_t}{c} \cdot \sum_{j=1}^{N} p_{3,j} \cdot (\overrightarrow{V_b}, \overrightarrow{U_j})$$

P: a projection matrix, $P = (H^T, W, H)^{-1} \cdot H^T \cdot W$, $p_{i,j}$: the value in matrix P in the ith row and jth column, $\overrightarrow{V_b} = [vx_b, vy_b, vz_b]$: the velocity vector of the beacon, $\overrightarrow{U_j}$: the unit vector pointing from the beacon towards the jth satellite,

N: the number of satellites.

Location processing

- Moving beacon issue: theoretical example
 - > Typical location accuracy for static beacons: 5km @ 90% (single burst, using ToA and FoA)
 - Effect of a motion of 1 m/s

Minimum bias error resulting from the beacon motion = 6.6 km (for beacon headings towards 30 and 210 deg, at 1m/s)

Maximum bias error resulting from the beacon motion = 15.5 km (for beacons headings towards 120 and 300 deg, at 1m/s)

Location processing

- Moving beacon issue: solutions
 - It is important to detect if a beacon is moving or not (from velocity estimation from FoA measurement or FoA residuals)
 - > If it is detected that the beacon moves with a sufficient speed, 2 possible different strategies:
 - Decrease the weight on FoA measurements (compromise bias vs noise to get the best location accuracy)
 - Use a joint position+speed estimation
- Location processing has to be adaptive to the beacon speed to get the best location accuracy.

Location processing

Moving beacon issue: improvement due to adaptive algorithm

Results obtained during a test conducted by Norway in March 2016, involving a boat with moving and static phases.

Location processing

- Moving beacon issue: way forward
 - Additional work is needed to improve location performance of moving beacons using multibursts
 - Trajectory estimation with simple trajectory model ?
 - Kalman filter ?

Second Generation Beacon standard

- In parallel to MEOSAR deployment, a second generation of beacon is being developed
- Objective: answer to more stringent operational requirements
 - Better detection performance: 99.9% after 30s of activation
 - Better localization performance:
 - 5km, 90% of the time for first burst
 - 5km, 95% of the time after 30s of activation
 - 1km, 95% of the time after 5min of activation
 - 100m, 95% of the time after 30min of activation
 - Increased content of transmitted message

Second Generation Beacon standard

- Second Generation Beacons signal characteristics:
 - Waveform: OQPSK with spread spectrum at 38400 chips/s
 - Message: 202 useful bits, 300 bits/s, 1s duration
 - Error correction code: BCH(250,202)
 - Introduction of "Rotating field": transmission of different information on each burst
 - Cancellation capability

Second Generation Beacon standard

Performance improvement

	FGB	SGB
Detection threshold	34.7 dBHz	31.7 dBHz
σ_{FOA}	0.2 Hz	0.15 Hz
σ_{TOA}	20 µs	1 µs
Location performance (static beacon, single burst)	~ 5 km	~ 1 km
Location performance (moving beacon, single burst)	~ 20 km	~ 1km

Return Link Service

- A Galileo service which allows to send a acknowledgement to user in distress
- An RLM is sent through the Galileo E1 signal
- The RLS service should be declared operational in 2019 by EC
- RLSP (Return Link Service Provider) is operated by CNES

Return Link Service

- Currently, only the automatic acknowledgement has been agreed but additional uses of RLS are being discussed:
 - Remote activation : a beacon that listen to Galileo signals could be activated from the ground. Useful to track an aircraft that disappears from air traffic control (ex: MH370)
 - Remote command: change beacon transmission characteristics (ex: reduce repetition rate to save battery)
 - Two-way messaging: give more details to SAR forces about the distress situation (ex: number of people involved, type of distress)

Beacons activated in flight: ELT(DT)

- Following accidents of AF447 and MH370, ICAO has imposed a requirement for new aircrafts being operated after 1st January 2021, to be equipped with a system able to locate the aircraft accident site. The system has to transmit signals from which a location can be retrieved at least once every minute.
- Cospas-Sarsat answer was the development of the ELT(DT) standard:
 - A beacon activated in flight upon detection of distress situation (total loss of propulsion, unusual attitude, unusual speed, unusual altitude, ground proximity)
 - > A GNSS encoded location as primary mean of location
 - Independent location with speed estimation (coarse location accuracy with FGB, enhanced location accuracy with SGB).

Thank you for your attention ! Question ?

