

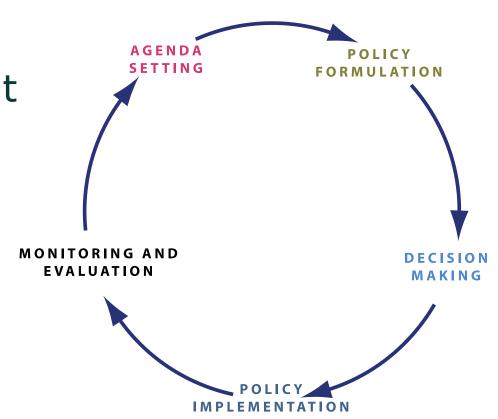
International Technical Symposium on Navigation and Timing

ENAC, Toulouse, France 14th November 2018

New Concepts and Ideas to Improve the Reliability of PNT Services

Matteo Paonni

European Commission, Joint Research Centre Directorate for Space, Security and Migration


Outline

- Introduction and Context
- GNSS Performance in the Context of Signal Design
- Galileo I/NAV Optimization
- New Concepts for GNSS Evolution
- A Look at Signal Processing
- Conclusions

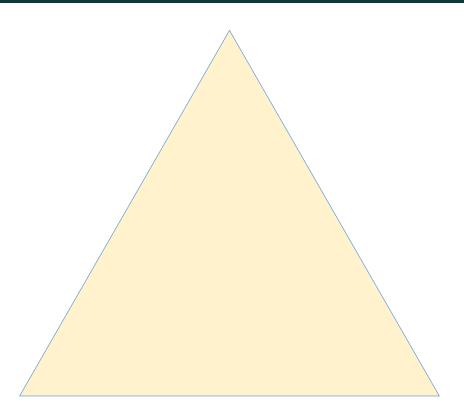
JRC Mission

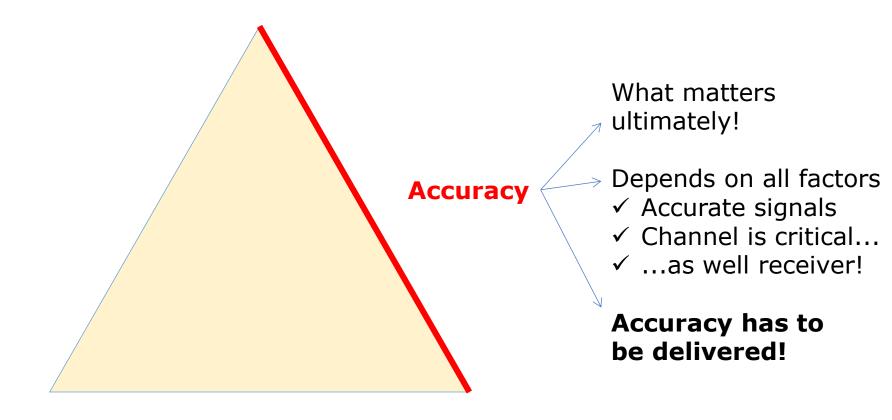
- The Joint Research Centre is the European Commission's in-house science and knowledge service
- JRC mission is to support EU policies with independent evidence throughout the whole policy cycle
- Independent, policy neutral, transversal service
- Since 10 years supporting EGNSS
 Programme on a wide range of activities

Context

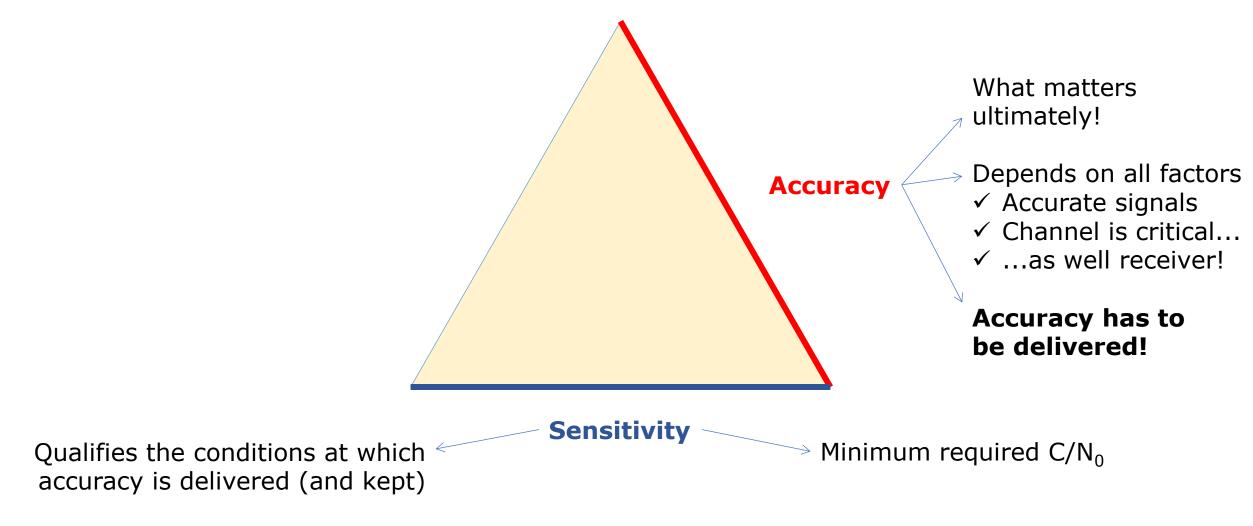
- JRC provides technical support to EGNSS (EC GROW) on management of R&D projects with subject on GNSS under H2020
 - ✓ Main focus on mission and service definition
 - ✓ Some elements from Future Navigation and Timing Evolved Signals (FUNTIMES) project part of this presentation
- JRC also performs anticipatory R&D on various topics in order to be able to provide high value independent scientific and technical support
- Unless explicitly specified, the content is not related to any decision of the European Commission or of the Galileo Programme

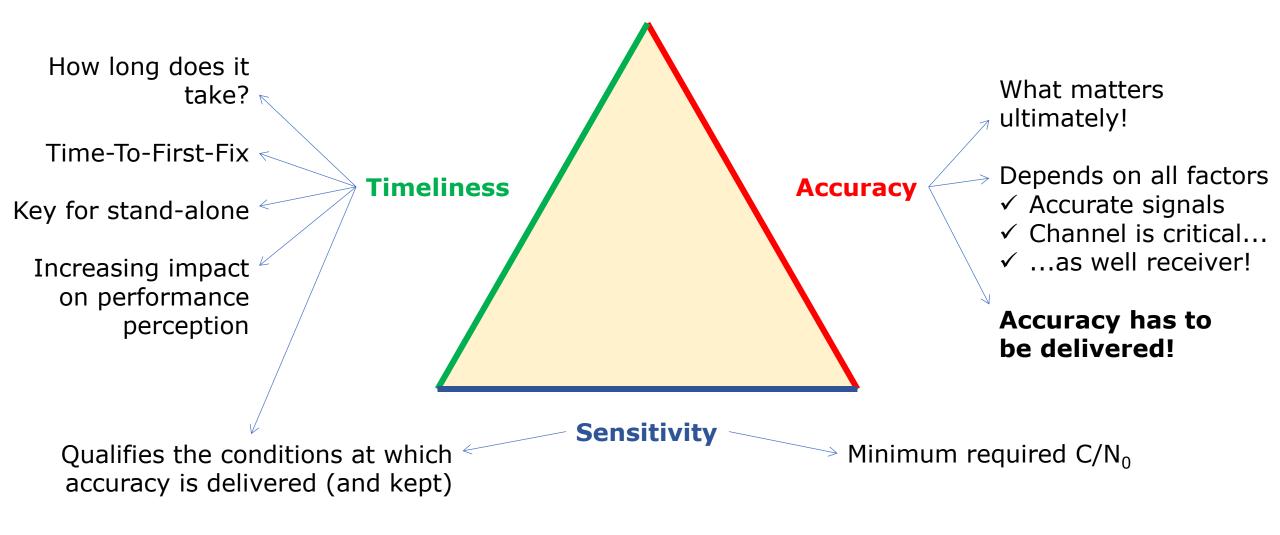
Outline

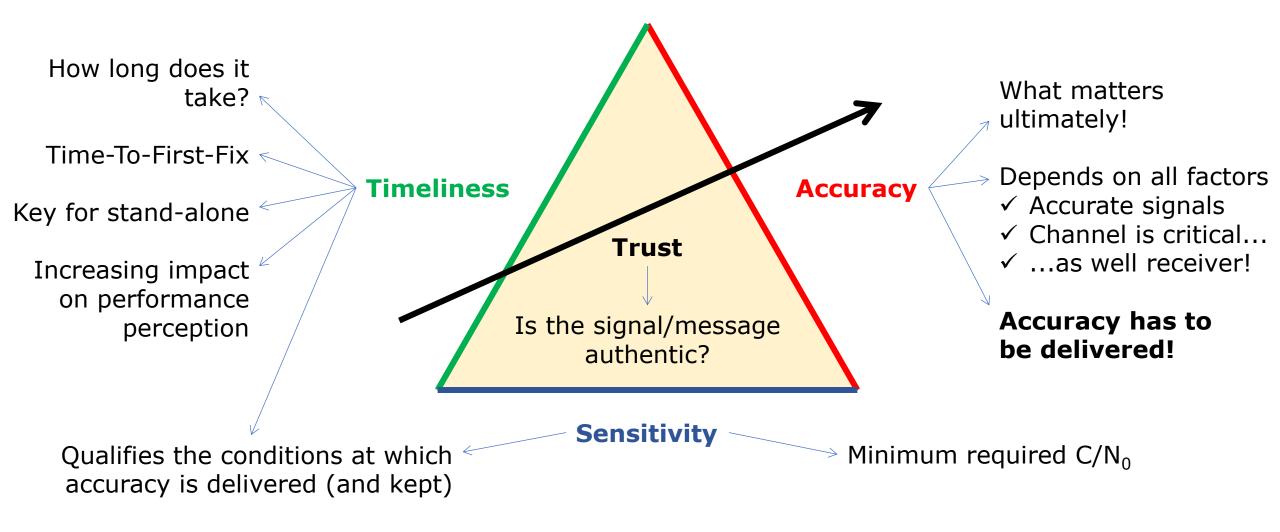

- Introduction and Context
- GNSS Performance in the Context of Signal Design
- Galileo I/NAV Optimization
- New Concepts for GNSS Evolution
- A Look at Signal Processing
- Conclusions


PTN solution vs. GNSS performance

- GNSS provides key contribution to user PNT solution
- Depending on specific application user performance can depend more or less on GNSS
- GNSS performance mainly depends on three factors:
 - √System design (constellation, signals, ...)
 - ✓ Environment (e.g. propagation channel)
 - **√**Receiver implementation
- These three factors strongly relates with each other and impact all dimensions of GNSS performance







Signal Design is a Trade-Off Exercise

- Ideal solution that delivers maximum accuracy with authentic signals at the maximum sensitivity and minimum TTFF does not exist!
- A further key element to be considered for any design is the corresponding processing complexity at receiver level
- Signal design is a trade-off exercise targeting a specific user demand and considering those key performance indicators
- Typically different indicators pull the solution in opposite direction:
 - ✓ Accuracy ← → Sensitivity
 - ✓ TTFF ←→ Sensitivity
 - ✓ Accuracy ←→ TTFF

 $\leftarrow \rightarrow$ Processing Complexity

The case of Galileo E1-OS

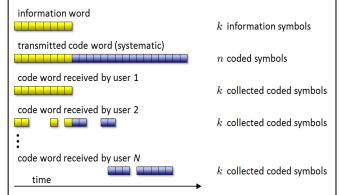
- In the last years work performed (and still ongoing) on various direction to improve
 Galileo E1-OS performance
 - ✓ Optimization of I/NAV message following SoL reprofiling
 - ✓ Evolution of Galileo signals for G2G, including E1-OS
- The main objective is to serve new user needs and emerging applications
 - ✓ **Low power/low complexity** applications (e.g. IoT, snapshot), progressive introduction of **authentication** functions, higher accuracy and robustness
- One of the design targets at performance level is represented by GPS III Open Service
 - ✓ GPS III OS means L1 C/A + L1C
 - √ For L1C we are actually assessing with respect to the expected performance
 - ✓ Current Galileo E1 OS performance are for many aspects between that of C/A and L1C
- Optimization and evolution are all constrained to backward compatibility
 - √ Legacy signals and users

Outline

- Introduction and Context
- GNSS Performance in the Context of Signal Design
- Galileo I/NAV Optimization
- New Concepts for GNSS Evolution
- A Look at Signal Processing
- Conclusions

Reduced CED for Fast First Fix

- The idea behind is that mass market users might tolerate an initial degraded accuracy to have a faster position fix
- Every GNSS user is interested in high accuracy PVT solutions, however:
 - ✓ Many classes of users require very short first fix time (few seconds)
 - ✓ This can be more important than waiting for high accuracy solution
- Confirmed by 3GPP requirement in support of AGNSS: position fix within 20 s with a 2D position error (95%) of 100 m
- Definition of a compact set of Clock and Ephemeris Data
 - √ To be received in a considerably shorter time than full CED
 - √ Full accuracy available as soon as full CED are retrieved.
- Complex optimization work resulted in a design outperforming the initial target



RS Codes for Improving the I/NAV Message

- A technical solution for reducing the Time to First-Fix for non connected users was evaluated:
 - ✓ Use of Reed-Solomon (RS) codes at the Link Layer (outer encoding)
 - MDS "Joker" property
 - Erasure correction capability
 - Error correction capability
 - Systematic implementation to ensure backward compatibility
 - ✓ Example application to the Galileo I/NAV message was assessed
 - Time to CED performance in AWGN and 2-state LMS channel
 - Assessment of RS algorithm complexity

Anticipated Performance (assessment performed within FUNTIMES project):

- Significant improvement of Time-to-CED (50% to 60%) especially in urban environment
- Full backward compatibility with legacy receivers
- Low processing complexity

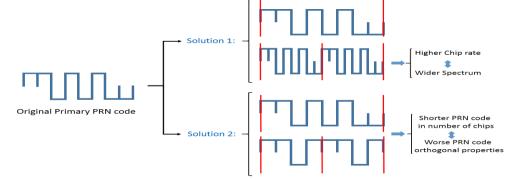
max. TTFFD

T_0 in sec.	I/NAV on E1-B RS4
1	CED 2/4
3	CED 4/4
5	RS CED 1
7	RS CED 2
9	
11	
13	
15	
17	RS CED 3
19	RS CED 4
21	CED 1/4
23	CED 3/4
25	
27	
29	
min. TTFFD av. TTFFD 95% TTFFD	8.000 s 13.933 s 17.625 s

18.000 s

Outline

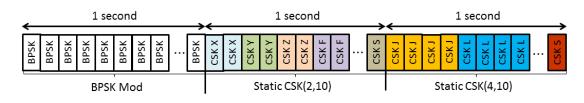
- Introduction and Context
- GNSS Performance in the Context of Signal Design
- Galileo I/NAV Optimization
- New Concepts for GNSS Evolution
- A Look at Signal Processing
- Conclusions


Acquisition Aiding Signal

- After the introduction of solutions at message level, still some performance gaps
 - ✓ Acquisition complexity (and therefore time)
 - √ Sensitivity
- Ideal acquisition aiding signal should be characterised by:
 - 1. low chip rate and short PRN code
 - √ smaller acquisition search space and therefore faster acquisition process
 - ✓ Narrower bandwidth → reduced processing power
 - 2. To be either a pilot or a very low-rate data channel
 - ✓ the higher the symbol rate, the shorter the maximum coherent integration time, and
 therefore the lower the maximum possible acquisition sensitivity
 - 3. Some secondary code to perform almost immediate **hand-over** to other signal components
- Quasi-pilot might be interesting option
 - ✓ Pilot signal modulated with a Time-to-Interval which receiver can wipe-off once synchronized

Code Shift Keying (CSK) for GNSS Signals - Background

- Several problems are addressed with the implementation of a CSK modulation on the GNSS signal data component:
 - 1) Amount of data which can be currently broadcasted by a GNSS signal is **limited**. This limitation is imposed by the DS-SS structure of a GNSS signal:
 - ✓ increasing the chip rate which directly implies an increase of the signal bandwidth
 - ✓ decreasing the PRN code length (number of chips) which implies a degradation of the PRN code properties

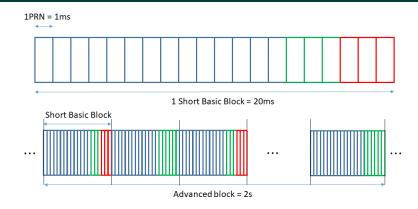

- 2) Data component of current GNSS signals is designed as a communication signal without taking into account the GNSS specificities: data has different degrees of relevance and variable data rates could be of high interest.
- 3) In urban environments, the **data demodulation** becomes **difficult** to due to the **harsh reception conditions** affecting the **signal carrier tracking** up to a PLL loss-of-lock.

Code Shift Keying (CSK) for GNSS Signals - Expected Benefits

1) Bit rate increase of a DS-SS signal without:

- ✓ increasing the PRN code number of chips, and without increasing the signal chip rate (bandwidth constraint)
- ✓ Increased rate can be used to increase the number of services or to improve available services.
- 2) Flexibility of the signal bit rate: allows to dynamically change the number of symbols of the modulation
 - ✓ More robustness to fundamental data and less robustness to less relevant
 - ✓ Optional data since the bit rate is directly related to the demodulation sensitivity

European Commission

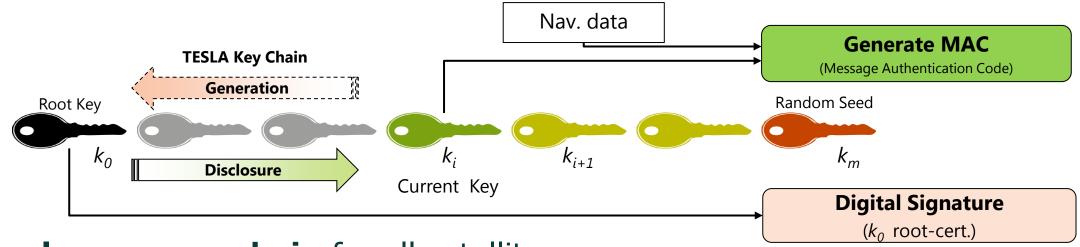

- 3) Possibility of implementing a non-coherent demodulation process: non-coherent demodulation does not require the estimation of the incoming signal carrier phase
 - ✓ Increase the amount of data recovered in an urban environment and/or high dynamic users

Possible issues and drawbacks

- Impossibility to use a CSK modulated signal for <u>ranging</u>: the receiver does not know which cyclic shift of the fundamental PRN code is expected at each correlation epoch.
- Complexity of the <u>receiver</u> is significantly <u>increased</u> → FT/IFT demodulator

Multi-Purpose TDM Signal Component

- 1st Objective: to design a signal component targeting several functionalities, e.g.:
 - 1) Fast/Low complexity Acquisition
 - 2) Fast TTFFD
 - 3) Authentication

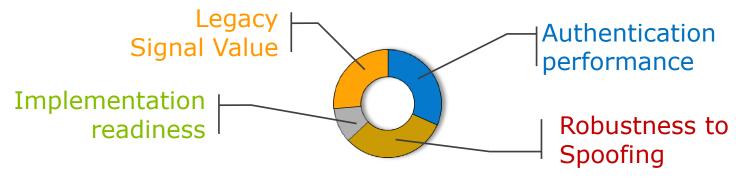


- 2nd Objective: to design a signal component allowing continuous or partial non-coherent processing
- Time Division Multiplexing chosen as the main signal structure for various reasons:
 - ✓ Reduced complexity implementation at satellite payload
 - √ higher efficiency of multiplexing
- TDM considered at PRN code level: each PRN code associated to a different functionality
- This option present a high flexibility if PRN codes are short

Proposed NMA solution for Galileo E1 OS

- Based on TESLA (Timed Efficient Stream Loss-tolerant Authentication) scheme
- Chain of keys generated through a one-way function (e.g., SHA-256)
 - ✓ Message Authentication Code (MAC) to authenticate the Nav. Message
 - ✓ Current key (used to compute MAC) released with a delay (e.g., 10 s later).

- ✓ Single one-way chain for all satellites
- ✓ Root key (k₀) signed with a public-private signature scheme



Ranging Authentication in a SNAP (1/4)

SNAP is an Authentication concept designed for the Galileo Open Service

Design performed within the FUNTIMES project following specific trade-off

criteria

- Authentication Performance
 used to assess the authentication technique,
 mainly in terms of <u>Time Between</u>
 <u>Authentications</u> (TBA) and <u>Time To Alarm</u> (TTA)
- Spoofing Robustness
 measures the level of resilience to <u>specific</u>
 <u>spoofing attacks</u> (e.g., those involving spoofers
 with a single high-gain directional antenna)
- Implementation Readiness
 assesses the level of complexity required both at the
 system and receiver levels and the backward
 compatibility
- Legacy Signal Associated Value
 assesses the level of <u>reuse</u> and <u>valorization</u>
 of the current signal and messages

Ranging Authentication in a SNAP (2/4)

- Authentication schemes can be implemented on different Signal Component:
 - ✓ By modifying an existing signal component (e.g., E1-B, E1-C, E5a, E5b)
 - Possible performance degradations for non-participant users $(\Delta C/N_0)$
 - ✓ Introducing a **new component**
 - More flexibility in the design of the authentication scheme, thus reducing some constraints related to the backward compatibility
- The choices for the Relative Power Level of the authentication component are:
 - ✓ Same power as other open components
 - ✓ Lower power level
 - ✓ Variable power (i.e. amplitude modulation)
 - Low power level options tend to increase the <u>robustness</u> against some spoofing attacks
 - However the power level can affect the achievable <u>authentication performance</u> for participant receivers (e.g., TBA, TTA, reduced effective C/N_0)
- Any solution has to identify a trade-off among these (and other) aspects

Ranging Authentication in a SNAP (3/4)

- High-level idea
 - ✓ <u>Possible re-use of E1-B OS NMA data</u> → Additional protection to OS NMA ("<u>time binding</u>" concept)
 - ✓ Initially inspired from SSSC, Supersonic Codes, and Signature-Amortization concepts

• "Fast" bursts for all satellite signals generated from same code chips, by using a future NMA key (k_j+1) :

crypto key_m
$$\propto$$
 Hash { k_i +1 | GST_m}

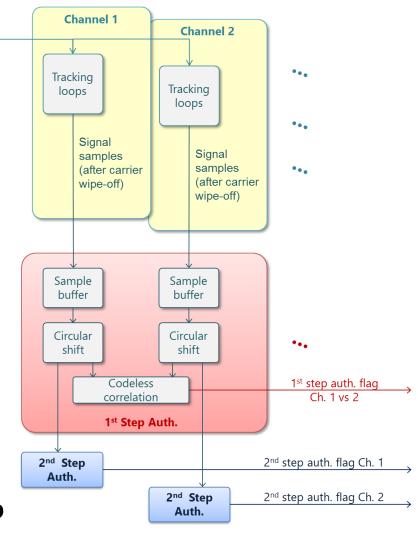
Different CSK shifts applied to each burst, depending on **Sat. ID**, **previous key** (k_j) , and **next NMA bits**:

$$shift_m \propto Hash \{ Sat. ID \mid k_i \mid next `Reserved 1' field \}$$

Ranging Authentication in a SNAP (4/4)

Digital signal

samples


- ✓ crypto key_m \propto Hash { k_i +1 | GST_m}
- ✓ shift_m \propto Hash { Sat. ID | k_i | next `Reserved 1' field }

Being the <u>crypto key independent from the Sat. ID</u>, the bursts received from different satellites at a given time instant consist of the same code chips sequence, just shifted in a different way for every satellite.

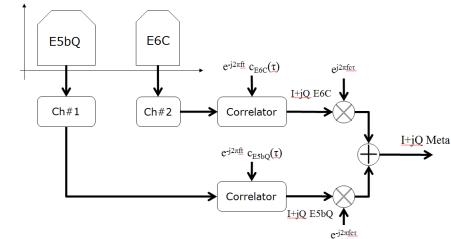
The receiver would be able to:

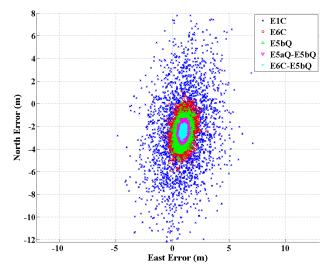
- first <u>cross-authenticate couples of satellite signals</u> by applying a codeless CSK correlation between bursts from two satellites, properly shifted and aligned → **first step**
- 2. <u>a-posteriori verify both 'slow' and 'fast' bursts</u> with a NON-codeless correlation, as soon as k_i+1 is disclosed \rightarrow **second step**

Outline

- Introduction and Context
- GNSS Performance in the Context of Signal Design
- Galileo I/NAV Optimization
- New Concepts for GNSS Evolution
- A Look at Signal Processing
- Conclusions

Meta-signal processing for better accuracy (1/3)


- GNSS broadcast different signals on a range of different centre frequencies
- Many precision GNSS receivers process multiple signals from each available satellite
- Signals are often combined within the receiver at measurement or at discriminator level
- However, addition of a second signal significantly improves the single-point ranging accuracy over that of the better of the two signals
- Idea of Meta-signal is to process different signals broadcast on different carrier frequencies as a single signal:
 - ✓ Any pair of synchronized signals could be chosen
 - ✓ Some are more appropriate than other
 - ✓ The properties of the resulting correlation function depend on both the frequency separation and relative chipping rates



Meta-signal processing for better accuracy (2/3)

Initial demonstration with real signals in static conditions Galileo E5b-E6BC meta-signal

- √ Vector receiver architecture
- √ Tracking and PVT (using the four IOV satellites)
- Post-correlation combining of upper and lower sidebands
 - ✓ Acquisition and then convergence of each individual component
 - ✓ Composite signal obtained by rotating and adding correlator values of composite parts
 - √ Vector-assistance constrained by fixed PVT
 - ✓ Performance assessment in terms of correlation function and position error

	3D Position Error (3s) [m]
E1-C	20.690
E6-C	6.004
E5b-Q	4.128
E5ab-Q	2.250
MetaSignal E5b-Q/E6-C	1.850

Meta-signal processing for better accuracy (3/3)

- Inter-channel biases due to front-end and possibly different ionospheric delay
 - ✓ More work to be done for effective inter-channel calibration
- Approach needs to be demonstrated in **dynamic conditions** (e.g. presence of multipath)
 - ✓ Unbiased tracking due to complex correlation function might be an issue
 - ✓ To build upon recent advancements in the context of high-order BOC processing.
- This kind of approached to become more relevant with
 - ✓ More signals available at various carrier frequencies
 - ✓ Advancement in receiver capabilities
- Interesting use case:
 - ✓ **Beidou B1I-B1C** signals transmitted from Beidou-3 satellites

Outline

- Introduction and Context
- GNSS Performance in the Context of Signal Design
- Galileo I/NAV Optimization
- New Concepts for GNSS Evolution
- A Look at Signal Processing
- Conclusions

Wrap-up

- Review of innovative ideas introduced in the last few years, especially in the context of Galileo E1-OS optimization and evolution
- Relevant work performed under the H2020 FUNTIMES project
- Some solutions available within the next few years
- Many opportunities for innovation
- User segment to close the gaps that will always be there and to go beyond signal design expectation (as usual!)

Thanks

Any questions?

matteo.paonni@ec.europa.eu

