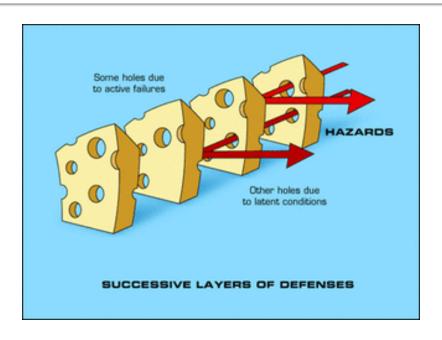
Logan Scott, President, LS Consulting logan@gpsexpert.net www.gpsexpert.net

Towards a Comprehensive Approach for Obtaining Resilient PNT

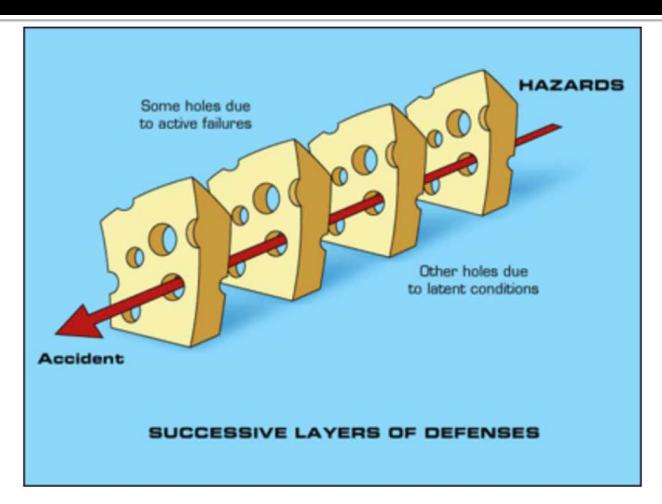
Logan Scott has over 35 years of military and civil GPS systems engineering experience. He is a consultant specializing in radio frequency signal processing and waveform design. At Texas Instruments, he pioneered approaches for building high-performance, jamming-resistant digital receivers.


At Omnipoint (now T-Mobile), he developed spectrum sharing techniques that led to a Pioneer's preference award from the FCC. He is a cofounder of Lonestar Aerospace, an advanced decision analytics company located in Texas.

Logan has been an active advocate for improved civil GPS location assurance through test based GPS receiver certification, crowdsourced jammer detection and location, and, by adding robust signal authentication features to civil GPS signals.

Logan is a Fellow of the Institute of Navigation and a Senior Member of IEEE. In 2018 he received the GPS World Signals award. He holds 41 US patents.

Defending Against Jamming and Spoofing Requires a Multi-Layered Approach



- Legal
 - Jammers are Like Guns
- Education
 - Jammers Are Dangerous
- Enforcement
 - Must Be Able to Detect & Find Jammers
- Resilience
 - Multisource Navigation Guided by Situational Awareness

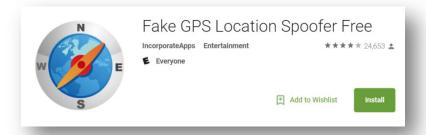
But If the Layers Have Correlated Vulnerabilities

Reason, James (1990-04-12). "The Contribution of Latent Human Failures to the Breakdown of Complex Systems". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 327 (1241):

There are Diverse Techniques for Detecting RF Spoofing

Table from: Ali Jahromi PhD Thesis, GNSS Signal Authenticity Verification in the Presence of Structural Interference, UCGE Reports Number 20385, 2013

Anti-Spoofing Method	Spoofing Feature	Complexity	Effectiveness	Receiver Required Capability	Spoofing Scenario Generality
RSS Monitoring	Higher C/N0	Low	Medium	C/N0 Monitoring	Medium
RSS Variation vs. Receiver	Higher Power Variations due to			Antenna Movement /	
Movement	proximity	Low	Low	C/N0 Monitoring	Low
				Specially Designed	
Antenna Pattern Diversity	Low elevation angle	Medium	Medium	antennas	Medium
L1/L2 Power Comparison	No L2 Signal for Spooter	Ledim		2 Reception Capability	Medium
	Spoofing signals coming from			Multiple Receiver	
Direction of Arrival Comparison		High	High	Antennas	High
Pairwise Correlation in	Spoofing signals Come from the			Measuring Correlation	
Synthetic Array	Same Direction	Low	High	Coefficient	High
	Meditable Belay of Spoofing		M 777		
TOA Discrimination	Signa	Ved um	Medium	Analysis Analysis	Low
	peviated shape of Correlation	T W			
Signal Quality Monitorin	Peak	Medium	Medium	Multiple Correlators	Low
Consistency Check with other	Inconsistency of Spoofing		X	Different Navigation	
Solutions	Solution	E TUBE	High	Sensors	High
Cryptographic Authentication	Not Auther lieuted	High	High	Authentication	High
Code and Phase rate	Mismatch between Spoofed				
Consistency Check	Code and Phase rate	Low	Low		Low
	Spoofing/Authentic Clock				
GPS Clock Consistency	Inconsistency	Low	Medium		Medium
	Same Solution for Different				
Multiple Receiver Spoofing	receivers/absence of valid			Data link Between	
Detection	spoofed P(Y)	Medium	High	Receivers	High


Two Ways to Cheat at Pokemon Go

Hint: Method 1 Costs Less and is More Reliable

Method 1

Method 2

Classic Military Antijamming Strategies Will Not Be Effective in a Civil Environment

Absent These Technologies, A Knowledgeable Jammer Will Win (Against A GNSS Signal)

SIZE

COST

CASUALTIES

The Portland Spoofing Incident

An Illustration of Misplaced Trust, Cascading Security Failures, and the Need for Exposure Testing

Spoofing Incident Report

An Illustration of Cascading Security Failure

An accidental GNSS spoofing event at ION GNSS+2017 leads to problems with cell phones

Logan Scott 10/2/2017

This was
Essentially an
Accidental
Penetration Test

Narrative available at http://www.insidegnss.com/node/5661

Portland Spoofing Event

- Type of Event: Spoofing by a GNSS signal generator affecting numerous smartphones
- Date of Occurrence: 28 September 2017
- Location: Portland Convention Center, Exhibition Hall, ION GNSS+2017 Conference

Symptoms People with S2 Phones Noticed On the Exhibition Floor

Position Error Was Mostly Unnoticed

- Inability to fetch e-mail
 - Server Error
 - Failed Attachment
- Very old text messages
- Wrong time & date
 - 12 January 2014
- Some S2 phones bricked
 - Bought into Time and Invalidated their Security Certificates

The Hunt

Using a Chronos CTL3520 Borrowed from NavtechGPS

ION GNSS+ Exhibit Hall Map and Information

118	119	218	217	318	319	418	419	518	519
116	117	216		316	317	416	417	516	517
114	115	214	215	314	315	414	415	514	515
	-								513
108	109	208	В		E		409	508	511
									509
	-						-		505
104	Α				D				
102			С				F		501
100									

HALL HOUR

Wednesday:

10:00 a.m.-8:00 | Exhibit Hall Open

6:00 p.m.-8:00 p.m. Exhibitor Hosted Reception

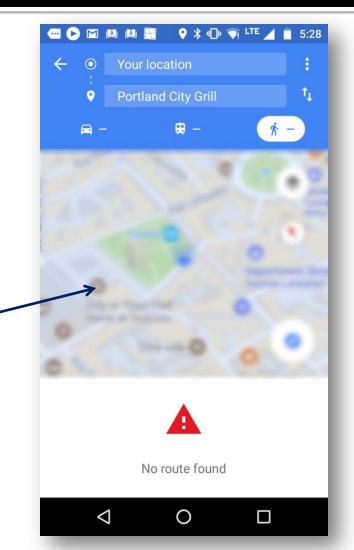
Thursday:

9:00 a.m.-6:00 p.m. Exhibit Hall Open

ION GNSS+ 2017 Exhibitors

The Culprit Is Found

- GNSS Simulator with 6 Output Ports
 - 1 hooked up to device
 - 5 with plastic covers on


- NO Antenna
 - Range was ~2 Booth Blocks

A lot of people with non-S2 phones didn't notice the problem until much later when they tried to navigate

 Phone maintained correct time and date but position was wrong

- One hour after exposure \(\)
- ~4 miles removed

Numerous Location and Time Sources Were Available to Affected Phones Too Much Trust in the GNSS Receiver?

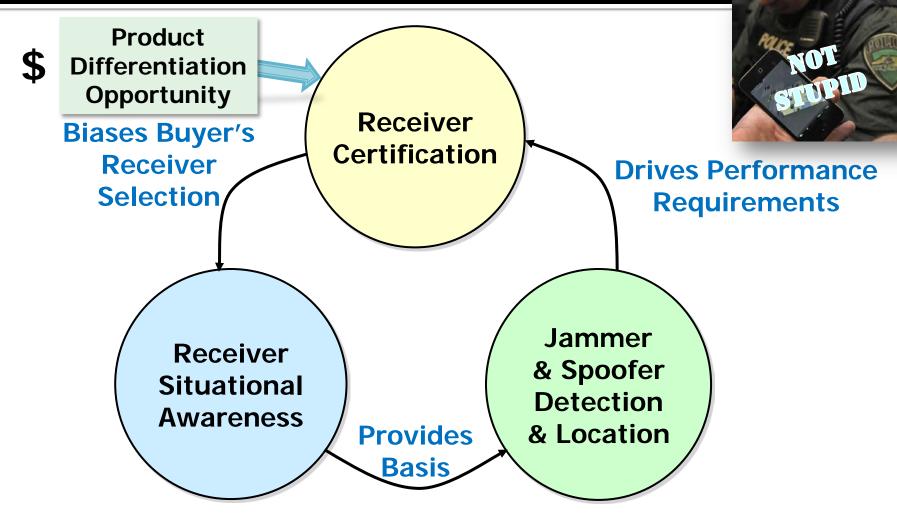
- Cellular Base Station Location & Time was Available
 - 3G/4G Basestations Authenticate to the Handset
 - S2 Phones Probably Got Time from Basestations
- WiFi Access Points
 - Just Hearing a Particular Access Point provides Location Clues

Some Lessons (That Could Be) Learned from this Exposure Event

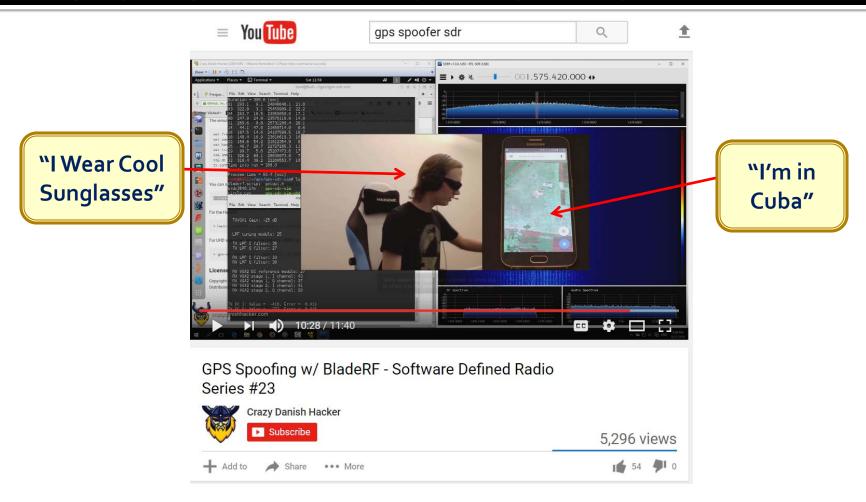
- Spoofing is very confusing with symptoms that may appear unrelated to GNSS
- Different devices react differently
 - "S2" in particular experienced difficulty since it bought into wrong time
- Recovery was not always fast
 - Corruptions were persistent
 - Phones did not use all available information

Layered Defenses Is Not Just a Question Of Having The Requisite Information
You Have to Use It!!!

Situational Awareness Is The First Step Towards Resilience If it Doesn't Make Sense, Something is Probably Wrong



Exposure Testing Promotes Situational Awareness


Nonexpert Community Needs a UL Style Selection Criteria

Zero to Operational in 10 minutes using an SDR No GNSS Expertise Required

Step By Step Instructions by a Script Kiddy

https://www.youtube.com/watch?v=VAmbWwAPZZo

danish bladerf videoplayback.mp4

Why Signal Authentication Is Needed

And what is it?

Galileo Signals Will Have Authentication Features That Stymie Signal Generator Attacks

- COMMISSION IMPLEMENTING DECISION (EU)
 2017/224 of 8 February 2017
 - Signed at Brussels by Jean-Claude Juncker, President of the European Commission
- The authentication capacity should increase the degree of safety and prevent risks of falsification and fraud in particular. Additional features must therefore be incorporated into satellite signals in order to assure users that the information which they receive does come from the system under the Galileo programme and not from an unrecognised source."

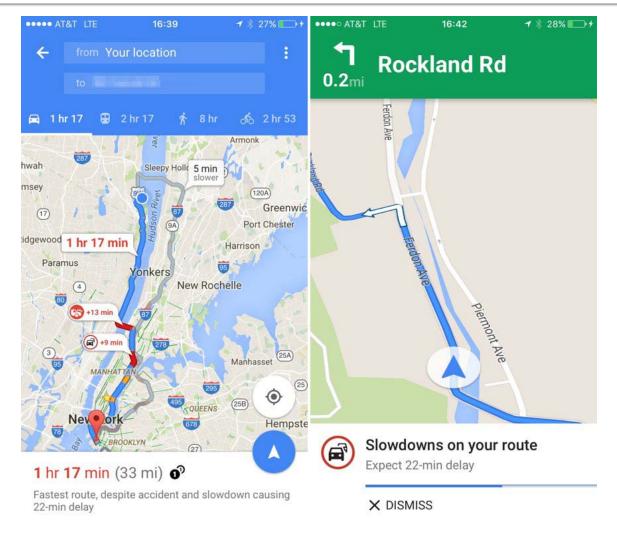
Navigation Message Authentication (NMA) Alone is Inadequate

- Many Civil Receivers In Security Related Applications Do Not Read Data
 - Asset Tracking Devices
 - Low Power Applications
- NMA Does Not Provide a Basis for Proving Location to Remote Monitors

Location Needs to Be Provable to Remote Sites

- Knowing Where Information Comes From Militates Against Database Poisoning
 - Navigation, NEXTGEN, Twitter Feeds, DNS, BGP etc.
- Many Other Applications, for Example:
 - Location Restrict Where Commands, Reports & Software Originate From
 - Establish Position History of Cargo Containers
 - Verify Aircraft Location Reporting & Existence
 - Geofence Access to Sensitive Data
 - Anti Phishing

Secured 5,000 HP Generator Self Destructing Securely Under Remote Control

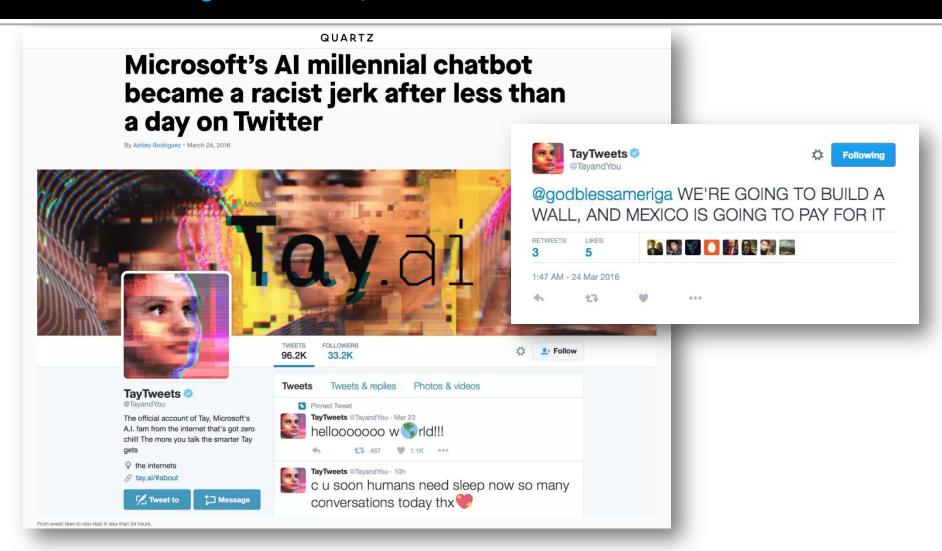


TGHU 307703 0 22G1

Should Crowdsourced / Crowdsensing Databases and Applications Trust the Crowd?

Ghost Aircraft Injection Into an SBS-3 ADS-B Receiver Using a USRP N210 SDR

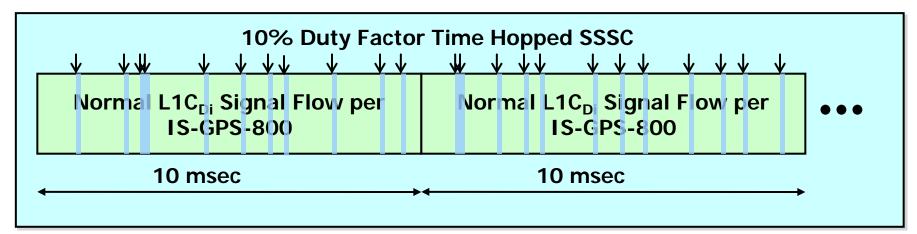
An Example of Why Existence Proofs are Needed


```
974682 (CHAOS 0J)
                                                                                        177.6° 340.3 kts 21425 ft
                                    1801F8 (CHAQ4 .4<sup>G)</sup> 234.1 kts 32475 ft
  960246 (CHAOS QO
115.6° 381.5 kts 23350 ft 19.8 nm
BFBE25 (CHAOS 05) 42D2AC (CHAOS 14)
                                             DFFD6E (CHAOS OFB23E (CHAOS 316.0° 360.0 kts 16600 ft
140.8° 562.9 kts 17405 ft 491.0 kts 2537 BD trac 600 1903 70 1043 1145065 t 7 kts 31425 ft
                                           196.0° 565.9 kts 31100 ft
                                      5EA19E (CHAOS Z)
341.2° 235.6 Ktg 18575 ft
                                                                                 E71E2F (CHAOS 19)
           1D210 (CHAOS X)
                                                            425.3 ktd 17975 ft 219.5° 417.0 kts 23675 ft
  89.6° 416.0 kts 23250 ft
                                                                             392 4 kts 24625 ft
                                                           169.9° 314.8 kts 27225 ft
                  07846D (CHAOS I) 232.4° 342.2 kts 22425 ft
     9E5545 (CHAD$26)7° 524.2 kts 1900
      231.2° 408.2 kts 35000 ft
                                                     316.82ERB3 2CRAGS19025 ft
                                                         262.2° 344.2 kts 399253$t60HAQP 0005.1 kts 31125 ft
                          47644F (CHAOS 0I)
                                                                             45.7° 490.1 kts 19100 ft
                                                                    49AAD5 (CHAOS OB)
                                                   12855072700 ft Q352.2° 273.5 kts 22525 ft
                                                                                 59.5° 414.2 kts 18175 ft
       112189.9781763DE0
                                                                  OF21F5 (CHAOS V)
                                                          B8406F (25A05° 245.1 kts 26950 ft
                                          HARDS CHAOS 09) 1E101C (CHAOS
```

From: Matthias Schäfer, Vincent Lenders, and Ivan Martinovic, "Experimental Analysis of Attacks on Next Generation Air Traffic Communication", 11th International Conference, Applied Cryptography and Network Security 2013, Banff, AB, Canada, June 25-28, 2013

For an AI, Perception is Reality

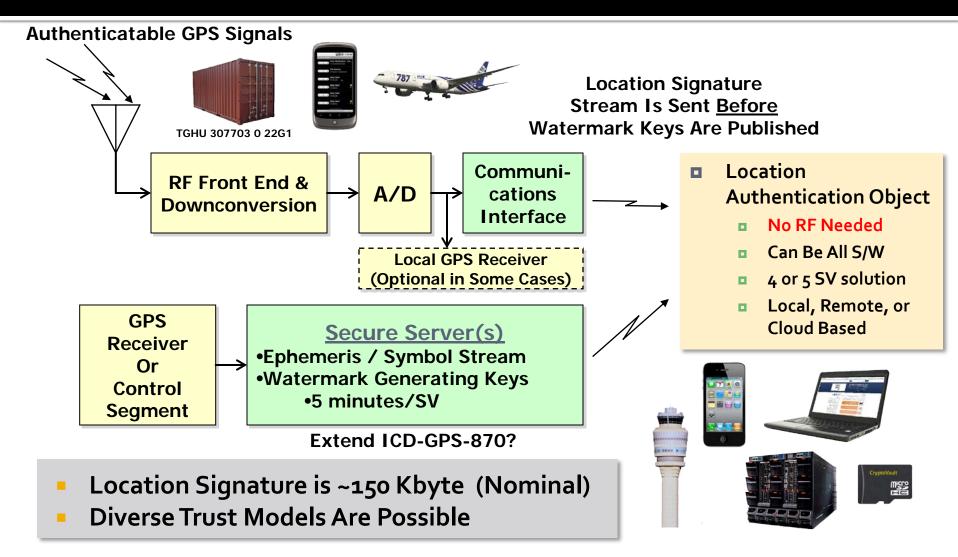
From "sweet girl" to "racist, hatred filled" chatbot in 10 hours



Watermarking Signals with Spread Spectrum Security Codes (SSSC) Can Establish Provenance

Watermarking Is Essential for Proof of Location using SATNAV

- Watermark Generating Key Is Changed Once Every 5 minutes
- Published to The User Segment with a 5 minute Delay
 - Published By Satellites & Control Segment
 - RECEIVERS DO NOT HAVE TO HAVE SECURE KEY STORAGE
- Watermark Is Hard To Forge
 - Spoofer/Forger Has to Read SSSC Chips Off The Air



Read the Chimera Paper If You are Interested in this Topic

Location Proofs Checks For Valid Watermarks etc.

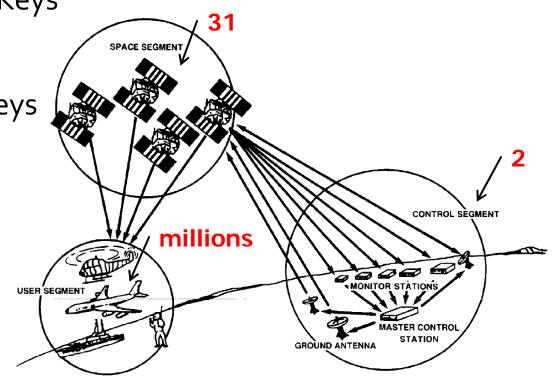
Less Trust in the Sender; the Keys Haven't Been Published Yet

An Opportunity for Carrier Revenue

SatNav Architectures Are Based on One-Way Communications

SatNav Signal Authentication Is Via

Pre-shared Symmetric Keys


Military/Authorized

Delayed Asymmetric Keys

Watermarks

Other Signals

- GNSS
- Detection Algorithms
- IMU
- etc

Two-Way Communications Can Support Superior Authentication

- Device sends a Nonce to the eNodeB
- eNodeB encrypts
 Nonce using its
 Private Key
- Device decrypts Nonce using eNodeB's Public Key (Certificate)

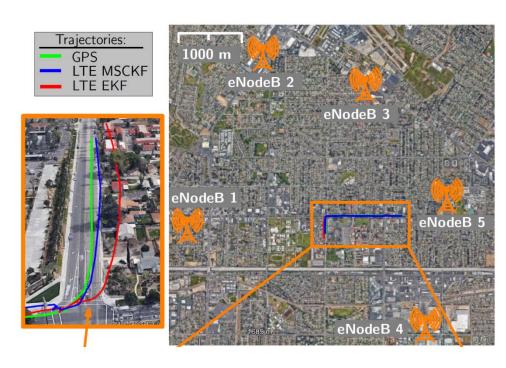
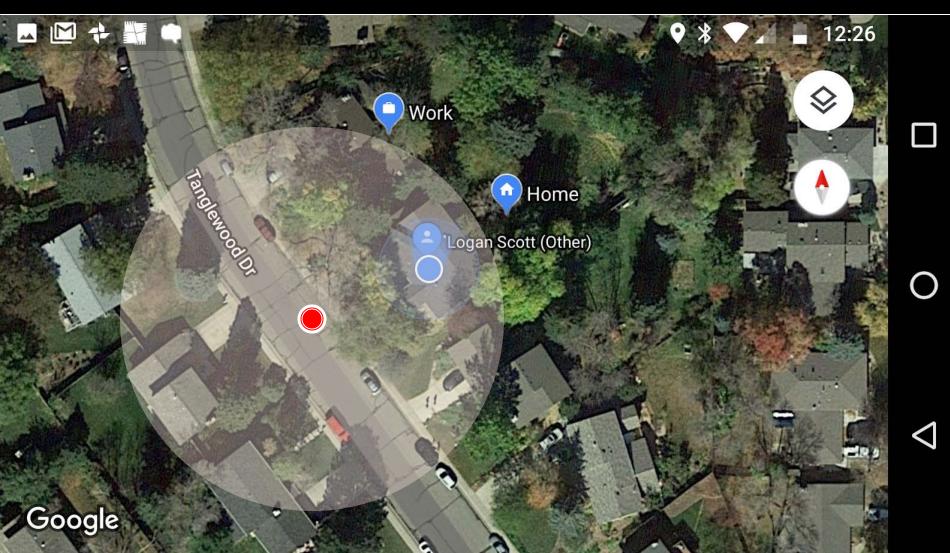
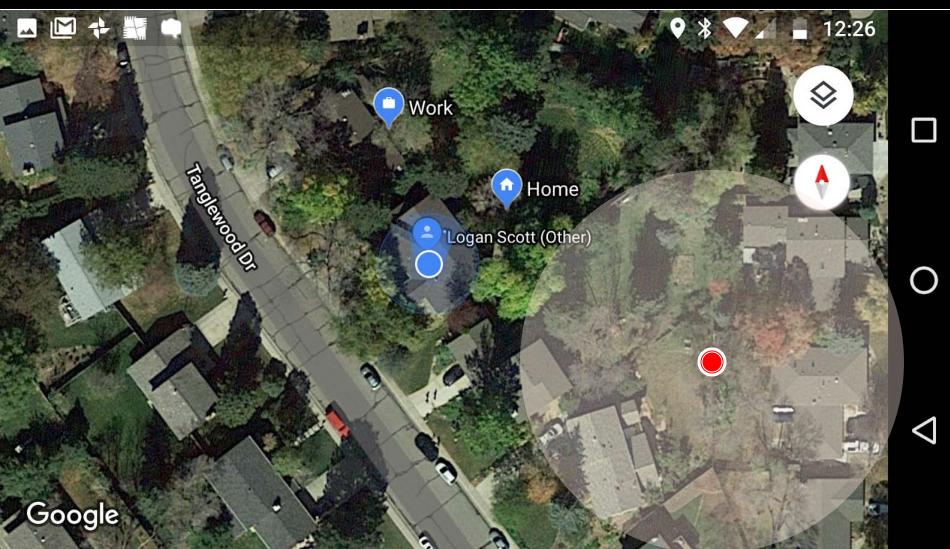



Figure from: Positioning Performance of LTE Signals in Rician Fading
Environments Exploiting Antenna Motion
Kimia Shamaei, Joshua J. Morales, and Zaher M. Kassas
31st International Technical Meeting of the Satellite Division of the Institute
of Navigation (ION GNSS+ 2018), Miami, Florida, September 24-28, 2018


Scope of an Attack Blended vs. Detection

Scope of an Attack Blended vs. Detection

The Role of Social Engineering in Jamming Mitigation

But first, you need situational awareness

Could This Jammer Have Been Found Without Direction Finding Equipment?

Newark 2012

- FBI Received Complaint Aug 3 2012
- Using Direction

 Finding Equipment
 FCC Found Parked
 Truck with Operating
 Jammer on
 Aug 4 2012

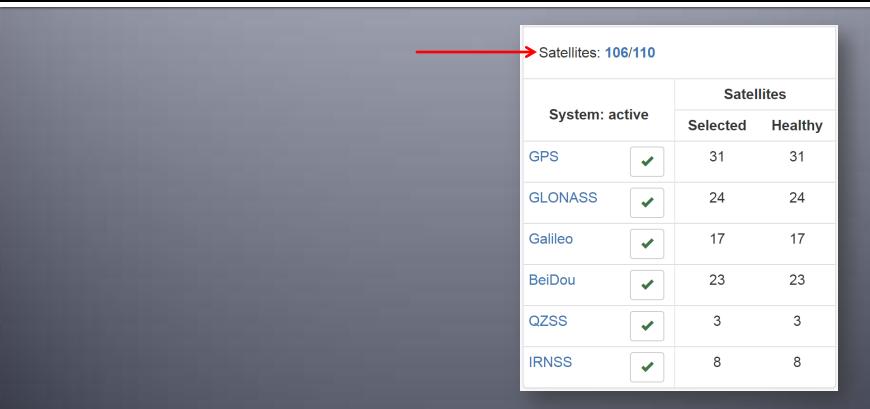
The company truck that was tracked.

Misappropriation of Resources Is a Common Jamming Motivation Situational Awareness Can Mitigate Interference

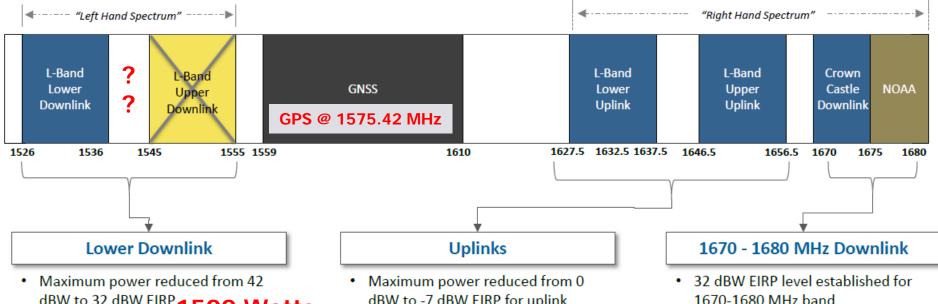
Another
Motivation for
Receiver
Certification

- Resources with Location Reporting Include:
 - Garbage Trucks, Company Vehicles, Taxis, Tractor Trailers,
 Construction Equipment, Emergency Services, Farm Equipment,
 Shipping Containers, White Vans etc.
- These Resources Are Usually Employee Operated
- If Interference/Signal Loss Is Detected for Extended Time:
 - This Should Raise Red Flags
 - Receiver on Asset should "Light Up" Warning Operator => Jammer OFF
 - Employer Can Take Enforcement Action => Jammer OFF

How Would a Jammer (or Spoofer) React If His Phone Did This When He Turned ON?



- Triggering Factors
 - Jamming Power
 - Jamming Duration
 - Channel Stability



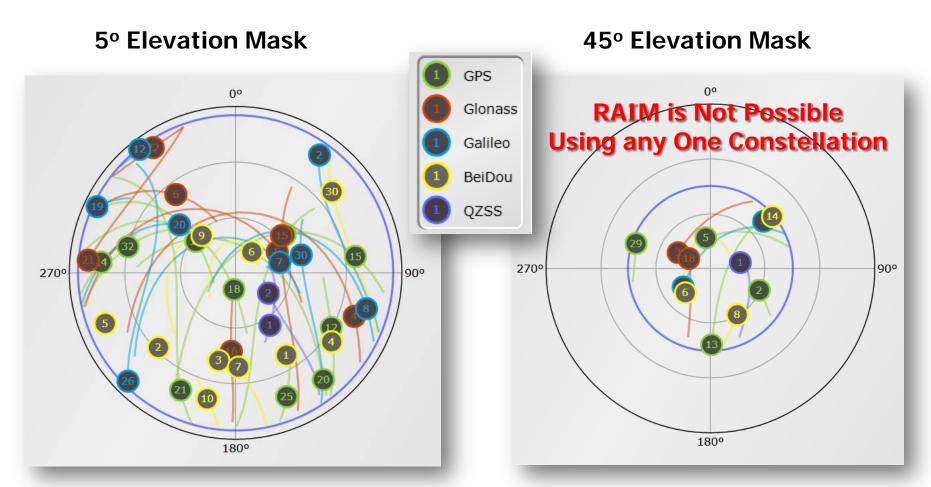
There are 106 Healthy Navigation Satellites On Orbit

Ligado's FCC Proposal Based on New GPS Agreements

Who Agreed?

- dBW to 32 dBW EIRP 1500 Watts
- 1526-1536 MHz power levels will be established in deference to the FAA to ensure compatibility with certified aviation GPS devices
- Out-of-Band Emission levels have been further reduced from previous limits
- Requested that the FCC remove the terrestrial rights of the 1545-1555 MHz downlink

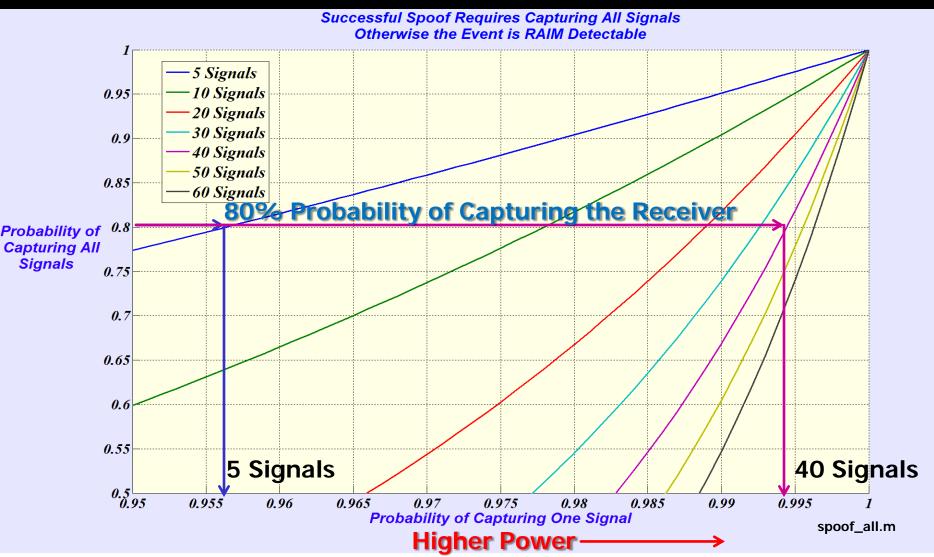
- dBW to -7 dBW EIRP for uplink channels 200 mWatt
- 1627.5-1632.5 MHz has an additional power limitation that ramps from -31 dBW to -7 dBW
 - This limitation expires at the end of 2020 at which time this segment will revert to -7 dBW across the band
- Out-of-Band Emission levels have been further reduced from previous limits


1670-1680 MHz band

Copy of Chart 4 from Ligado Ex-Parte Presentation Filed 11 May 2016 with Annotations in Red

MultiGNSS Provides Coverage, Integrity and Resiliency Benefits

Location is Beijing



www.gnssplanningonline.com

Even One Inconsistent Signal Should Raise Suspicions

Multiconstellation GNSS Makes Spoofing Harder and More Detectable By Forcing Spoofer to Use Higher Power

Summary Recommendations

Hacks Will Happen, Be Prepared Core Recommendations

- Don't Be Too Trusting
 - Validate Measurements (e.g. Spoof/Jammer Detection)
 - Do Cross Checks Between Dissimilar Systems and Sensors
- Do Penetration Testing with Certifications
 - Provide Purchase Selection Criteria for the User Community
- Do Cryptographically Sign Critical Data for Authentication
 - Ephemeris, Differential Corrections, Reported Position etc.
 - Watermarking to a Chip Level is a Crucial Step for Proof of Location
 - Trusted Platform Module (TPM) IP is Inexpensive
- Do Protect Spectrum for <u>ALL</u> GNSS Systems (US and Foreign)
 - Makes Spoofing Detection Easier

Related Papers by Logan Scott

Policy Recommendations

- 1. Towards a Sound National Policy for Civil Location and Time Assurance; Putting the Pieces Together, InsideGNSS Magazine, September/October 2012
- 2. Spoofing: Upping the Anti (Novatel Thought Leadership Series) Inside GNSS Magazine, July/August 2013
- 3. Strategies for Limiting Civil Interference Effects, presented 3 June 2014 to PNT EXCOM AB. Available at http://www.gps.gov/governance/advisory/meetings/2014-06/

Cryptographic Signal Authentication

- 1. Anti-Spoofing & Authenticated Signal Architectures for Civil Navigation Systems ION GPS/GNSS 2003
- 2. L1C Should Incorporate Cryptographic Authentication Features, May 2006 Comments on ICD-GPS-800
- 3. Civilian GPS Signal in Space Enhancements for AntiSpoofing and Location Authentication, presented at JNC 2011, 28 June, 2011
- 4. Location Signatures: Proving Location to Second Parties without Requiring Trust 12 June 2012, JNC 2012
- 5. Proving Location Using GPS Location Signatures: Why it is Needed and a Way to Do It, Sept 2013 at ION GNSS+ 2013
- 6. Chips-Message Robust Authentication (Chimera) for GPS Civilian Signals, ION GNSS+ 2017 (Anderson et. al.)

Jammer Location "J911"

1. J911: The Case for Fast Jammer Detection and Location Using Crowdsourcing Approaches, paper presented at ION-GNSS-2011, September 20-23, 2011

Receiver Certification

- 1. Receiver Certification: Making the GNSS Environment Hostile to Jammers & Spoofers, presented Nov 9, 2011 to PNT EXCOM AB. Available at http://www.pnt.gov/advisory/2011/11/scott.pdf
- 2. Level 1 Draft Specification posted at: http://logan.scott.home.comcast.net/~logan.scott/