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Abstract

Managing fleet disruption is essential for an airline to control de-
lay costs. Delays emerging from these disruptions can be manipulated
through fleet operations like aircraft swapping. This paper applies ma-
chine learning techniques to the disruption problem. While airlines might
do this process manually or using basic predefined rules, the complexity of
the problem makes it well suited for a computed approach. The paper de-
scribes the principles of reinforced learning and the model used for testing
them. Two representations of decision states are considered and applied
to a set of historical schedules for an airline. The performance obtained
by swapping aircraft using the reinforced learning is finally compared to
the idle option, i.e., do not swap any flight. The comparison evinces that
while the algorithm is far from being optimal, the agent takes relevant de-
cisions as it performs better than the idle behaviour in heavily disrupted
simulations.

1 Introduction
The design of a schedule is strategic as it happens months in advance of its
implementation. Since schedules try to maximise profit, they are subject to
an efficiency-resilience trade off. A schedule is here said to be resilient if it is
not too sensitive to unexpected events, i.e., the probability that the carried out
operations deviate in time from what was scheduled is low. The lower the buffer
between operations, the higher the cost efficiency but the lower the resilience. In
contrast, a schedule allowing more time between operations is resilient but not
efficient. To make profit, airlines will therefore try to minimise delays between
operations, and thus expose themselves to disruption problems [10,28].

Costs of disruption problems often rise due to the reactionary delays trig-
gered. To lower these costs, airlines can modify the schedule in real time. How-
ever, the number of re-configurations makes the problem highly combinatorial
and thus better suited for computed solutions than human found ones. Airlines
could modify the trajectory of flights, e.g., selecting a different route or modi-
fying their operating cost index [13]; actively wait for passengers so that they
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don’t miss their connections [14]; swap aircraft [31]; cancel flights and in some
cases ferry aircraft [6]. Commercial tools can be used to create and adjust the
required flight plans such as Lufthansa Lido or airline recovery management
tools by Sabre.

In this paper, the reconfiguration problem that arises from disruptions in the
schedule is solved via reinforcement learning. Once a schedule has been built, it
is given to a simulator and an agent. The agent will try to lower a cost function
by swapping aircraft to cope with disruptions created by the simulator.

The goal of this paper is to present how reinforcement learning techniques
could be used in the disruption management problem. The agent will be trained
by a basic reinforcement learning algorithm, the Q learning algorithm.

The article is organised as follows. Section 2 presents a literature review
on models of disrupted management. It also presents an overview of the rein-
forcement learning paradigm. Section 3 describes the model used in this paper
including a description of the learning mechanism. Section 4 explains in detail
the experimental setup used to test the model. Section 5 shows the results ob-
tained with the model on the experimental setup. Finally, Section 6 draws some
conclusions and looks at future work.

2 Literature review
2.1 Disruption management
[31] and [21] provide a survey of different actions that might be considered

by airlines to manage disruptions. They include among others: swap aircraft,
cancel flight, delay flights, use stand-by aircraft. Studies to minimise the impact
of disruptions often only handle a subset of all possible actions. Most articles use
aircraft swapping, flight cancelling, flight re-timing and ferrying. Some works
do not consider ferrying, as [19], stating that ferrying is very seldom used. Some
models would also allow to use stand by aircraft such as in [22].

It is well understood that cost of delay is not linear in function of delay [10,
15]. The immediate consequence is that cost can be lowered by dividing delay
among more flights rather than having it concentrated, i.e., in average it is less
costly two flights delayed 20 minutes than one flight delayed 40 minutes.

To analyse the different techniques that try to minimise disruption, an air
traffic model is required. This is relevant as knock-on effects, i.e., reactionary
delay, needs to be considered. Several graph representations have been proposed.
For a exhaustive review see [7]:

• Connection network, in which each node is a flight leg and two nodes
𝑢, 𝑣 are connected if leg 𝑣 can be flown directly after leg 𝑢 with the same
aircraft.

• Time line network, where nodes are events, i.e., arrivals or departures spec-
ified by a time and an airport. An edge represents an activity performed
by the aircraft.
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• Time band network, where each node is either a set of activities performed
by an aircraft within a time interval (or time band) or the end of a recovery
period, at a certain time and in a specific airport. In this case the flights
are modelled as edges.

Passengers can be more extensively considered, as in [14, 19]. Passengers of
cancelled flights are often reassigned to a new flight, where possible, or returned
to their destination according to the rules of Regulation 261.

In most of the works presented in the review, solutions are found via graph
algorithms, such as maximising the flow in [1] or integer programming as in [2].
It has nevertheless also been stated as a repartitioning problem in [20]. [22], uses
a heuristic on a graph. In this model, a node is either an aircraft or a departure.
A departure is connected to an aircraft in an other airport which may be itself
connected to a departure. The network is then used here with a local search
meta heuristic, the steepest ascent local search. Another heuristic, the “grasp”
heuristic, is used in [3].

In [19], the problem is then modelled with a time band network and solved
with Cplex using the financial cost as objective function. In addition to the
time band network, a “passenger transition relationship” is introduced. This
relationship enables the passengers to be transferred on other flights when a
flight is cancelled.

When optimising the tactical network operations, several objective functions
might be considered. The review [7] mentions counting the total delay, counting
the number of operations carried out (e.g., swaps, reassignments, ferryings)
and evaluating the real cost. The latter is the most used, however costs are
complicated to model and thus several levels of refinements can be seen. For
example, two sub-costs are considered in [22]. One is associated with delays
and the other with cancellations. Costs associated with passengers might also
be included [9,18,19]. Further analysis of costs can be found in [13], [12] and [11].

The test setups presented in [7] span from 3 aircraft and 8 flights to 332
aircraft and 2921 flights, solved in 24 minutes using Cplex. In [22], the method
using heuristics has been tested on an instance of 80 aircraft, 44 airports and
340 flights. The time needed to solve such an instance is below 10 seconds.

2.2 Reinforcement learning
Reinforcement learning is a method of machine learning based on the interaction
between an agent and its environment. It has been extensively used in games
where the agent embodies the player and the environment is the world the
player evolves in. It has been proven successful in small games such as Tetris,
outperforming the human player with the most basic algorithm known as Q
learning using lookup tables [23]. Many more sophisticated learning methods
have been developed since, such as Deep Q Networks (DQN), developed by
Google using convolutional deep neural networks [25].

The disruption problem in a fleet can be easily compared to a game making
reinforcement learning suitable to solve it. The player would be the airline
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Figure 1: Reinforcement learning principle

operator who can swap aircraft and the environment is the real world and more
specifically the fleet being disrupted.

Simple problems may be solved using simple Q learning algorithms using
matrices. Real world problems however generally involve a large amount of
states or of actions, making Q matrices unusable. To overcome this limitation,
multi layer perceptrons can replace the Q matrix as described in [26]. Multi
layer perceptrons are able to handle continuous inputs. If the problem involves
many actions, restricted Boltzmann machines can be used as presented in [27].
As the problem involves a fleet of aircraft, it might be seen as a multi agent
behaviour. While research has been lead on multi agent reinforcement learning,
it is stated in [5] that it is even more subject to the curse of dimensionality than
single agent reinforcement learning and thus less prone to manage an important
amount of actions or states.

3 Model
3.1 Reinforcement learning model
The idea is to make an agent interact with an environment in order to learn
the best possible behaviour. This behaviour is modelled by a policy which maps
states of the environment to actions the agent should perform. To learn how to
behave, each action the agent carries out is rewarded, and each action modifies
the environment. The agent will thus adapt its behaviour in function of the
rewards it receives (see Figure 1). Every time the agent performs an action, the
environment is modified and shifts into a new state. The following notations
will be used:

• 𝒮 the set of states,

• 𝒜 the set of actions,

• (𝑠, 𝑠′) ∈ 𝒮2 states of the environment,

• 𝑎 ∈ 𝒜 an action,

• 𝛾 ∈ [0, 1) the vision of the agent or the discount factor,
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• 𝑇𝑓 ∈ ℕ the end of the lifetime of the agent, being, in our case, a day of
operation.

Mathematically, the best behaviour is the behaviour maximising a criterion.
This criterion is usually the expectation of the cumulative sum of rewards, i.e.,
the total reward the agent can expect during its lifetime, with 𝑟𝑡 the reward at
time step 𝑡, 𝛾 ∈ [0, 1) the discount factor,

𝔼 (
𝑇𝑓

∑
𝑡=0

𝛾𝑡𝑟𝑡) (1)

In our case, the reward is the cost savings obtained by performing a given
action

Valuation functions are used to discriminate policies. Given a policy 𝜋∶ 𝒮 →
𝒜, the associate valuation function will be 𝑉 𝜋 ∶ 𝒮 → ℝ. Finding the best policy
falls back to computing 𝑎𝑟𝑔 𝑚𝑎𝑥𝜋 𝑉 𝜋.

Given an initial state 𝑠0 ∈ 𝒮, the valuation function can be defined as, with
𝔼𝜋 the expectation following policy 𝜋, ∀𝑠 ∈ 𝒮,

𝑉 𝜋
𝛾 (𝑠) = 𝔼𝜋 [

𝑇𝑓

∑
𝑡=0

𝛾𝑡𝑟𝑡∣𝑠0 = 𝑠] (2)

The optimal valuation function 𝑉 ∗ satisfies the Bellman equation, which can
be written as, with 𝑠 ∈ 𝒮,

𝑉 ∗(𝑠) = 𝑚𝑎𝑥
𝑎∈𝒜

{𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)𝑉 ∗(𝑠′)} . (3)

Once found, 𝑉 ∗ gives the optimal policy 𝜋∗ such that 𝑉 ∗ = 𝑉 𝜋∗ .

3.2 The Q learning model
3.2.1 Principle

Q learning is based on the use of a function 𝑄∶ 𝒮 × 𝒜 → ℝ as an equivalent of
the valuation function, with (𝑠, 𝑎) ∈ 𝒮 × 𝒜,

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)𝑉 𝜋(𝑠′) (4)

The Bellman equation is then with 𝑄, ∀(𝑠, 𝑎) ∈ 𝒮 × 𝒜,

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎) 𝑚𝑎𝑥
𝑏

𝑄∗(𝑠′, 𝑏) (5)

The idea is then to update incrementally the values of 𝑄 for each transition
(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), with 𝑠𝑡, 𝑎𝑡 being the state of the environment and the selected
action at time step 𝑡, 𝑟𝑡 the reward associated to 𝑠𝑡 and 𝑎𝑡, and 𝑠𝑡+1 the state
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Require: 𝑄, 𝛾 ∈ [0, 1], 𝛼
initialise state 𝑠
repeat

𝑎 ← choose action from an action set
play 𝑎, observe reward 𝑟 and new state 𝑠′

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))
𝑠 ← 𝑠′

until training finished

Figure 2: General Q learning algorithm [29]

resulting from the application of 𝑎𝑡 on 𝑠𝑡. The update is done using the following
formula, which comes from equation 5, with 𝛼(𝑠𝑡, 𝑎𝑡) ∈ [0, 1) the learning rate;

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡(𝑠𝑡, 𝑎𝑡)

(𝑟𝑡 + 𝛾 𝑚𝑎𝑥
𝑏

𝑄𝑡(𝑠𝑡+1, 𝑏) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡))
(6)

3.2.2 Parameters

Looking at equation 6, one can denote two parameters, 𝛼 and 𝛾
The discount factor 𝛾 can be interpreted as the sight length of the agent.

Seeing equation 2, the higher 𝛾 is, the more delayed reward are taken into
account. On the opposite, a 𝛾 of zero creates a myopic agent which considers
only immediate rewards.

If transitions between states are stochastic, the learning parameter 𝛼 must
be a sequence verifying the properties (see [32]) ∑∞

𝑘=0 𝛼𝑘 = ∞ and ∑∞
𝑘=0 𝛼2

𝑘 ∈ ℝ.

3.2.3 General algorithm

The training algorithm is given in Figure 2. The training is finished when the
state becomes terminal. Whether a state is terminal is decided by the underlying
environment. Typically, the training algorithm will be run many times to have
a Q function close enough to the optimal one.

Action selection Choosing actions consists in solving an exploitation-exploration
trade-off. The exploration behaviour consists in exploring the state space, tak-
ing decisions that are not necessarily considered the best ones. The exploration
is required to avoid local minima. Indeed, while the exploitation behaviour relies
on the data accumulated to make the best decisions, it might carry out actions
that are wrongly considered best because other ones have not been tried yet.
The exploration carries out actions to see whether, by chance, they would be
better than the ones known so far.

Different methods can be used to deal with this exploitation exploration
trade off while selecting actions, see [29] for a detailed review. In this paper, we
use bandit methods. Bandits methods come from an analogy with slot machines,
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where a bandit with 𝑘 arms is able to activate 𝑘 slot machines sequentially. The
goal of the bandit is to select each time the machine yielding the highest reward,
maximising profit and minimising the regret of not activating the best machine.
The UCB method (for upper confidence bound, see [29]) bandit algorithm can
be implemented by using action 𝑎 defined by, with 𝑡 the time step, 𝑁𝑡(𝑠, 𝑎) the
number of times action 𝑎 has been performed in state 𝑠, 𝑐 ∈ ℝ+ a constant
controlling exploration,

𝑎 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎′∈𝒜

(𝑄𝑡(𝑠, 𝑎′) + 𝑐√ 𝑙𝑛 𝑡
𝑁𝑡(𝑠, 𝑎′)

) . (7)

The first term motivates exploitation. The second one, being higher as the
number of visits is low, motivates exploration.

3.2.4 Implementation

In this paper, a simple implementation approach has been selected for com-
putational reasons. In this form, the agent is a lookup table mapping state-
action tuples to their reward expectation. This way, the operation 𝑄(𝑠, 𝑎) ←
𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) is straightforward and consists in
the replacement of the old value by a new one. While this method has several
advantages among which its simplicity, it cannot be scaled to high dimensional
states or continuous states. More advanced methods can be used, like neural
networks, see [29].

3.3 Disruption management problem description
This paper focuses on the ability to swap aircraft when airlines are faced with
disrupted operations. Swapping aircraft consists in exchanging aircraft between
two flights. Intuitively, swapping can be cost effective for at least two reasons.
The first is illustrated in Figure 3 where the amount of delay that is expected to
be propagated by a given flight (𝑟𝑑2) is divided between two flights producing
𝑑1 and 𝑑2 with 𝑑1 + 𝑑2 ≤ 𝑟𝑑2. In this examples, two flights are delayed instead
of one but part of the buffer for flight 1 is used to recover delay from flight 2,
so not only the delay is divided between more flights, but also reduced. This
is cost effective because the cost of delay is non-linear and the cost of the two
lower delays is lower than the cost of a single higher one. Note that aircraft
swapping then helps to manage reactionary delay which account for 44% of all
the delay experienced [15].

Another reason to perform aircraft swaps is that, in some cases, an aircraft
with delay might have more legs in its schedule than another flight the airline
can swap the flight with. By doing this swap, the number of legs where delay
can be propagated can be reduced.

Finally, swapping are also often used in practice to save costs in other ways
that are out of the scope of this paper. For instance the airline can concen-
trate all delay into one flight and then cancel it; modelling this would require
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AIBT1 SOBTn1

Turnaround1 bu�er

EIBT2

Estimated

Turnaround2

EOBTn2SOBTn2

Flight 1

Flight 2
rd2

(a) No swapping: Flight 1 on time, Flight 2 expected to
propagate reactionary delay (𝑟𝑑2)

AIBT1 SOBTn1

Turnaround1

EIBT2 EOBTn2SOBTn2

Flight 1

Flight 2d2

d1

Estimated

Turnaround2

(b) Swapping: Flight 2 experiencing 𝑑2 delay and Flight
1 expecting 𝑑1 delay. 𝑑1 + 𝑑2 ≤ 𝑟𝑑2

Figure 3: Example of benefit of swapping

modelling passengers flows as load factors will have to be modelled and the
consideration of cancellations.

More parameters such as additional passenger information (e.g. type of pas-
sengers, and their connections) can be used by airlines to better estimate the
cost of the different options.

Some constraints need to be considered when performing the swaps. An
aircraft can be swapped with another only if the flight of one ends where the
flight of the other starts and the aircraft type is the same. Or in other words,
two aircraft can be swapped if they have an airport in common in their flights
itineraries. On real operations, further constrains need to be considered such as
crew availability, number of seats per specific aircraft, etc.

An aircraft becomes available for a flight after the turnaround operations
are preformed. For example, in Figure 3b, the first aircraft can be used for the
next rotation of the second flight after its turnaround. These ground operations
are modelled as a function of the type of aircraft and airport.

3.4 Scope of model
The main objective of the air traffic model is to capture the propagation of
delay through the network, as this will allow us to capture situations as the
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ones described in Figure 3. The simulator focuses on the fleet of an airline and
on one day of operations. The simulator is driven by the landings of aircraft.
When an aircraft lands, it can either follow its scheduled flight plan sequence
or swap the remaining flights of the day with another aircraft of the same type.
As mentioned, other disruption management strategies (e.g., ferrying, flight
cancellation or trajectory modification) are not considered. There are no stand-
by aircraft available to swap with and crew management is not considered.

A total cost is computed at the end of the day based on flight delay and on
the ending position of the aircraft.

3.5 Delays and uncertainty
Delays have been capped to five hours. Above this threshold, it is generally
more cost effective to cancel the flight which is out of scope of this paper.

3.5.1 Sources of delay

There are four sources of delay and uncertainty in the system:

• reactionary delay,

• taxiing in and out of the runway,

• air traffic flow management delay,

• any other sources of delay (e.g., ground operations)

The distributions used to generate the delays have been calibrated and val-
idated in previous projects [8, 30].

Taxiing The taxiing in and out time distributions are Gaussians. The mean
and the standard deviation depend on the airport and type of operation [8].

Reactionary Reactionary delays, i.e., delays caused by delays on previous
flights, are explicitly modelled and thus not generated from a distribution.

Air traffic flow management (ATFM) A probability and distribution of
ATFM delay is built on historical data analysing the Demand Data Repository
(DDR2) [16].

Miscellaneous Encompasses all other sources of primary delay not explicitly
modelled (e.g., late arrival of passengers, mechanical failure, &c.). The distri-
bution of miscellaneous delays is an exponential one with parameter 15 capped
at 90 minutes [8].

9



Table 1: Statistics of the simulator calibration (average among all flights and
quantiles among delayed flights, in minutes).

Variable Avg. Q10 Q50 Q70 Q90
Reactionary delay 3.97 0 5 20 46

Departure delay 11.04 18 32 45 70

3.6 Exceptional delays
To stress the environment, exceptional delays are randomly created. Each sim-
ulation is started with a probability of encountering an exceptional delay. Each
departing flight might have an exceptional delay, based on this probability. A
delay is said to be exceptional if it is superior to three hours as airline must
compensate clients from three hours of delay [17].

3.7 Calibration and validation
The behaviour of the simulator has been checked against the values given in [15].
Particularly, have been checked

• the average departing delay,

• the average reactionary delay,

• the proportion of reactionary delay among all delays.

As an overview, 21.21% of the flights were delayed and some additional data
has been gathered in table 1.

3.8 Costs
Costs depend on the aircraft model and the delay. The cost function is increasing
non linearly with the delay: the more a flight is delayed, the higher the ratio
cost/delay is (i.e., the second derivative of the cost w.r.t the delay is positive).
These costs are modelled from [10].

Additionally, if an aircraft ends in an airport which is not the final airport
indicated on the initial schedule, a cost is added to reflect the rerouting of crews
or aircraft. This cost has been set to the maximum cost of delay.

3.9 Simulator as reinforcement learning environment
The successive steps of the simulator fit the succession of states needed in rein-
forcement learning.

Feeding the agent with all the data computed in the simulator would be
inefficient. As an example, states used by the algorithm need to be visited as
much as possible along an episode, which requires them to be, ideally, time
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independent. It would therefore be counter productive to embed the time of the
simulation in the state.

To ease the work of the algorithm, states are converted to observations. An
observation is the reduction of a state, gathering the essential information to
allow the agent to take the appropriate action and estimate the cost associated
to the action.

Choosing which information to include in the observation is a difficult prob-
lem. They need to be precise enough, to improve final performance; but not
too detailed to avoid the explosion of the number of states, leading to a slower
convergence. Fields that can be considered to be included in the observations
are: delay, number of extra flights in the day remaining for a given aircraft or
type of airport.

3.10 Actions
In each state, the agent performs an action on the environment. Here, an ac-
tion is either swapping the landed aircraft with another one or doing nothing.
Swapping two aircraft means that the aircraft exchange the remaining of their
respective flight paths. We thus consider swapping aircraft equivalent to swap-
ping flights or, to be more precise, flight paths.

One must then decide which flights can be swapped with. The first way
would be to allow to swap with any not flown flight departing from the current
airport. However, this have two drawbacks. First, too many actions would be
made available, slowing the convergence. Secondly, actions wouldn’t be clearly
recognisable by the agent. The agent needs to associate an expectation of the
cost following an action on a state. But swappable flights might be very different
from one state to another which could increase the variance of the final reward
given the current state.

3.11 Reward
In reinforcement learning, the reward allows the agent to decide which action
is the most suited to the state the environment is in. Furthermore, by the
estimation of reward expectations, the agent is also able to determine the best
action for not only the current state but also the probable sequence of all future
states.

In our model, the reward is the final cost of delays. Since the algorithm
maximises the expectation of reward, if the value on which the reward is based
should be minimised, the reward will be the opposite of this value. We will
therefore use the opposite of the cost as reward.
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Table 2: First observation type example.

Field description Example instance
aircraft → flight path {(𝑎1, 𝑓2), (𝑎2, 𝑓1), … }
aircraft → delay {(𝑎1, low), (𝑎2, high), … }
aircraft → sobt before ready time {(𝑎1, 𝑡), (𝑎2, 𝑓), … }
aircraft → more remaining {(𝑎1, 𝑓), (𝑎2, 𝑓), … }
landed aircraft id 2
landed aircraft delay low

4 Experimental setup
4.1 Schedules
The algorithm uses one day of operation of one airline. It has been tested on a
subset of the traffic of Vueling on October 12, 2014. The initial schedule has a
fleet of 90 aircraft. In order to speed up experiments, only 6 aircraft have been
kept. The aircraft has been chosen such that there is a fair amount of swapping
possibilities, i.e., each aircraft has at least one swapping possibility along its
flight path. Flight data has been obtained from [16].

The cost of reallocation at the end of the day has not been taken into account.
As reallocation costs only happen at the end of an episode, they are the most
delayed reward possible and are thus hard to learn. Given that this paper is a
proof of concept and not a real life application, applicability is reduced in favour
of results.

4.2 Observations and actions
4.2.1 Observation

Two type of observations have been tried. The first one is based on flight paths
and contains:

• a mapping from aircraft to flight paths,

• a mapping from aircraft to their delay,

• the identifier of the landed aircraft,

• the delay of the landed aircraft,

• a mapping from aircraft to whether, if there is a swappable flight on its
flight path, the SOBT (scheduled off block time) of this swappable flight
is before the ready time of the landed aircraft,

• a mapping from aircraft to whether it has more remaining flight in its
flight path than the landed aircraft.
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Table 3: Second observation type example.

Field description Example instance
aircraft → sobt before ready time {(𝑎1, 𝑡), (𝑎2, 𝑓), … }
aircraft → toward stn. {(𝑎1, 𝑓), (𝑎2, 𝑡), … }
aircraft → more remaining {(𝑎1, 𝑡), (𝑎2, 𝑓), … }
aircraft → on orig. flight path {(𝑎1, 𝑓), (𝑎2, 𝑡), … }
landed id. 4
total delay high

Table 2 presents an example of the fields included in this observation de-
scription.

The second observation type does not contain the flight path nor the delay.
The fields considered are:

• a mapping from aircraft to whether the SOBT of its next swappable flight
is before the ready time of the landed aircraft,

• a mapping from aircraft to whether it is currently flying toward the current
airport,

• a mapping from aircraft to whether it has more remaining flights than the
landed one,

• a mapping from aircraft to whether it is on its original flight path (if
reallocation costs are considered),

• the identifier of the landed aircraft.

• the accumulated delay on the fleet

Table 3 contains an example of the fields considered in the second type of
observation. To avoid the explosion of the number of states, delay amounts are
further discretised from the set of integers to a finite number of variables (e.g.
{low, medium, high}). With 𝑑 the number of values used to describe delay and
𝑛 the cardinal of the fleet, there are 𝑛𝑑 ⋅𝑛! 22𝑛𝑑𝑛 observations for the first model
and 𝑑𝑛24𝑛 for the second (with generally 𝑑 ≥ 𝑛).

4.2.2 Action

A flight is considered swappable if:

• the origin airport is the same as the current one,

• it is the first flight (according to SOBT) in the flight path of the aircraft
to match the above requirement,

• the previous flight has not landed yet.

13



A B

C

DE

1
2

Figure 4: Swappability example: airports and flight for two aircraft

In short, for an aircraft, a flight is swappable if it is the first one to depart from
the current airport and the aircraft is not on the ground going ready to do it.
Figure 4 shows an example of two flights that can be swapped: aircraft 1 is
supposed to fly the plain legs while aircraft 2 flies the dotted legs. Aircraft 1 is
arriving at airport C and aircraft 2 just departed from B, at landing of aircraft
1, it can swap the remaining of its flights taking the C to D leg. Aircraft 2 will
therefore operate the C to E leg.

5 Results
5.1 Parameters
All the parameters tuned in the model are:

• 𝛾 the discount factor, see 3.2.2.

• 𝑐 the exploration control parameter when using UCB bandits, see Equa-
tion 7.

• 𝑝𝑑 the probability of introducing a severe delay on each flight, a severe
delay is 3h.

• 𝑞𝑖 the initial value of the 𝑄 matrix.

For the experiments, the parameters (𝛾, 𝑐, 𝑝𝑑, 𝑞𝑖) = (0.95, 10, 0.06, −9 ⋅104) have
been used.

5.2 Learning process
To verify that the agent learns and performs better, a metric from [25] will be
used. At the beginning, random states are taken by following a random policy
along an episode. Then during the training, at each time step, with 𝑆 the set
of selected states and 𝒜 the set of available actions, is computed

1
𝑐𝑎𝑟𝑑 𝑆

∑
𝑠∈𝑆

𝑚𝑎𝑥
𝑎′∈𝒜

𝑄(𝑠, 𝑎′). (8)

14



0 1,000 2,000 3,000 4,000 5,000

−8.5

−8

⋅104

episode

𝔼
(∑

𝑡
𝛾𝑡 𝑟

𝑡)
obs.1
obs.2

Figure 5: Average maximum Q values over 5000 episodes with 𝑝𝑑 = 0.06, 𝑐 = 10,
𝛾 = 0.95, 𝑞𝑖 = −90, 000.

This metric thus gives an indication of the evolution of the discounted reward
expectation through training.

Figure 5 shows this metric used with both observations. The second obser-
vation type seems to perform better since it reaches the −8 ⋅ 104 of expected
discounted reward in approximately 1,000 trainings whereas the first observation
type does not even reach the −8 ⋅ 10−4 in 5,000 trainings. The overall increase
asserts that the agent learns how to perform better, since its expectations of
rewards are getting higher. The sudden falls may be interpreted as the agent
realising that delays might happen.

5.3 Comparing with the idle behaviour
The usability of the algorithm is determined by asserting whether it performs
better than doing nothing. Figure 6 shows the boxplots of the distribution of
rewards (i.e., negative cost of delay at the end of the day) for the agents and
the idle behaviour. The assumption that the agent with observation type 2
is better than the other is verified, since all displayed quantiles are higher for
the former. Comparing with the idle agent, our trained agent seem to perform
worse in general. However, the agent 2 (with observation type 2) has a shorter
left whisker than the idle, showing that the agent is able to recover perturbed
episodes.

The fact that the agent does not perform as well as the idle might be ex-
plained by local maxima, i.e., the agent believes that, given a certain observa-
tion, swapping is the best idea although it is not. Indeed, even after 20,000
episodes, it can be seen, inspecting the details of the simulations, that some ob-
servations have been visited only a dozen times. This problem might be solved
by training more the agent or providing other options rather than just swap-
ping aircraft. The average number of swaps per simulated day of operations,
computed on 1,000 episodes ran with trained agents, are 8.7 for agent 1 and 7.3
for agent 2.
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Figure 6: Comparing the idle behaviour with the agent. Agent 1 uses the first
observation type while agent 2 uses the second. Both agent have been trained
over 20,000 episodes.

The performance observed can also be explained due to the limited options
given to the agents (swapping or not), in some cases swapping can be a risky
operation as downstream effects can be generated. The limited set of options
explains the relatively high number of swaps performed but further validation
is also needed. The next section discusses some future work that can be done
to improve the overall final performance of the algorithm.

6 Conclusion
This paper presents a method based on machine learning to deal with air traffic
disruptions by doing aircraft swapping. The model used for the algorithm is
able to manage a whole fleet of aircraft and is primarily modelling the delay
propagated through flights, as well as defining the actions that can be performed
on the fleet. The step by step dynamic of the simulator, coupled with the cost
associated with an action is well suited for reinforcement learning.

A basic reinforcement learning algorithm, the tabular Q learning, is pre-
sented here, along with a non trivial method concerning action selection. The
results evince some interesting features, namely the ability to recover from heav-
ily disrupted traffic and future potential lines of research.

Further work
Concerning the algorithm, several options are possible. The tabular method
might be improved by choosing more adequately the states. Indeed, it has been
seen in Figure 5 and Figure 6 that the design of the observation impacts the
performances of the agent. These features might be chosen either on expert
knowledge, or based on analysis of the relations between the variables of the
simulator and the resulting cost. This analysis might be done using supervised
learning and decision trees, where the tree should predict the cost based on the
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variables.
More advanced reinforcement learning algorithms can be used, such as re-

placing the look-up table by a neural network such as in [26], more advanced
recurrent neural networks as in [4] or using the latest A3C (Advantage Actor
Critic) algorithm by Deepmind presented in [24].

The model can also be extended, by e.g., adding the possibility to cancel or
ferry flights. Passengers can also be included in the model, giving the opportu-
nity to choose to wait for an arriving flight having delay if there are passengers
from this flight who connect with the departing flight. Aircraft performance
could also be modelled, giving the ability to choose whether to speed up the
next flight, as could the opportunity to choose between different routes. How-
ever, adding all these possibilities will increase the number of possible actions,
making the above methods inefficient. To deal with large action space, a re-
stricted Boltzmann machine could be used as a substitute for the look-up table,
as explained in [27] where an agent has been proved able to manage 240 actions.

More complex cost estimations could be used, for example by incorporating
explicit passenger costs.

Finally, further validation of the algorithm outcome should be needed. How-
ever, information on aircraft swap can be hard to obtain since available data set
do not have information about if flights were swapped or not.
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