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ABSTRACT  

Safran has been working for several years on autonomy of 

vehicles. Whether it is airborne with the UAV Patroller, 

or on the ground with the military vehicle eRider and with 

the civilian autonomous car in cooperation with Valeo. 

This paper focuses on the use of visual information to 

improve the localisation of the car. More precisely, it 

presents, from a theoretical point of view, the different 

kind of visual information that can be used in the 

navigation filter to improve the localisation of the car and 

the corresponding hybridisation. The efficiency of these 

hybridisation are evaluated one by one on simulated 

and/or on real data. 

 

1 INTRODUCTION  

Well known as the European leader in inertial navigation 

and for its in-house inertial technologies, RLG, FOG, 

HRG… Safran is also a leading player in visual inertial 

hybridisation techniques whose use is spreading in 

aerospace, defence and industrial applications. 

 

One of the major challenges to be achieved in next years 

is to mature positioning solutions for autonomous 

vehicles such as the UAV Patroller in the air, or the self-

driving cars on the ground whether they are designed for 

military missions like Safran’s eRider or for civilian 

applications like the autonomous car in development at 

Valeo for instance. 

 

 
Figure 1. Safran’s Patroller UAV 

 
Figure 2. Safran’s eRider 

 

 
Figure 3. Valeo’s Drive4U 

 

Localisation is a mandatory function of the self-driving 

car. The car needs to locate itself relatively to its close 

environment in order to ensure basic driving: staying in 

the middle of its lane, stopping at the traffic light, 

overtaking another car … And it also needs more global 

localisation in order to choose the right directions and 

roads to follow to reach the destination wished by the 

user. 

 

The highest precision needed for the localisation system 

of an autonomous car is about a dozen of centimetres. 

This requirement must be fulfilled all the time, in all 

weather conditions, on all the roads (including urban 

canyons where GNSS is neither accurate, nor reliable). 

This level of accuracy is not reachable with state-of-the-

art INS-GNSS localisation, and extra information is 

needed. For anti-collision purposes, autonomous cars will 

be equipped with several cameras and LIDARs which can 

bring information on the movement, and hence the 

localisation of the car. 

 

Safran is developing four different hybridisations based 

on visual observation for the autonomous car in a 

cooperative project with Valeo: 

mailto:kevin.honore@safrangroup.com
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• Based directly on extracted characteristic 

features, as in classic VISUAL SLAM 

applications 

• Based on visual odometry (inferred from 

extracted characteristics features thanks to a 

Bundle Adjustment algorithm for example) 

• Based on visual beacon recognition 

• Based on visual map matching with a local map 

built from LIDARs and cameras  and precise 3D 

a priori map 

 

These observations can be combined in a unique data 

fusion algorithm (an Extended Kalman Filter for Safran) 

but the first two cannot be used at the same time (as they 

come from the same basic information). 

 

The theoretical models of these four hybridisations based 

on visual information are presented and the projections of 

their performance for the self-driving cars localisation are 

illustrated with simulations results.  

 

2 PROBLEM DESCRIPTION AND 

MODELISATION 

2.1 Inertial Navigation System 

The Inertial Navigation Systems (INS) are commonly 

composed of three accelerometers and three gyrometers. 

These latter Inertial Measurement Units (IMUs) use the 

terrestrial rotation, the gravity and their internal physics to 

determine the useful parameter needed for the navigation. 

The self-sufficiency of this system makes it an interesting 

candidate for the autonomous car self-driving.    

 

The independence of the device is however not enough to 

counteract the inherent errors that affect directly the 

IMUs. The accelerometers and gyrometers measurements 

are indeed not perfect due to errors that are generally 

modelled as: 

- Biases that affect the accelerometers 

measurements by adding a term, 𝑏, to the true 

specific force, 𝑓𝑠𝑣
, measured by the 

accelerometers :  

 

𝑓𝑠 = 𝑓𝑠𝑣
+ 𝑏 

 

- Drifts that affect the gyrometers measurements 

by adding a term, 𝑑, to the true angular velocity, 
𝑑𝜃

𝑑𝑡𝑣
, measured by the gyrometers:  

 
𝑑𝜃

𝑑𝑡
=

𝑑𝜃

𝑑𝑡 𝑣
+ 𝑑 

- Scale factors, 𝑆𝑓𝑎 and 𝑆𝑓𝑔, that affect both the 

gyrometers and accelerometers measurements:  

 

𝑓𝑠 = 𝑓𝑠 ∗ (1 + 𝑆𝑓𝑎) 
𝑑𝜃

𝑑𝑡
=

𝑑𝜃

𝑑𝑡 𝑣
∗ (1 + 𝑆𝑓𝑔) 

 

In order to take into account these errors the INS used for 

navigation must be headed by a so called alignment 

phase. By using a Zero velocity UPdaTe (ZUPT) 

information, this preliminary step permits to estimate the 

attitude and heading as well as the intrinsic errors 

presented above. However, once the vehicle is moving the 

alignment phase ends. The integration of the IMUs 

increments, corrected of the errors estimated, does not 

permit to meet the navigation precision required for the 

self-driving localisation problem.  

2.2 Hybridisation with camera using EKF 

The camera boarded in the vehicle can collect interesting 

data coming from the user’s direct environment. Image 

processing techniques, not addressed in this paper, make 

it indeed possible to extract from the consecutive images, 

points or lines whose positions and movements in the 

image can be used in complementarity with the INS (see 3 

and 4). These same image processing techniques enable 

also to recognize beacons, whose positions are known, or 

routes from a map. The latter information can also be 

processed by a hybridisation algorithm (see 5 and 6).  

 

The Extended Kalman Filter (EKF) is the Bayesian 

estimator preferred by Safran for both the alignment 

phase and the vision-aided IMU navigation. With the 

possibility to rely on years of knowledge coming from 

both the experience and the scientific community, this 

estimator permits to combine effectively the IMUs 

increments integration with plenty of other observation. 

This paper focuses on the clarification of the EKF 

observation equations by using the following EKF steps 

and notations:  

Prediction: 

𝑋̂(𝑘 + 1|𝑘) = Φ𝑘 . 𝑋̂(𝑘|𝑘) + 𝐺𝑘. 𝑈𝑘 

𝑃𝑘+1|𝑘 = Φ𝑘. 𝑃𝑘|𝑘. Φ𝑘
𝑇 + 𝑄𝑘 

Kalman Gain:  

𝐾𝑘+1 = 𝑃𝑘+1|𝑘. 𝐻𝑘+1
𝑇 ∗ (𝐻𝑘+1. 𝑃𝑘+1|𝑘. 𝐻𝑘+1

𝑇 + 𝑅𝑘+1)
−1

 

Update: 

𝑋̂𝑘+1|𝑘+1 = 𝑋̂𝑘+1|𝑘 + 𝐾𝑘+1 ∗ (𝑌𝑘+1 − 𝐻𝑘+1. 𝑋̂𝑘+1|𝑘) 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝑘+1 ∗ (𝐻𝑘+1. 𝑃𝑘+1|𝑘) 

 

By considering: 

- 𝑋̂k : The state vector 

- 𝑌𝑘 : The observation vector 

- Φ𝑘  : The propagation matrix 

- 𝑈𝑘  : The command vector  

- 𝐺𝑘 : The command matrix  

- 𝐻𝑘  : The observation matrix  

- 𝑊𝑘  : The state noise vector (with 𝑄𝑘  = Cov(𝑊𝑘)) 

- 𝑉𝑘  : The observation noise vector (with 𝑅𝑘 = 

Cov(𝑉𝑘)) 

 

Notes:  

The four hybridisations techniques presented assume the 

alignment phase done.  

The integration of the increments coming from the IMUs 

is not detailed to focus on the vision contribution. 

The camera is modelled as a pinhole. 



International Technical Symposium on Navigation and Timing (ITSNT) 2018 

13-16 Nov 2018 

ENAC, Toulouse, France 

2.3 Notations 

Hereafter are the definitions of the frames used in this 

paper.  

 Earth frame [e] 

[e] is an orthonormal coordinate system fixed within the 

earth. Its characteristics are: 

- Origin at the centre of the WGS84 ellipsoid.  

- Ze directed towards the north celestial pole. 

- Xe directed towards the intersection of the 

equatorial plane with the reference meridian.  

- Ye in the equatorial plane completing the direct 

frame.   

 Local geodetic frame [g] 

[g] is an orthonormal coordinate system which is rigidly 

attached to and defined within the vehicle carrying the 

navigation system. Its characteristics are: 

- Origin at the vehicle gravity centre. 

- Xg directed towards geographical north and 

belongs to local horizontal plane. 

- Yg directed towards west and belongs to local 

horizontal plane. 
- Zg along the plane (Xg, Yg) normal direction.  

 Navigation platform frame [v] 

[v] is an orthonormal coordinate system which is rigidly 

attached to and defined within the vehicle carrying the 

navigation system. This frame is the one used for the 

navigation integration and has the following 

characteristics: 

- Origin at the vehicle gravity centre. 
- [v] is derived from [g] frame by a wander 

azimuth α rotation along Zg axis. 

 Body frame [b] 

[b] is an orthonormal coordinate system which is rigidly 

attached to and defined within the vehicle carrying the 

navigation system. Its characteristics are: 

- Origin at the vehicle gravity centre. 

- Xb is collinear with longitudinal axis of vehicle, 

positive towards the nose. 

- Yb is collinear with lateral axis of carrier, 

positive towards the right wing. 

- Zb axis completes the right-hand system. 

 INS measurement frame [m] 

[m] is an orthonormal coordinate system attached to the 

INS. It corresponds to the frame in which the increments 

are calculated. Its characteristics are: 

- Origin at the INS gravity centre. 

- Xm is collinear with longitudinal axis of the 

device, positive towards the front. 

- Ym is with the lateral axis of the device, positive 

towards the right wing. 

- Zm completes the right-hand system. 

 Camera frame [c] 

[c] is an orthonormal coordinate system attached to the 

camera. Its characteristics are:  

- Origin at the Camera optical centre. 

- Xc is collinear with longitudinal axis of the 

device, positive towards the front. 

- Yc is with the lateral axis of the device, positive 

towards the right wing. 

- Zc completes the right-hand system. 

 Pixel frame [uv] 

[uv] is an orthonormal coordinate system attached to the 

camera. Its characteristics are: 

- Origin at the image centre. 

- U is collinear with Yc. 

- V is collinear with Zc. 

 Vectors and Matrices 

- In the whole paper the rotation matrices are 

noted with 𝑇 such as cbT  represents the camera 

harmonisation matrix to transform a vector 

expressed in body frame [b] to a vector 

expressed in camera frame [c].  

- Considering U a vector of three elements, 𝐴(𝑈) 

corresponds to the antisymmetric matrix, such 

as, with 𝑈 = (
𝑈1
𝑈2
𝑈3

) : 

𝐴(𝑈) =  (
0 𝑈2 −𝑈3

−𝑈2 0 𝑈1

𝑈3 −𝑈1 0
) 

- Considering 𝑉 a vector, the whole paper notes 

this vector and components expressed in the 

camera frame [c] as: 

𝑉[𝑐] = (

𝑉𝑥
[𝑐]

𝑉𝑦
[𝑐]

𝑉𝑧
[𝑐]

) 

 

3 TIGHTLY-COUPLED INS-VISION 

HYBRIDISATION 

Inspired from the Simultaneous Localisation And 

Mapping (SLAM) algorithm, this hybridisation permits an 

increased calculation efficiency by considering a limited 

amount of data coming from the camera.    

3.1 Theory 

 Motivation 

The camera can provide information about the 

movements of the user surrounding objects through what 

can be called Feature Points (FP). These FPs are pixels of 

the camera image and correspond directly to points, in the 

terrestrial frame [e], projected in the pixel frame [uv]. 

These pixels are trackable in time thanks to the image 

processing algorithms. The processing of this information, 
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alone or with an INS can lead to a positioning estimation 

technique.   

 

The SLAM algorithms are one of the methods that use the 

FPs to locate the user in a map. By processing a huge 

amount of information this well-known localization 

technique permits to estimate the user position while 

creating a map of the visited place. As mentioned in 

(Bailey, Nieto, Guivant, Stevens, & Nebot, 2006), 

although this can lead to an interesting positioning 

precision in certain case, the amount of data that is to be 

processed makes the algorithms hard to be implemented 

in real time.  

The combination of the INS with the camera reduces the 

need of an important amount of FPs. By using the INS 

continuity advantage, the EKF presented in this paragraph 

is indeed behaving as a SLAM algorithm by taking 

advantage of only 15 camera FPs.    

 

 The inverse depth parameterisation 

Once known the general principle of this hybridisation, 

one must decide the composition of the EKF state vector. 

The camera part of this vector depends on the camera 

information that is to be used. In the case of the tightly-

coupled algorithm the state of the art provides plenty of 

possibilities. The most intuitive one, presented in 

(Mourikis & Roumeliotis, 2007), consists on filling the 

state vector directly with the position of the FPs in the 

terrestrial frame [e]. Another solution, presented in (Veth, 

2009), suggest completing the state vector with the 

position of the FPs in the camera pixel frame [uv].  

 

These two latter methods are not the one discussed in this 

paper whether because of a low stability of the solution or 

because of a complex EKF state prediction equation. 

Safran has preferred the 6 states parameterisation method 

consisting of the consideration of 6 states for each FPs 

considered: 

- 𝑃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘
[𝑒]

 : (3x1) the initial user position, in the 

terrestrial frame. It is the user position at the first 

time of the FP view.  

- 𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘
[𝑒]

  : (2x1) the initial azimuth and elevation 

angles in the terrestrial frame. These angles permit to 

determine the direction of the vector with origin 

𝑃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘
[𝑒]

 and pointing at the FP.   

- 𝜌𝑖𝑛𝑖 𝑘⁄ : The initial inverse of the distance between the 

user initial position and the FP.   

 

This solution, called the inverse depth parameterisation, 

may not be intuitive. The inverse depth is in fact used in 

order for this estimated quantity to be Gaussian. Part IV 

of paper (Civera , Davidson, & Martinez Montiel, 2008) 

gives the mathematical theory lying behind this 

representation. It also provides mathematical tools to 

prove the bigger efficiency of this method compared to 

the other presented in (Mourikis & Roumeliotis, 2007). 

 

 
 

Figure 4: Tightly-Coupled hybridisation 

parameterisation illustration 

 EKF equations 

Specific notations  

For this part only, in order for the equations to be clear, 

the EKF hybridisation uses the state noise vector 

presented below, considering the states instead of the 

error states:  

𝑋𝑘 =

[
 
 
 
 
 
 
 

𝑃𝑢𝑠𝑒𝑟 𝑘⁄

𝑉𝑢𝑠𝑒𝑟 𝑘⁄

𝜃𝑢𝑠𝑒𝑟 𝑘⁄

𝐷𝑔𝑦𝑟 𝑘⁄

𝐵𝑎𝑐𝑐 𝑘⁄

𝑆𝑓𝑎𝑐𝑐/𝑘

𝐶𝑎𝑚𝑒𝑟𝑎𝑘]
 
 
 
 
 
 
 

 

With:  

- 𝑃𝑢𝑠𝑒𝑟 𝑘⁄  : (3x1) User position vector.  

- 𝑉𝑢𝑠𝑒𝑟 𝑘⁄  : (3x1) User velocity vector.  

- 𝜃𝑢𝑠𝑒𝑟 𝑘⁄  : (3x1) User attitude and heading vector. 

- 𝐷𝑔𝑦𝑟 𝑘⁄  : (3x1) Drifts vector for the gyrometers.  

- 𝐵𝑎𝑐𝑐 𝑘⁄  : (3x1) Biases vector for the accelerometers.  

- 𝑆𝑓𝑎𝑐𝑐/𝑘 : (3x1) Accelerometer scale factor. 

- 𝐶𝑎𝑚𝑒𝑟𝑎𝑘: (6x1) inverse depth parametrisation (see 

3.1.2). 

 

State equation  

Considering FPs that are immobile in the scene, the 

inverse depth parameterisation selected for this 

hybridisation lies on states that are constant over time. 

This important hypothesis - that constraints the image 

processing in the choice of the FPs - makes the state 

transition matrix equal to identity for the FPs related 

states.   

 

Observation equation 

Assuming the notation presented in 2, the EKF 

observation equation can be considered as follow:  

𝑌𝑘 = ℎ(𝑋𝑘) = 𝑔1(𝑔2(𝑋𝑘)) 

 

With: 

𝑔2(𝑋𝑘) = ℎ[𝑐] = 𝑇𝑐𝑒 ∗ (𝑃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘
[𝑒]

− 𝑃𝑢𝑠𝑒𝑟/𝑘
[𝑒]

+
1

𝜌𝑖𝑛𝑖 𝑘⁄
∗ 𝑚(𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘

[𝑒]
) ) 
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𝑔1(ℎ
[𝑐]) =

(

  
 

−𝑓𝑢 ∗
ℎ𝑦

[𝑐]

ℎ𝑥
[𝑐]

−𝑓𝑣 ∗
ℎ𝑧

[𝑐]

ℎ𝑥
[𝑐]

)

  
 

 

Such as:  

- 𝑚(𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘

[𝑒] ) : (3x1) Directional vector between the 

FP and the initial user position in the terrestrial 

frame. 

- ℎ[𝑐]: (3x1) FP position expressed in the camera 

frame. 

ℎ[𝑐] = [

ℎ𝑥
[𝑐]

ℎ𝑦
[𝑐]

ℎ𝑧
[𝑐]

] 

- 𝑓𝑢 , 𝑓𝑣: Camera focal lengths.  

- 𝑇𝑐𝑒 : Transfer matrix. 

 

This equation leads to the calculation of the observation 

matrix that comes from the Jacobian matrix calculation of 

h(X). Thus:  

𝐻 = 
𝜕ℎ

𝜕𝑋
= 

𝜕𝑔1

𝜕ℎ[𝑐]
∗
𝜕𝑔2

𝜕𝑋
 

Such as 
𝜕𝑔2

𝜕𝑋
= (−𝑇𝑐𝑒 03𝑋3 𝐵 03𝑋3 03𝑋3 03𝑋2 𝑇𝑐𝑒 𝐶 𝐷)  

 

𝜕𝑔1

𝜕𝐴
=

(

 
 
 

𝑓𝑢 ∗
ℎ𝑦

[𝑐]

ℎ𝑥
[𝑐]2

−𝑓𝑢 ∗
1

ℎ𝑥
[𝑐]

0

𝑓𝑣 ∗
ℎ𝑧

[𝑐]

ℎ𝑥
[𝑐]2

0 −𝑓𝑣 ∗
1

ℎ𝑥
[𝑐]

)

 
 
 

 

With 

𝐵 =  

𝜕𝑇𝑐𝑒 ∗ (𝑃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘
[𝑒]

− 𝑃𝑢𝑠𝑒𝑟/𝑘
[𝑒]

+
1

𝜌𝑖𝑛𝑖 𝑘⁄
∗ 𝑚 (𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘

[𝑒]
) )

𝜕𝜃
 

𝐵 =
𝜕𝑇𝑐𝑒

𝜕𝜃
∗ (𝑃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘

[𝑒]
− 𝑃𝑢𝑠𝑒𝑟/𝑘

[𝑒]
+

1

𝜌𝑖𝑛𝑖 𝑘⁄
∗ 𝑚 (𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘

[𝑒]
) ) 

 

𝐶 =

𝜕𝑇𝑐𝑒 ∗ (𝑃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘
[𝑒]

− 𝑃𝑢𝑠𝑒𝑟/𝑘
[𝑒]

+
1

𝜌𝑖𝑛𝑖 𝑘⁄
∗ 𝑚 (𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘

[𝑒]
) )

𝜕𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖 𝑘⁄
 

𝐶 = 𝑇𝑐𝑒 ∗
1

𝜌𝑖𝑛𝑖 𝑘⁄
∗

𝜕𝑚 (𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘
[𝑒]

)

𝜕𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖 𝑘⁄
 

 

𝐷 =

𝜕𝑇𝑐𝑒 ∗ (𝑃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘
[𝑒]

− 𝑃𝑢𝑠𝑒𝑟/𝑘
[𝑒]

+
1

𝜌𝑖𝑛𝑖 𝑘⁄
∗ 𝑚 (𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘

[𝑒]
) )

𝜕𝜌𝑖𝑛𝑖 𝑘⁄
 

𝐷 = 𝑇𝑐𝑒 ∗
𝜕 1

𝜌𝑖𝑛𝑖 𝑘⁄⁄

𝜕𝜌𝑖𝑛𝑖 𝑘⁄
∗ 𝑚 (𝜃𝑢𝑠𝑒𝑟_𝑖𝑛𝑖/𝑘

[𝑒]
) 

 

Re-initialization of the covariance matrix  

One of the specificity of this hybridisation lies in the FPs 

states ephemerality. While moving, the vehicle may 

indeed consider each FPs for a short period of time before 

having to consider a new one. Consequently, the EKF 

shall adapt its estimations and especially the covariance 

matrix parts referring to the disappeared/appeared FPs at a 

possibly high frequency. This uninterrupted intervention 

in P leads inevitably to break the positive definite 

characteristic of the covariance matrix necessary for a 

healthy behaviour of the estimator.  

 

To counteract this point Safran has implemented the tight 

coupled hybridisation using a Kalman-Bierman filter. The 

latter filter basic principle lies into the propagation of a 

UDUt covariance factorization of the P covariance matrix. 

By using U and D, upper triangular matrix and diagonal 

matrix respectively, such as 𝑃 = 𝑈. 𝐷. 𝑈𝑇 , and by 

reinitialising the U and D decomposition of P at each 

disappearance of a FP, the filter is assured not to lose the 

positive definite characteristic of P. 

3.2 Simulation results 

 Simulation tool 

The EKF tight vision-aided IMU hybridisation has been 

implemented on Matlab. The simulator coded and owned 

by Safran permits to simulate: 

- A typical Safran INS. This is done by simulating the 

accelerometers and gyrometers increments affected to 

the precisely modelled errors. The main 

characteristics are:  

- Accelerometer biases: 50 micro g 

- Accelerometer Scale Factor: 4 ppm 

- Gyrometer drift: 0.006 °/h 

- Gyrometer Scale Factor: 60 ppm 

- A basic pinhole camera with the following 

characteristics:  

- Field of vision of 300 meters  

- Field of vision opening width of 30 degrees 

from the left to the right 

- Camera focal centre located at the gravity 

centre of the INS (no lever arms are 

modelled).   

- Camera noise is 1 pixel. 

- Direction of the camera is configurable. The 

camera can look straight forward, along the 

vehicle front, or on the wayside of the latter.  

- Feature points that appear directly in the field of 

vision of the camera for use by the EKF.  

- The EKF algorithm presented previously. 

 

 
Figure 5: Pinhole camera, FPs and vehicle simulation 

illustration. 

 

 

Figure 5 illustrates the basic environment of the camera 

that is simulated. The green point represents the true 
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position of the vehicle whose frame [b] attached to is 

represented with coloured arrows. In pink, the camera 

field of view is represented covering FPs in white and red. 

The yellow points are the FPs position estimated by the 

EKF. 

 Simulation context 

Using a typical Safran INS and a pinhole camera 

presented before, two times 100 Monte Carlo campaigns 

have been launched for a vehicle navigating on a 

synthetic, city-like trajectory. The first campaign assumes 

a camera looking in the direction of the vehicle front (case 

Front) whereas the second assumes a camera pointing in 

the wayside of this vehicle (case Wayside). Table 

1summarises the way the FPs are simulated for both the 

Monte Carlo campaigns.    

Parameters Case Value Units 

Inital distance 

between user and FP  

Front [100;300] meters 

Wayside [200;300] meters 

Initial Azimuth angle  
Front Anywhere - 

Wayside [-Azimutmax;0] degrees 

Initial Elevation angle  
Front [-5;5] degrees 

Wayside [-5;5] degrees 

 

Table 1: Initial parameters for the FPs appearance 

 Results 

The horizontal position accuracy is at best 6 meters RMS. 

The different configurations of the camera lead to two 

different estimation precisions. When the camera looks 

straight forward the EKF is less able to estimate the FP 

position than when it looks in the wayside. The inverse 

depth is indeed less observable in time by the EKF when 

the FPs moves in the image are not significant. Thus, as 

illustrate in Figure 6, the camera pointing on the wayside 

is more advantageous for this hybridisation than in the 

other case.   

Parameters Case Value Units 

Position RMS  
Front 20,42 meters 

Wayside 6,06 meters 

Velocity RMS  
Front 0,15 meters/second 

Wayside 0,07 meters/second 

Heading RMS  
Front 3,4 mrad 

Wayside 1,88 mrad 

Pitch RMS  
Front 0,21 mrad 

Wayside 0,14 mrad 

Roll RMS  
Front 0,18 mrad 

Wayside 0,12 mrad 

FP Position 

RMS  

Front 23,35 meters 

Wayside 1,4 meters 

 

Table 2: Results of the Monte Carlo  

 Conclusion 

This hybridisation simulated as presented is a priori not 

efficient enough to be implemented alone in the self-

driving car. Further studies are being led in Safran to 

improve this hybridisation as well as to combine it with 

several others like the one in the following chapters of 

this article. 

 

 
Figure 6: Illustration of the moves in the image of the 

FPs for the two cases studied 

 

 

4 LOOSLY-COUPLED INS-VISION 

HYBRIDISATION 

Another approach for fusing visual odometry information 

with localisation is to compute VSLAM on camera video 

streams and use the outputs (rotation and displacement) 

for data fusion. This is the “loosely coupled” version of 

hybridisation presented in chapter 3. 

4.1 Theory 

We suppose that Bundle Adjustment provides 2 

measurements that are: 

- the normalised translation vector named “u”, a unit 

vector supported by the translation vector T of the 

camera reference point between the initial and final 

instants projected in the camera frame, dates from the 

initial moment, 

- the rotation matrix named R which transforms the 

reference frame of the data camera at initial moment 

to the reference frame of the data camera at final 

moment, 

- Initial instant ti and final instant tf are supposed 

synchronous with Kalman filter tasks:  ti = tk-1 and tf = 

tk . To ensure of that, it is necessary that the INS sends 

to the camera a signal to synchronise frame 

acquisition with Kalman filter tasks. 
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at initial 

moment ti

[c(ti)] C(ti)

Camera
at final 

moment tf

[c(tf)]

Translation T, normalized 
translation u et Rotation R

between initial and final moments

C(tf)IRS(tf)

O [e]
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r(
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r(tf)
BL

T
R
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Figure 7:Loosely-Coupled hybridisation 

parameterisation illustration 

 

Assuming the notations presented in 2, let us consider: 

- BL lever arm from navigation point of IRS to C, 

reference point of the camera expressed in [b]. 

This lever arm is supposed to be constant and 

perfectly known 

- 
cbT is assumed to be constant 

- 
mbT is assumed to be constant and perfectly 

known 

- 
33xId Identity matrix 3x3 

 

The camera reference point geocentric position at the 

initial instant ti expressed in the reference [c] dated from 

the initial instant ti is written: 

 

𝑃𝑜𝑠𝐸𝐶𝐸𝐹𝐶𝑎𝑚(𝑡𝑖)
[𝑐]𝑡𝑖 = 𝑇𝑐𝑏. [𝑇𝑚𝑏

𝑇 . [𝑇𝑚𝑒(𝑡𝑖). 𝑟
[𝑒](𝑡𝑖)] + 𝐵𝐿[𝑏]] 

 

Similarly, the camera reference point geocentric position 

at the final instant tf expressed in the reference [c] dated 

from the initial instant ti is written: 

 

𝑃𝑜𝑠𝐸𝐶𝐸𝐹𝐶𝑎𝑚(𝑡𝑓)[𝑐]𝑡𝑖 = 𝑇𝑐𝑏 . [𝑇𝑚𝑏
𝑇 . [𝑇𝑚𝑒(𝑡𝑖). 𝑟

[𝑒](𝑡𝑓)] + 𝐵𝐿[𝑏]] 

 

The observation model of translation T is obtained by 

difference between the true translation and the estimated 

translation by the inertial navigation: 

  

𝛿𝑌𝑇(𝑡𝑓) = 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛[𝑐]𝑡𝑖(𝑡𝑖 , 𝑡𝑓) − 𝑇̂𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛[𝑐]𝑡𝑖(𝑡𝑖 , 𝑡𝑓) 

 

With following navigation errors: 

- Position errors named r  and defined by 

𝛿𝑟 = 𝑇̂𝑣𝑒. (𝑟
[𝑒] − 𝑟̂[𝑒]), 

- Velocity errors named V  and defined by  

 𝛿𝑉 = 𝑇̂𝑣𝑒. (𝑉
[𝑒] − 𝑉̂[𝑒]), 

- Attitude errors named   and defined by 

  33
ˆˆ

x

T

ememev IdTTTA  , 

 

we can rewrite the model as follows: 

 

𝛿𝑌𝑇(𝑡𝑓) = 𝑇𝑐𝑏. 𝑇𝑚𝑏
𝑇 . 𝑇̂𝑚𝑒(𝑡𝑖). {

[𝑇̂𝑒𝑣(𝑡𝑓). 𝛿𝑟(𝑡𝑓) − 𝑇̂𝑒𝑣(𝑡𝑖). 𝛿𝑟(𝑡𝑖)]

−𝐴[𝑇̂𝑒𝑣(𝑡𝑖). 𝜃(𝑡𝑖)]. [𝑟̂
[𝑒](𝑡𝑓) − 𝑟̂[𝑒](𝑡𝑖)]

} + 𝑁𝐿 

 

The first term  ime

T

mbcb tTTT ˆ  is the projection matrix in 

the initial camera frame. 

The second term         iievffev trtTtrtT   ˆˆ  is the 

variation of position error. 

The third term 𝐴[𝑇̂𝑒𝑣(𝑡𝑖). 𝜃(𝑡𝑖)]. [𝑟̂
[𝑒](𝑡𝑓) − 𝑟̂[𝑒](𝑡𝑖)] is the 

product Translation by Variation of attitude error. 

𝑁𝐿 represents a nonlinear term. 

 

To link the errors of the instant ti (supposed equal to 

previous Kalman filter task tk-1) to the current instant tf 

(supposed equal to actual Kalman filter task tk), an 

augmented state is introduced: 
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with following notations: 

-  1,  kk tt  is transition matrix defined by 

     11,   kkkk tXtttX   

- 
rT  makes it possible to extract the position error 

states r from X state vector: 

   krk tXTtr    

For example, if r states are placed at the 

beginning of the state vector, 
rT is defined by 



















0100

0010

0001







rT  

- T  makes it possible to extract the position error 

states  from X state vector: 

   krk tXTtr    

For example, if  states are placed after r  and 

v errors, T is defined by  

 



















0100000000

0010000000

0001000000







T
 

The observation model of translation T can be rewritten 

with this augmented state; 

 

      

    

     NLtttH

trtrtH

tXTtXtHtY

kkkT

kkkT

krkkTfT











11

11

,

,

,







 

 

       rkevkme

T

mbcbkkT TtTtTTTtXtH  
ˆˆ, 1  

      111
ˆˆ,   kevkme

T

mbcbkkT tTtTTTtrtH   

𝐻𝑇(𝑡𝑘 , 𝜃(𝑡𝑘−1)) = 𝑇𝑐𝑏 .𝑇𝑚𝑏
𝑇 . 𝑇̂𝑚𝑒(𝑡𝑘−1).𝐴[𝑟̂[𝑒](𝑡𝑘) − 𝑟̂[𝑒](𝑡𝑘−1)]. 𝑇̂𝑒𝑣(𝑡𝑘−1) 
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The observation model of rotation R is obtained by 

written the micro-rotator between the true rotation and 

estimated rotation by inertial navigation: 

 
𝑇𝑐𝑡𝑓

𝑐𝑡𝑖
= expSO3 (𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛[𝑐]𝑡𝑖(𝑡𝑖 , 𝑡𝑓)) = 𝑇𝑐𝑏. 𝑇𝑚𝑏

𝑇 . 𝑇𝑚𝑒(𝑡𝑓). 𝑇𝑚𝑒
𝑇 (𝑡𝑖). 𝑇𝑚𝑏 . 𝑇𝑐𝑏

𝑇  

 
𝑇̂𝑐𝑡𝑓

𝑐𝑡𝑖
= expSO3 (𝑅̂𝑜𝑡𝑎𝑡𝑖𝑜𝑛[𝑐]𝑡𝑖(𝑡𝑖 , 𝑡𝑓)) = 𝑇𝑐𝑏. 𝑇𝑚𝑏

𝑇 . 𝑇̂𝑚𝑒(𝑡𝑓). 𝑇̂𝑚𝑒
𝑇 (𝑡𝑖). 𝑇𝑚𝑏. 𝑇𝑐𝑏

𝑇  

 

 
33

ˆ
x

T

ccccfR IdTTtY
titftitf
  

   
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T
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





ˆ

ˆˆ

ˆ





 

The term        iievffev ttTttT   ˆˆ  represents the 

variation of attitude error. 

NLR represents a nonlinear term. 

 

The observation model of rotation R can be rewritten with 

this augmented state; 

 

            RkkkRkkkRfR NLtttHtXtXtHtY   11,, 

 

        TtTtTTTtXtH kevkme

T

mbcbkkR  ˆˆ,  

      11
ˆˆ,   kevkme

T

mbcbkkR tTtTTTttH   

 

The true normalized translation is written as follows:  

𝑢 =
𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛[𝑐]𝑡𝑖(𝑡𝑖, 𝑡𝑓)

‖𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛[𝑐]𝑡𝑖(𝑡𝑖, 𝑡𝑓)‖
=

𝑇

‖𝑇‖
 

 

Moreover, the differential of u is:   

T

Tu

T

T

T

TTTT
u

ˆ

ˆˆ

ˆ

ˆ

ˆ

ˆˆˆˆ

ˆ
2










 

We can write the innovation of normalised translation as 

follows: 

      uffufu NLtXtHuutY   ˆ  

          
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T
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fTfu tHuuId
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4.2 Simulation results 

This hybridisation has been tested on the Kitti dataset and 

shows enhanced results on the estimated position. 

 

As illustrated on Figure 8, the position error at the end of 

the simulation is 20 m on a 320 m track, which is 50% 

better than the pure inertia localisation. 

 
Figure 8: Results of loosely-coupled INS-VISION 

hybridisation on Kitti dataset 

 

5 VISUAL BEACON HYBRIDISATION   

On autonomous vehicle, vision sensors (camera, Lidar) 

coupled with high accuracy cartography could be used as 

a very precise absolute positioning. In this chapter, we 

experiment using mapped visual beacon, such as road 

signs, for navigation aiding. Beacons are considered 

punctual, this does not rely on continuous structure such 

as lane markings. 

 

STOP Visual beacon

True position

Inertial / odometry navigation

Inertial / odometry navigation 
aided with visual beacons

Beacon identification range

 
Figure 9: Mitigation of dead-reckoning drift with 

visual beacon aiding 

 

The overall process can be decomposed in three steps: 

 

1. Detection: vision algorithms - based on neural 

networks - can recognise a specific beacon through a 

video stream. Its direction in the camera frame is 

characterised by two angles, obtained with pixel 

coordinates. 

 

2. Identification: The detected beacon is compared with 

the local map. If a beacon is found in the direction of 

detection, association is made to get the beacon 

geographical coordinates.  

 

3. Data fusion: Beacon direction in camera frame 

(identification) and absolute position (identification) are 

sent to the navigation system for data fusion. 
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Figure 11: Evolution of the initial estimated position with the IEKF 

Figure 12 : Distribution of the ratio r  for 1 (left) and 4 (right) 

iterations of the IEKF (𝒓 > 𝟐 is not displayed) 

Beacon n°1 :
   - camera coord. : (α1, β1)
   - geographic coord. : (lat1, lon1, alt1)

Map accuracy : 10 cm
Camera accuracy : 3 pixels

EKF Data fusion
[1 Hz]

Dead-reckoning 
navigation

[100 Hz]

Camera + Map

Navigation system

Vehicle position

Camera model (pinhole)

Beacon n°2 :
   - camera coord. : (α2, β2)
   - geographic coord. : (lat2, lon2, alt2)

Figure 10: Data fusion diagram (EKF) 

5.1 Kalman Model 

5.1.1 State vector and measurement matrix 

The information of beacon detection and identification is 

fused with dead-reckoning navigation through an 

Extended Kalman Filter (EKF). 

The EKF state vector contains error vectors of position 

and attitude (in [g] frame): 

 

𝑋 =

[
 
 
 
 
 
 
𝛿𝑝𝑥

𝛿𝑝𝑦

𝛿𝑝𝑧

𝛿φx

𝛿φy

𝛿φz]
 
 
 
 
 
 

 (1) 

 

The camera sensor is modeled with the pinhole equation: 

 

𝑧 = (
𝛼
𝛽) = (

arctan (
ℎ𝑦

𝑐

ℎ𝑥
𝑐)

arctan (
ℎ𝑧

𝑐

ℎ𝑥
𝑐)

) (2) 

 

With the following notations: 

 ℎ𝑐 = (

ℎ𝑥
𝑐

ℎ𝑦
𝑐

ℎ𝑧
𝑐

) = 𝑇𝑐/𝑔 ∙ ℎ𝑔 : vector between beacon 

and camera in the camera frame 

 ℎ𝑔 : vector between beacon and camera in 

the geographic frame 

 𝑇𝑐/𝑔 : transition matrix between geographic 

frame [g] and camera frame [c] 

For EKF implementation, equation (2) has to be 

derivated. The measurement matrix 𝐻 is obtained with the 

calculation of the Jacobian:  

 

𝐻 =
𝜕𝑧

𝜕𝑋
=

𝜕𝑧

𝜕ℎ𝑐 ∙
𝜕ℎ𝑐

𝜕𝑋
=

𝜕𝑧

𝜕ℎ𝑐 ∙ [𝐻𝑝 𝐻φ] (3) 

 

Terms 
𝜕𝑧

𝜕ℎ𝑐, 𝐻𝑝 and 𝐻φ are given by the following 

equations: 

 

𝜕𝑧

𝜕ℎ𝑐 = [
−

ℎ𝑦
𝑐

ℎ𝑥
𝑐2

+ℎ𝑦
𝑐 2

ℎ𝑥
𝑐

ℎ𝑥
𝑐2

+ℎ𝑦
𝑐 2 0

−
ℎ𝑧

𝑐

ℎ𝑥
𝑐2

+ℎ𝑧
𝑐2 0

ℎ𝑥
𝑐

ℎ𝑥
𝑐2

+ℎ𝑧
𝑐2

] (4) 

 

𝐻𝑝 =
𝜕ℎ𝑐

𝜕𝑋𝑝
= −𝑇𝑐/𝑔 (5) 

 

𝐻𝜑 =
𝜕ℎ𝑐

𝜕𝑋𝜑
= 𝑇𝑐/𝑔 ∙ [

0 ℎ𝑥
𝑔

−ℎ𝑦
𝑔

−ℎ𝑥
𝑔

0 ℎ𝑧
𝑔

ℎ𝑦
𝑔

−ℎ𝑧
𝑔

0

] (6) 

5.1.2 Management of nonlinearities 

The linearisation approximation is a strong hypothesis 

that is not satisfied for every geometric configuration. In 

order to mitigate the effect of nonlinearities, an iterative 

observation has been implemented (Mirzaei & 

Roumeliotis, 2008).  

Indeed, the iterated EKF (IEKF) enables to improve the 

Kalman Filter update, as illustrated in Figure 11: the 

estimated position progressively moves towards the true 

line of sight and the covariance is getting error 

representative after 4 iterations. 
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Figure 12, in which the ratio 𝑟 =
𝑒𝑟𝑟𝑜𝑟

𝑠𝑡𝑑
 after Kalman 

update is displayed with a colorbar. As expected, the 

region of validity widens and gets more accurate as more 

iterations are considered.   

 

Nonetheless, on some degenerate cases in which camera 

line of sight direction is erroneous (see Figure 13), the 

iterative process can bring divergence.  

To address this problem, a condition can be added to 

execute the data fusion, based on the estimated beacon 

coordinates in camera frame: 

 

𝛼̂ < 𝛼thres. 𝐴𝑁𝐷 𝛽̂ < 𝛽thres. (7) 

 

Terms 𝜶̂ and 𝜷̂ are, respectively, Kalman estimates of 𝜶 

and 𝜷, which depend on position and attitude estimates 

(see Figure 13). In this study, there is no analytical 

formulation proposal for thresholds 𝜶𝐭𝐡𝐫𝐞𝐬. and 𝜷𝐭𝐡𝐫𝐞𝐬., 

they are set empirically. In         

              Figure 14, we show the evolution of the region of 

validity (and thus, 𝜶𝐭𝐡𝐫𝐞𝐬. in Table 1) for different values 

of 𝒓, considering 4 IEKF iterations.  

 

 

Visual beacon

60

True line of sight

Estimated line of sight

True position

Estimated position

αthres.

αFoV

α 

α

Figure 13: Illustration of a geometric configuration 

with nonlinearities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

              Figure 14: Evolution of the region of validity 

 

 

Table 3: Evolution of the threshold angle 

 

𝒓𝐦𝐚𝐱. 1 1.25 1.5 1.75 2 

𝜶𝐭𝐡𝐫𝐞𝐬. 

(degrees) 
14.7 51.3 66.5 77.6 88.3 

5.1.3 Measurement errors 

The measurement error contributors can be classified into 

two categories: 

 If error is Gaussian, its amplitude is modelled 

through the Observation noise covariance matrix 

𝑅. This can be further classified: 

o Homogeneous to angle errors in the 

camera frame 

𝑅 = [
𝜎(ε𝛼)2 0

0 𝜎(ε𝛽)
2] 

 

o Homogeneous to position errors in the 

geographic frame 

𝑅 = 𝐾 ∙ [
𝜎(ε𝑥)

2 0

0 𝜎(ε𝑦)
2] ∙ 𝐾𝑇 

 

with 𝐾 =
𝜕𝑧

𝜕ℎ𝑐 ∙ 𝑇𝑐/𝑔 

 If error is constant, there are two configurations: 
o Its amplitude is negligible toward other 

contributors. This does not need to be 

modelled 
o Its amplitude is not negligible toward 

other contributors. This must be 

modelled through a new state in 𝑋. In 

the measurement matrix 𝐻 the new 

terms are inspired from 𝛿𝑝𝑥, 𝛿𝑝𝑦, 𝛿𝑝𝑧 

for position errors and from 𝛿φx, 𝛿φy, 

𝛿φz for angle errors. 

Table 4: Measurement error contributors 

 

Error contributor Angle Position 

Gaussian Camera measure - 

Constant Harmonisation 

Lever arm 

Map bias 

Datation
(*)

 
 

(*) position error is function of the vehicle speed 

5.2 Simulation results 

This hybridisation has been tested on Monte-carlo 

simulations on a simple use-case: the vehicle is moving 

on a straight road with a road sign on its right. 

Observability is provided by the line of sight evolution in 
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geographic frame (see 

Visual  beacon

50

 
Figure 15). 

 

Note: on theses simulations, road sign is no longer 

detected after the vehicle have overtaken it. 

 

Table 5: Parameters 

 

Parameters Value Unit Distribution 

Number of simulations 

(Monte-carlo) 
100 - constant 

Camera noise 1 mrad gaussian 

Camera Horizontal FoV 45 ° constant 

Camera Vertical FoV 45 ° constant 

Camera acquisition rate 10 Hz constant 

Number of cameras 3 - constant 

Map bias (X, Y & Z) 0.1 m gaussian 

Initial position error (X, Y 

& Z) 
1 m gaussian 

Initial azimuth error 3 mrad gaussian 

Road sign distance to the 

road 
2 m constant 

 

As illustrated in Table 5, errors between camera and IMU 

– such as lever arm, harmonization and datation - are 

neglected in this simulation. In future works (e.g real time 

trials), these terms must be considered by adding new 

states or new terms in the measurement matrix (see 

§5.1.3). 

Visual  beacon

50

 
Figure 15: One beacon simulation with moving vehicle 

 

The horizontal position accuracy is 16 cm error RMS, 

considering a 10 ∙ √2 cm map bias (see Table 6, Figure 

15). Thanks to this new observation, we are reaching the 

map accuracy on this simulation dataset. 

 

Table 6: Hybridization accuracy 

 

RMS 

position 

error 

Unit Longi. Transv. XY 

Initial [m] 1.0 1.4 

End of 

trajectory 
[m] 0.12 0.10 0.16 

 

 

Figure 16: One beacon simulation, simulation results 

 

As Kalman filter parameters have been set for robustness, 

this lead to a conservative covariance when observation is 

made many times in a row (see Table 7). 

 

Table 7: Kalman filter covariance representativeness 

at end of trajectory 

 

Covariance 

representativeness 
Unit Gaussian Simulation 

error < 1 x std [%] 68 99 

error < 2 x std [%] 95 100 

error < 3 x std [%] 99.7 100 

 

6 MAP MATCHING HYBRIDISATION 

Map-matching localisation belongs to the absolute 

positioning algorithm family alongside with the visual-

beacon localisation techniques. Unlike the latter, map-

matching positioning methods mainly use continuous 

structures such as lanes, walls, road markings for instance 

and apply the following scheme: knowing a prior map of 

such structures and the predicted position and heading of 

the carrier – eg. a car or a plane–, one can predict a visual 

information and compare it to the actual visual sensors’ 

stream. The resulting correlation is a rotation-translation 

pair (𝑅, 𝑡) that can be used as a loose observation within 

an Extended Kalman Filter (EKF). 

Expected accuracies directly depend on the map 

precision, but are often at the decimeter-level. 
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6.1 Theory  

The following parts describe what is encoded in the 

simulated maps and how. Then, the algorithm used is 

presented: it relies on a ICP technique called TRimmed 

Iterative Closest-Point (TRiCP). The associated 

covariance and observation matrix must be computed to 

be embedded in an EKF framework. 

6.1.1  Map 

The map used here are synthetics for simulation purposes. 

 

The paper Generation of High Precision Digital Maps 

using Circular Arc Splines presented by (Andreas 

Schindler, 05 July 2012) explains a method to encode lane 

markings and most road markings with smoothed lines 

made of 2D line segments and circular lines called 

SMAPs, resulting in a 2D maps. The same geometric 

elements are generated and used here: they enable fast 

projections while reducing the map size. Since they are 

2D maps – in UTM format–, they only enable 

(

𝑒𝑎𝑠𝑡
𝑛𝑜𝑟𝑡ℎ

ℎ𝑒𝑎𝑑𝑖𝑛𝑔
) computation which is enough for most 

applications. 

6.1.2  TRiCP 

Described in the (Besl & McKay, Feb. 1992) paper, the 

Iterative Closest Point algorithm (ICP) aims at computing 

the optimal transformation between a point cloud 𝑃 and 

an entity 𝑀 in the least-square sense in an iterative way: 

For each iteration, the steps are as follow:  

1) Computation of the closest points of 𝑃, from 

M, resulting in Q. 

2)  (𝑅, 𝑡) pair computation for (𝑃, 𝑄) 

3) (𝑅, 𝑡) application to 𝑃, resulting in a new 𝑃  

In our case, the initial point cloud 𝑃 is created from the 

visual sensors, processed and projected onto the map 

based on the state prediction. The 1) step is carried out 

with simple 2D projections on line segments and circular 

arcs. The 2) step formula is the “Unit Quaternion” (Horn, 

1986) (Schindler, 15 October 2013), the latter being the 

main source of inspiration of this work. Another method 

of resolution exists nonetheless (S.Umeyama, 1991), both 

are inferred from the point-to-point cost function 𝐽𝑝𝑡−𝑝𝑡
(𝑖)

 

for the i-step: 

𝐽𝑝𝑡−𝑝𝑡
(𝑖)

= ∑‖𝑝𝑗
(𝑖) − 𝑞𝑗

(𝑖)‖
2

2
𝑛

𝑗=1

 

. The 3) step applies the following roto-translation 𝑇 

formula – for 𝑖 step: 

𝑇𝜙𝑖,𝑠𝑖𝑡𝑖
∶ ℝ2 → ℝ2 

𝑥 → 𝑠𝑖 (
cos (𝜙𝑖) −sin (𝜙𝑖)
sin (𝜙𝑖) cos (𝜙𝑖)

) 𝑥 + 𝑡𝑖⃗⃗⃗ 

 with 𝑠𝑖 a scale factor, not used in this paper. 

 

Given a threshold or a total number of iteration, the last 

step enables the computation of the total transformation 

parameters 𝜙𝑡𝑜𝑡 and  𝑡𝑡𝑜𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗ which can be used as innovation 

information by a filter. 

 

To deal with outliers – always present in image 

processing techniques – the actual variant of ICP used is a 

tailor-made TRiCP (Chetverikov, Svirko, Stepanov, & 

Krsek, 10 December 2002). It basically discards points 

too far from their respective counterparts at each step but 

reintegrates them at the beginning of each step though, 

ensuring the monotonic convergence of the algorithm. 

One of the most problematic aspects of the ICP method is 

its risk of falling in local minima – not global ones. Given 

the lane and road markings patterns, this can happen in 

case of large initial heading error. A double consecutive 

TRiCP algorithm with a small and a larger radius is 

applied to reduce the risk caused by overlays. 

6.1.3 ICP covariance and observation matrix 

One of the main contributions of this section is the ICP 

covariance embedded within an EKF. Indeed, a particle 

filter is often preferred in map-matching methods because 

the covariance computation results from the particle 

distribution, at the cost of a heavier CPU usage though. 

 

The paper of (Censi, 21 May 2007) provides an 

approached formula of cov(𝑌𝐼𝐶𝑃): 

cov(𝑌𝐼𝐶𝑃)~ (
𝜕2𝐽

𝜕2𝑌𝐼𝐶𝑃

)

−1
𝜕2𝐽

𝜕P𝜕𝑌𝐼𝐶𝑃

𝑐𝑜𝑣(𝑃)
𝜕2𝐽

𝜕P𝜕𝑌𝐼𝐶𝑃

𝑇

(
𝜕2𝐽

𝜕2𝑌𝐼𝐶𝑃

)

−1

 

 with 𝐽 the chosen cost function 

 

However, here, the point-to-plane cost function is 

preferred in order to detect unobservable directions –

straight or lightly curved roads– among others (Silvère 

Bonnabel, 16 Oct 2014): 

𝐽𝑝𝑡−𝑝𝑙𝑎𝑛𝑒
(𝑖)

= ∑ ⟨(𝑝𝑗
(𝑖+1)

− 𝑞𝑗
(𝑖))|𝑛𝑗⃗⃗⃗⃗ ⟩

2
𝑛
𝑗=1 ,  

with ⟨. |. ⟩ the scalar product operator 

 

Also, the choice of the visual sensor’s point cloud – 𝑃 –

covariance  𝑐𝑜𝑣(𝑃) is not diagonal since it goes to 0 as 

𝑐𝑎𝑟𝑑(𝑃) increases. The “resolution error” (Martin 

Barczyk, October 2014) is used instead. Each point is 

associated with a road curve resulting in packets of point 

for every distinctive curve: within each packet, the points 

are correlated between each other.  

 

Computing 𝑐𝑜𝑣(𝑃) still requires the knowledge of the 

base standard deviation 𝜎𝑝: it is larger to the sensors’ 

accuracy because the TRiCP’s result is less accurate due 

to TRiCP’s convergence thresholds. For conservative and 

dynamic purposes, it has been decided to choose 3𝜎𝑝 as 

equal to the largest distance between the two point clouds 

resulting from the ICP algorithm: 

 

𝜎𝑃 =
argmaxj (‖𝑝𝑗

(𝑓𝑖𝑛𝑎𝑙)
− 𝑞𝑗

(𝑓𝑖𝑛𝑎𝑙)
‖

2
)

3
 

Such approximation works well with large point clouds 𝑃 

and small final errors. 

 

The resulting covariance cov(𝑌𝐼𝐶𝑃) can be broken into 2 

parts: a 2x2 matrix 𝑐𝑜𝑣(𝑌𝐼𝐶𝑃(𝑥,𝑦)
)corresponding to the 
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position accuracy (
𝑒𝑎𝑠𝑡
𝑛𝑜𝑟𝑡ℎ

) and a scalar 𝑐𝑜𝑣(𝑌𝐼𝐶𝑃(𝜙)
) 

relative to the heading precision: 

 

cov(𝑌𝐼𝐶𝑃)  = (
𝑐𝑜𝑣(𝑌𝐼𝐶𝑃(𝑥,𝑦)

)
0
0

0 0 𝑐𝑜𝑣(𝑌𝐼𝐶𝑃(𝜙)
) 
) 

 

cov(𝑌𝐼𝐶𝑃)‘s largest eigenvalue 𝜆𝑙𝑜𝑛𝑔 corresponds to the 

unobservable direction’s eigenvector also called 

longitudinal vector ; the next largest eigenvalue 𝜆𝑙𝑎𝑡  

corresponds  to the lateral vector and the smallest 

eigenvalue is easily associated with the heading 

uncertainty 𝜆𝜙 . To deal with unobservable directions –in 

the road longitudinal axe –, the TRiCP observation vector 

is given in the road reference 𝑇𝑟𝑜𝑎𝑑  giving the observation 

vector  (
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

𝑙𝑎𝑡𝑒𝑟𝑎𝑙
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

) – heading unchanged. The 

observation matrix 𝐻𝐼𝐶𝑃 becomes 𝑇𝑟𝑜𝑎𝑑  and cov(𝑌𝐼𝐶𝑃) 

becomes 𝑅𝑉𝑀𝑀: 

𝑅𝑉𝑀𝑀 = (

𝜆𝑙𝑜𝑛𝑔 0 0

0 𝜆𝑙𝑎𝑡 0
0 0 𝜆𝜙

) 

 

In case an unobservable direction is encountered the 

longitudinal observation is dropped. However, during the 

Kalman gain’s computation, some residues in the 

unobservable direction can persist due to the state cross 

correlations 𝑐𝑜𝑣(𝑒𝑎𝑠𝑡, 𝑛𝑜𝑟𝑡ℎ), 𝑐𝑜𝑣(𝑒𝑎𝑠𝑡, 𝜙),

 𝑐𝑜𝑣(𝑛𝑜𝑟𝑡ℎ, 𝜙) and very low 𝜆𝜙 notably. A directional 

Kalman-Schmidt is then applied to get rid of the Kalman 

gains aligned with the unobservable direction. 

6.2 Simulation results 

6.2.1 2D simulation  

The simulations have been carried out in 2D so far –3D 

simulations are being implemented. The carrier has 2 

accelerometers and 1 gyrometer of middle-range 

performance – compatible with Safran’s Epsilon 10 INS 

datasheet. It is supposed the carrier has a visual system 

and an image/cloud processing algorithm outputting a 

noisy 2D-point cloud around the vehicle representing the 

lane and road markings extracted centre points. It is also 

supposed multiple consecutives 2D point clouds can be 

stored and kept coherent so that they only suffer from an 

error of translation and orientation related to the predicted 

state. Such large point clouds are only used to reduce or 

avoid unobservable direction periods: they require more 

time to process though. 

6.2.2 Synthetics maps and increments 

 

Maps are only composed of geometrical elements such as 

line segments and circular arcs: they encode the road 

themselves, some trajectories and most importantly the 

lane and road markings. 

 

The trajectories are basically long smooths continuous 

lines made of line segments and circular arcs. 

Accelerometers and gyrometers true increments are 

generated from these given a velocity trapezoidal profile. 

 

Two maps have been generated: 

- A short countryside track with a 2 lane-1 lane 

pattern whose ends are cut. 

- A road network mimicking a small town, with 

many intersections 

Each map has been “deteriorated” with multiple outliers 

taking the form of false lane/road markings. 

 

Three trajectories are used: 

- A countryside trajectory making a U-path 

following the associated road (Countryside) 

- A town trajectory with few turns(Town A) 

- A town “round” trajectory(Town B) 

They last a couple of minutes each depending on the 

velocities used – 30km/h and 130km/h. The visual system 

range used is 50 meters and has a field of view of 360 

degrees. 

No map errors have been considered, but they are often 

inferior to the usual navigation errors – 5 to 10 cm.  

6.2.3 Results 

Being part of a larger sensitivity campaign, a batch of 30 

Monte Carlo trials has been run for each trajectory and 

each velocity.  

 Countryside Town A Town B 

30 

km/h 

1.8m 0.8m  

0.23° 

1.2m 0.25m 

0.12° 

0.90m 0.20m 

0.06° 

130 

km/h 

1.0m 0.55m 

0.25° 

0.42m 0.18m 

0.03° 

0.80m0.15m 

0.06° 

Table 8 Max errors (Longitudinal, Lateral, Heading) 

 

 Countryside Town A Town B 

30  

km/h 

0.40m 0.10m 

0.04° 

0.10m 0.03m 

0.01° 

0.18m 0.03m 

0.01° 

130  

km/h 

0.26m 0.10m 

0.04° 

0.03m 0.02m 

0.01° 

0.13m 0.03m 

0.01° 

Table 9 RMS errors (Longitudinal, Lateral, Heading) 

 

The bulk of the errors occur when the accelerometers’ 

bias and gyrometer’s drift are not estimated yet, 

especially in a straight road at low speed. This leads to 

large errors at the beginning of trajectories or in long 

straight roads. 

 

Previous static Monte Carlos trials have shown that in the 

map used, errors up to 1.5 meters don’t lead to local 

minima. Only one scenario exceeds the limit, this occurs 

in the countryside simulation at low speed in a long 

lightly curvy road. 

 

In these simulations, low speed has three disadvantages: 

- Longer time spent  in unobservable direction 

road portions, resulting in larger errors 

- Longer periods in areas full of outliers, resulting 

in riskier situations 
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- Less acceleration to estimate bias, resulting in 

longer larger errors. 

The town simulations show better accuracies thanks to the 

presence of intersections, enabling the fast estimation of 

bias and reducing the periods of unobservable directions. 

6.3 Conclusion 

The results obtained in these 2D simulations are almost 

compatible to the autonomous vehicle need in term of 

accuracy. However, there is a strong correlation between 

the reachable accuracy and the road pattern: long straight 

or lightly curved road are harmful in map-matching 

localisation, which could lead to larger errors or even 

divergences. Nonetheless, the hybridisation is light here: 

there is no odometer; no Visual SLAM etc. meaning 

unobservable directions should have less impact in a 

larger sensors fusion framework.  

3D simulations are run to confirm the results obtained and 

an altitude measurement from the map is added. Next 

experiments aim at replaying recorded data to verify if the 

hypothesis formulated in simulations are correct –outlier 

rejecting algorithm, impact of obstacles, point cloud error 

interpretation, road precision among others. 

 

7 GENERAL FUSION ALGORITHM  

The several hybridisations presented in this paper can be 

used one by one or can be fused together in order to 

achieve the best theoretically estimation of the 

localisation of the bearer. 

 

First of all, as mentioned in the introduction, two of them 

are not mixable: the loosely- and the tightly-coupled 

hybridisations cannot be combined as they are using the 

same basic information: feature points’ position in the 

image. 

 

Second of all, loosely-coupled is the only hybridisation 

giving no information on the environment. It is similar to 

a velocity observation (with an unknown scale factor 

though). 

 

Third of all, the observations directly linked to 

information based on the environment (feature points, 

visual beacons, recognisable elements of a map) can be 

fused together in a fused map that can be matched with 

the a priori map as in the map matching hybridisation 

presented previously. 

 

Last but not least, once the different kind of observations 

are selected, the corresponding hybridisations can be 

fused in a single localisation filter (i.e. with only one state 

vector) or they can be used sequentially, in different 

filters with different state vectors. For example, the visual 

beacons and map matching hybridisations can be 

performed on one state vector, including representation of 

the environment, before consolidated information built in 

this filter is sent to the main localisation filter estimating 

the localisation of the bearer thanks to the additional 

observation in a loosly-coupled scheme. 

 

Although theory indicates a single filter with a full state 

vector should perform better than any other scheme, it is 

not clear it is the best solution. Being outside the 

theoretical background of the Kalman Filter (important 

non-linearities, non-gaussian noises …) means no theory 

can assure the single filter will perform better. 

Furthermore, from an industrial point of view, it can also 

be easier to design and validate several filters instead of a 

complete single one. 

 

The next step for Safran is to investigate on this topic in 

order to find the main design rules for Vision-aided 

localisation systems for its different applicative domains 

(earth, land, sea and space). 

 

8 CONCLUSION  

This article presented several hybridisations based on 

visual information for the localization of the autonomous 

cars (or any other bearer equipped with similar visual 

sensors). 

 

The results on simulated data are satisfactory enough to 

imagine a fusion algorithm based on these different 

hybridisations that would be able to reach the 

performance needed for the localisation of the self-driving 

car. 

 

While experiments on real data still need to be performed 

more intensively, the first results are really positive and 

Safran will keep on improving the hybridisations one by 

one and on how to combine them thanks to more and 

more data representative of different datasets brought by 

SafranTech Autonomous Vehicle Laboratory and by its 

partner Valeo. 
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