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ABSTRACT  

Monocular systems are attractive because of their 

relatively low cost as well as their ease of calibration. 

However, they suffer of scale ambiguity due to the loss of 

one dimension when projecting the three-dimensional 

world onto a two-dimensional image plane. This paper 

presents a method of resolving the scale ambiguity and 

drift observed in a monocular camera-based visual 

odometry by using the slant distance obtained from a 

skyline matching between the camera and images 

synthesized using a 3D building model. The obtained 

visual odometry outputs are then combined with the 

solutions obtained from the skyline-based positioning for 

vehicular applications in Global Navigation Satellite 

Systems-denied/harsh environments such as deep urban 

canyons. Experiments conducted in downtown Calgary 

have shown the advantage of correcting the scale factor 

resulting in a 90% improvement in position solution 

compared to not correcting the scale drift suggesting the 

potential of the proposed method for critical applications 

such as autonomous driving or driver-assistance systems 

in areas where the 3D building model is available.  

 

 
 

Figure 1: Navigating robot (credit: jpl.nasa.gov) 

 

 

1 INTRODUCTION  

In open sky environment with good satellite visibility, the 

Global Navigation Satellite Systems (GNSS) provide 

seamless and accurate solutions. However, their 

performance significantly degrades in harsh environments 

such as urban canyons. To overcome this limitation, 

various integration strategies that combine GNSS with 

other sensors (e.g., inertial navigation systems – INS, 

odometers, radar, barometer, LiDAR, altimeter, cameras 

etc.) to ensure satisfactory position solutions in terms of 

accuracy, availability and continuity in almost all 

environments have been thoroughly studied with more or 

less success. In general, the use of camera systems 

(thanks to the concept of the Visual Odometry – VO) is 

able to provide an accurate position estimation that can in 

turn be integrated with solutions obtained from other 

sensors.  

 

In fact, the VO aims at recovering the motion (position 

and orientation) of a platform (e.g., vehicle, robot as 
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shown in Figure 1) by exploiting the images captured by a 

camera rigidly attached to the platform. Both monocular 

(i.e., one camera) and stereo (i.e., two cameras) systems 

can be used for VO implementation. Vision-based 

positioning for pedestrian (Marouane, Gutschale and 

Linnhoff-Popien, 2018) or vehicular applications 

(Aumayer, 2016) has been previously studied by 

exploiting various concepts such as the rigid-body motion 

(Ma, et al. 2003), and the use of feature points (Lowe 

2004). When more than one camera is used, the VO 

outputs both the (change in) rotation and the true 

translation magnitude directly by triangulating the feature 

points and obtaining the depth information. However, 

with a single camera system, the scale cannot be directly 

measured. This means that the translation of the platform 

can be estimated accurately but up to a scale. This is one 

of the primary sources of error in VO-based (change of) 

position estimation and the main bottleneck that prevents 

monocular-based VO from reaching accuracies 

comparable to stereo-based VO. The scale factor problem 

in monocular VO is illustrated in Figure 2 (results for a 

controlled indoor area). It is clear that the VO provides an 

accurate solution but up to a scale only (causing the 

mismatch observed at the “End”). 

 
 

Figure 2: Illustration of the scale factor issue in 

monocular visual odometry (adapted from Gakne and 

O'Keefe (2017)) 

 

To resolve the scale ambiguity and drift, the general trend 

is to fuse the image measurements with other sensors. 

Specifically, Inertial Navigation Systems (INS) are 

widely used (Spaenlehauer, et al. (2017); Ji and Sanjiv 

(2015); Gabriel, et al. (2011)) as well as GNSS sensors 

(Soloviev and Venable (2010); Lim, et al. (2017); Gakne 

and O'Keefe (2018)).  

Spaenlehauer, et al. (2017) combined inertial 

measurements with monocular odometry in a loosely 

coupled approach. Regarding their visual odometry, the 

tracking stage of the ORB-SLAM algorithm (Mur-Artal, 

Montiel and Tardos, 2015) was employed while the Euler 

forward integration was used for the inertial measurement 

processing. The main advantage of using inertial sensors 

is their high measurement rate that can be used to rapidly 

compute the pose estimate. The scale factor is computed 

as the ratio of L2–norm (Horn and Johnson, 1990) of 

translation vectors of the camera position given by the 

integration of INS measurements in the world coordinate 

frame and the L2–norm of the translation vectors of the 

camera position given by the VO. 

Gabriel, et al. (2011) fused the visual and inertial data to 

determine the scale factor unobserved in the visual 

framework. Two approaches were used to estimate the 

scale factor in a monocular visual Simultaneous 

Localization and Mapping (SLAM). The first method 

consisted of making use of the spline fitting task (Jung 

and Taylor, 2011) and the second made use of a multi-rate 

Extended Kalman Filter (EKF) that was embedded in a 

Parallel Tracking and Mapping (PTAM – Klein and 

Murray, 2007). Both approaches provided accurate results 

at reasonable processing times.   

Ji and Sanjiv (2015) proposed a method aiming at 

operating aircraft in GPS-denied environments using 

visual odometry (with a camera pointed downward) and a 

high-accuracy INS. It was observed that the noise 

contained in the INS measurements can significantly 

affect the platform motion estimation resulting drift in the 

aircraft position estimate. To reduce the position 

estimation error, their method parametrizes feature points 

with their depth direction perpendicular to the ground. 

The depth of feature points is obtained in two different 

ways (by using an altimeter and a 2D laser). This leads to 

a slower drift because the position error resulting from the 

INS orientation noise is partially cancel by this process.  

 

Although methods employing inertial sensors are 

effective and have advantages of lightweight, high 

measurement rate, immunity to RF interference etc. they 

are subject to the inertial sensors errors. INS drift rapidly 

when they do not get updates from other sensors such as 

GNSS. Other research focused on directly combining 

GNSS with vision to solve for the scale factor.   

Soloviev and Venable (2010) resolved the scale factor 

ambiguity by integrating the Global Positioning System 

(GPS) carrier phase measurements with a vision system. 

Their method consisted of integrating GPS/vision in order 

to estimate the position as well as the orientation changes 

of the camera. The integration is realized by combining 

GPS carrier phase measurements with feature points that 

are extracted from images. The state relating the position 

vector with the feature point ranges is first defined, then 

the changes in the carrier phase measurements between 

two consecutive images are defined as function of the 

position change vector. The combination of these two 

terms allowed to unambiguously resolve the position 

changes, as well as the range estimates. A similar 

approach was presented in Gakne and O'Keefe (2018) but 

the pseudorange measurements are used in lieu of the 

carrier phase.  

Lim, et al. (2017) proposed a method for augmenting GPS 

with a monocular camera for accurate and reliable 

positioning by combining the GPS measurements and the 

relative attitude obtained from the vision system (by the 

use of the vanishing point). They show that their method 

performs well in various environments and has results in 

better solutions than loosely coupled GPS/INS integration 

approach. 
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However, in urban environments, GNSS measurements 

are subject to multiple source of error (mainly multipath) 

that can lead to position errors up to hundreds of meters. 

In the Vision/INS case, the scale factor correction can be 

heavily degraded. For this reason, some researchers have 

integrated GNSS/Vision/INS or more sensors. 

Chu, et al. (2012) integrated a monocular camera 

measurement with IMU and GNSS for land vehicle 

navigation in harsh environments based on an EKF. In 

this case, the translation magnitude is determined from 

GNSS measurements using differential GNSS technique. 

The acquired image data is synchronized with GNSS and 

the baseline of the position change between two GNSS 

epochs coincides with the camera translation magnitude. 

Ben Afia, Escher and Macabiau (2015) integrated even 

more sensors namely GNSS, IMU, vision and wheel 

speed sensor (WSS) for vehicular applications. In their 

implementation the INS estimation errors are corrected by 

the mean of GNSS, vision and WSS as well as motion 

constraints for land vehicles (using an error state EKF 

based on a closed loop configuration). The inertial 

measurement scale factor was modelled as a Gauss-

Markov process.  

 

Finally, another path of research has dealt with the 

monocular scale factor ambiguity without adding any 

other sensors by defining the road as a plane and using the 

vehicle height to obtain the scale information (Choi, Park 

and Yu (2013); Kitt, et al. (2011)). However, these 

approaches still contain errors because the assumption 

that the road is a plane is only true up to an extent.  

 

The objective of this paper is twofold: (i). to combine the 

information obtained from a 3D building model by 

matching synthesized 3D building model images and 

camera images and also with visual odometry; (ii). To 

calculate the scale factor from the 3D building model to 

increase the translation magnitude accuracy for 

monocular VO. 

 

The remainder of this paper is organized as follows: 

Section 2 briefly presents the existing works related to 

this paper; Section 3 details the methodology employed in 

this paper. Section 4 presents the experiments, results and 

analysis. Finally, Section 5 concludes the paper. 

 

2 RELATED WORK  

A 3D city model can be defined as a digital representation 

of areas that depicts buildings, terrain surfaces and other 

features of a given city. Nowadays, digital representation 

of most of the major cities around the world is available 

whether commercially (e.g., from 3dcadbrowser.com) or 

freely (e.g., google.com/earth). Several researchers have 

made prior attempts to combine the VO with a 3D 

building model and/or with other sensors for navigation 

purposes. This works can be classified into several 

categories. 

 

The first category uses the vision sensor alone to compute 

the scale factor by making assumptions regarding the 

camera height relative to the ground, defined as a plane. 

Kitt, et al. (2011) compensated the scale factor drift in a 

monocular VO by making use of constraints and using the 

knowledge of the camera height (assumed constant during 

the data collection) as well as by making assumptions 

about the environment and the camera orientation. The 

road is assumed to be planar and the camera pitch and roll 

equal to zero. The tracked feature points are assumed 

lying on the road plane and then the translation’s 

magnitude is obtained by considering the height of the 

camera above the ground. A similar approach has been 

used later by Zhang, Singh and Kantor (2012); Choi, Park 

and Yu (2013); Song, Chandraker and Guest (2016). 

However, it is obvious that in real-world scenarios, the 

road is not necessarily planar and the pitch and roll are 

non-zero in high dynamic maneuver scenarios for 

example (which can be a typical case for vehicular 

applications). Moreover, in the high dynamics case, even 

the height of the camera can significantly vary. However, 

it should be acknowledged that errors caused by such 

assumptions can be smaller for robots driven in indoor 

environment scenarios for example. Aqel, et al. (2017) 

proposed a method dealing with the camera height 

variation in order to improve the accuracy of the scale 

factor estimation. A downward pointing camera installed 

under the vehicle was used. Their method consists of 

setting reference points on the images by the mean of two 

laser pointers. The scale variation is then estimated by 

monitoring the changes of distance between the two 

reference points after obtaining the height variation of the 

vehicle. 

Manolis and Xenophon (2013) also note that measuring 

and/or estimating the height of the vehicle in order to 

estimate the scale factor is not sufficiently accurate and 

proposed three alternative techniques for estimating the 

translation magnitude pertaining to a three-dimensional 

reconstruction (two for stereo systems and one for 

monocular systems). In their approach, the camera pose is 

estimated from a single image by matching sets of 2D and 

3D feature points and making the pose estimation 

refinement iteratively. To do this, they embedded a P3P 

solver (Xiao-Shan, et al. 2003) into the random sample 

consensus (RANSAC – Fischer and Bolles (1981)) 

framework. 

Gräter, Schwarze and Lauer (2015) associated the 

vanishing point (VP) concept with the road definition as a 

plane (estimated using structure from motion techniques) 

to correct the scale drift for advanced driver assistance 

systems. The proposed method fits the reconstructed 

feature points and VPs and uses the least-squares 

optimization to refine the plane and obtain the scale. 

 

A second group of research deals with the scale 

estimation in monocular systems by combining the vision 

system with GNSS. Gakne (2018); Gakne and O'Keefe 

(2018) modelled the scale in a tightly-coupled 

GNSS/Vision system and show that the scale factor drift 

can be reasonably modelled with a Gaussian random 

walk. The scale was observed from the previous and 

actual position estimates from VO. Li, et al. (2018) later 

proposed an integration of GNSS and a monocular system 

for SLAM. Their approach fuses the measurements of 

each system using an optimization-based scheme. It 
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outputs the absolute position and attitude of the driven car 

as well as the translation’s scale factor. 

 

The fusion of inertial systems and vision can be classified 

as the third research path for scale estimation in 

monocular applications. This is presented in Gabriel, et al. 

(2011) as described in the previous section. Weiss and 

Siegwart (2011) combined a monocular vision system 

with an inertial sensor equipped with a three-axis 

gyroscope and accelerometer. Their algorithm is built to 

operate in real time and is independent of the vision 

algorithm that is used to estimate the camera poses 

instead. 

 

The fourth category includes works where more than two 

sensors are added. Ben Afia, Escher and Macabiau (2015) 

integrated the GNSS, IMU, monocular vision and the 

wheel speed sensors for navigation in urban canyons. The 

WSS velocity was particularly affected by an unknown 

scale that was then modelled as a constant (scale factor 

error). Won, et al. (2014) evaluated the navigation 

performance of GNSS/INS/vision integration simulated 

data, where the number of observed satellites was 

decreased from three to one. Their method directly 

outputs absolute (scaled) solutions.  

 

It is also worth mentioning here that a stereo system 

combined with GNSS sensors that allow direct 

observation of the scale factor has been extensively 

studied as presented in Fei, Yashar and Yang (2015) and 

Aumayer (2016). Also, RGB-D cameras have been used 

for direct scale determination such as presented in Mur-

Artal, Montiel and Tardos, (2015). 

 

Finally, any other sensor or digital map that can provide 

useful information can be combined with a camera in 

order to address the scale factor issue. Zhang, et al. (2018) 

proposed an integration strategy that fuses a monocular 

visual SLAM with a 1D-laser range finder to obtain the 

scale estimation and the drift correction. An analytical 

feasibility for estimating the scale factor by fusing the 

vision system outputs (derived based on the local dense 

reconstruction of image sequences) and the laser 

information is described in detail. Kai, et al. (2014) 

proposed an integrated monocular VO/laser system that 

corrects the scale factor drift for astronaut navigation. The 

laser distance/range finder provides a distance to a single 

point that can be used for 3D scene reconstruction or scale 

estimation. The work presented in this paper is close to 

this category but instead uses an existing 3D city model to 

obtain the distance from a driven vehicle to a point.  

 

One aspect presented in this paper is the skyline-based 

positioning. It consists of matching images obtained from 

a camera with images synthesized from a 3D city model. 

This technique has been presented in our previous works 

(Petovello and He, 2016; Gakne and O'Keefe, 2017). In 

this paper particular attention is given to a combination of 

a VO (realized from a special setup with a sky-pointing 

camera) and an existing 3D building model. The next 

section provides details on the method used for the scale 

factor drift correction proposed in this paper. 

  

3 METHODOLOGY 

This section elaborates the proposed method for scale 

factor estimation and drift correction. This is principally 

based on the use of a 3D city model. The proposed work 

is mainly subdivided in two subsections: the visual 

odometry and the skyline-based positioning. 

3.1 Monocular Visual Odometry  

 

VO can be defined as the computation of the camera 

motion from monocular or stereo image sequences. 

Herein, a feature points-based VO is developed from 

image sequences from an upward-facing camera and 

follows the steps bellow: 

• Image acquisition and correction:  this step 

consists of acquiring images from a monocular 

camera and rectifying the image distortion via 

the calibration process. The calibration process 

also allows the determination of the camera 

intrinsic parameters such as the focal length, the 

principal point coordinates and the skew 

coefficient between the image axes; 

• Feature detection, description and matching: 

feature points are detected and described by 

using the Oriented FAST and Rotated BRIEF 

(ORB – Rublee, et al., 2011). The description of 

this algorithm as used in this paper is presented 

in Gakne and O'Keefe (2018); 

• Motion estimation: from the tracked feature 

points and their displacement on the images, the 

relative motion of the camera is computed. 

 

An example of feature detection, matching and outlier 

rejection is given in Figure 3 where the red circles 

represent feature points that are detected but not used 

(outliers); Green circles are those that are detected 

properly matched between consecutive image frames. The 

established matches are illustrated by the green lines. 

 

 
 

Figure 3: Feature point detection, description (ORB 

algorithm), matching and outlier removal (RANSAC). 

Left: image frame at time t; Right: image frame at 

time t + ∆t. 

 

Given two sets of M  feature points represented by 

M
1

p 0 1 -1
f = {p , p , ..., p }  and 

M
2

' ' '

p 0 1 -1
f = {p , p , ..., p } , the 

rotation 
c

r  and the translation 
c

t  can be determined using 

least-squares and the singular value decomposition (SVD) 

such as we have: 
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 2
1

'

,
0

( ) arg min ( )
c c

M

i c i c i
R T

i

R T
−

=

= + −c c
r , t p p  

 

(1) 

 

where 0
i

   is the weight of each feature point pair.  

The step-by-step VO algorithm formulation is given in 

Gakne (2018) and summarized in Figure 4.  

 

 
 

Figure 4: Feature points-based visual odometry 

 

The first box corresponds to the image acquisition and 

rectification. The second box depicts the feature points 

detection, description and matching. Finally, the third box 

shows the rotation and translation estimation and the 

(change in) position of the camera rigidly mounted on the 

vehicle. 

 

Having explained the visual odometry, the next section 

presents the 3D building model based positioning. 

3.2 3D Building Model-based Positioning 

 

A skyline is literally defined as an outline of land and 

buildings defined against the sky. If accurately generated, 

such information can be used as a fingerprint that can 

uniquely describe a given city/area. The skyline-based 

positioning used in this paper is presented in detail in 

Gakne and O'Keefe (2017) and summarized in Figure 5. 

The localization problem in this case is solved by using 

the skylines obtained from a 3D city model and from an 

upward-facing camera. 

 

 
 

Figure 5: Skyline-based positioning flowchart 

 

A visual spectrum narrow field-of-view camera similar to 

that available on most mobile phones is used. The images 

are then segmented into sky and non-sky areas. The 

obtained binary images are compared with the ideal 

images synthetized from the 3D building model (stored in 

a database). The position solution estimate corresponds to 

the best match obtained between the observed and 

synthetized images. 

 

At each vehicle location, the skyline is computed from the 

3D building model (see Figure 6) over a range of azimuth. 

The skyline is defined as: 

 

 ( ) 
, ,

, , 0.. 1
p p j p j

j N= = −ς ε h    (2) 

 

where j and 720N =  are the azimuth index and number 

respectively (i.e., an azimuth resolution of 0.5 is 

used). ε is the highest elevation angle of the obstructing 

surface and h the corresponding height. 

 

One of the main challenges of the skyline-based 

positioning is to accurately segment the camera image. 

The difficulty arises because of the lighting variations, 

weather conditions and the facade of the buildings (e.g., 

buildings with glass). In this work, the Flood-fill 

algorithm described in Gakne (2018) is used for the 

camera image segmentation. Readers can refer to the 

provided reference for details the image synthesization 

from the 3D city model.  
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Figure 6: Location of the vehicle indicated on the 

3DBM as well as the ideal skyline synthesized forward 

and upward skylines at the same location 

 

The comparison/matching between the camera images 

and the database images (obtained from the 3D building 

model) is done by the mean of a similarity metric. Herein, 

the cross-correlation coefficient ( CC ) is used. It is 

defined as: 

 

 
   ( )( ) ( )3,

1
( , ) ( , ) ( , )

b p p
b bcam Du v

u v u v u v
n

= ICC I I

 

(3) 

where n  is the total number of pixel per image; p  is the 

database image’s position;  is the Hadamard product of 

two matrices; 
b

I
CC is the cross-correlation coefficient of 

the binary images;  
b cam

I  represents the 

binary/segmented image obtained from the camera; 

 
3b D

I  is the binary image synthesized from the 3D city 

model. 

 

The similarity metric obtained as in Figure 7 gives the 

location of the vehicle on the travelled path. In order to 

improve the matching accuracy between the observed 

(camera) and the 3D building model images the vanishing 

points have been used to determine the camera pitch and 

roll and to rectify images accordingly as in Gallagher, 

(2005) and detailed in Gakne and O'Keefe (2017). In 

order to be succinct, this process will not be repeated in 

this paper.  

 

 
 

Figure 7: Similarity metric indicating the location of 

the vehicle on the road 

 

 

To summarize, the skyline-based positioning follows the 

three main steps bellow (Figure 5): 

• Generate the georeferenced ideal skylines from 

the 3D building model to populate a database; 

• Collect and segment the camera images (to 

obtain the observed skyline); 

• Compare/match the camera images with the ideal 

images to compute the vehicle position. 

 

Having the skyline defined as in Equation (2) the next 

step is to compute the slant distance that will be used to 

compute the scale factor.  

3.3 Slant Distance and Scale Factor Computation 

 

In this paper the highest point in view from the vehicle 

location is chosen and the slant distance to this point from 

the vehicle is computed. From Equation (2), the slant 

distance is computed as: 

 

 

slant

sin( )
=

h
d

ε
   (4) 

 

where the parameters h  and ε  are defined as in Equation 

(2). The computation of these parameters follows that 

presented in Petovello and He (2015) as implemented in 

Gakne (2018). 

 

The slant distance computed in this way is similar to the 

distance obtained from LiDAR data for example. As such, 

if carefully used, this information can be used to compute 

the scale factor ambiguity observed from a monocular 

system. The global scale factor is thus computed as: 

 

 
slant

3DBM VO

g
=

−

d
s

P P
 

 

(5) 

 

where 
VO

P stands for the previous position obtained from 

the visual odometry and
3DBM

P represents the position 

obtained from the 3D building model. 

 

Whenever the 3D building model solution is available, 
g

s  

is used to correct the scale drift that is introduced in the 

relative scale factor over a certain number of image 
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frames. The relative scale factor is estimated based in the 

actual and previous estimated platform position (Gakne 

and O'Keefe, 2018). This is given as: 

 

( ) ( ) ( )11
1

2 2 2

k kk k k
k k

s x x y y z z
−−

−

= − + − + −

 

  (6) 

where ( ), ,x y z  represent the estimated platform’s 

position and k is the image frame number. 

 

The steps for correcting the scale factor drift are given as 

follow: 

• Compute the scale factor as given in Equation 

(6) from frame-to-frame; 

• Check if the 3D building model solution is 

available. If yes, compute the slant distance as 

defined in Equation (4) then use this information 

to compute the global scale factor as in Equation 

(5) 

 

These steps are summarized in the Algorithm 1. 

 

Algorithm 1 Scale factor computation and correction  

Input:                  ς  

Output:               s  

Initialization:     1
r

s  , 1s   

for ( 0 : 1k  −NumberFrame )  

    ( ) ( ) ( )11
1

2 2 2

k kk k
k k

rs x x y y z z
−−

−

= − + − + − ; 

                  if (3DBM_Solution_available)  

                             
slant

sin( )
=

h
d

ε
; 

                             
slant

3DBM VO

g
=

−

d
s

P P
;  

                             r
g

s  s ; 

                       

  

                       rs s ; 

return s  

 

 

4 EXPERIMENT AND RESULTS 

The performance of the proposed scale drift correction is 

evaluated in this section. 

4.1 Experiment Setup 

 

An experiment consisting on a monocular system rigidly 

mounted on the top of the car driven in downtown 

Calgary, AB, Canada was conducted to test this other 

method (and is the same as used in Gakne and O'Keefe 

(2018)). A sky-pointing camera and a reference system (a 

SPAN LCI from NovAtel) are both mounted on the 

vehicle roof as depicted in Figure 8. 

 

 
 

Figure 8: Experiment Setup. Left: the vehicle; Right: 

top view of the vehicle 

 

4.2 Results and Analysis 

 

With this experimental data, the performance of VO when 

aided by a 3D building model can now be compared to 

the case where the building model is not available. For the 

comparison, the scale factor is first computed as in 

Equation (6) after estimating the current position for 

every system (reference, VO and VO aided 3DBM). 

Then, the scale factor error is computed by subtracting 

each from the reference scale factor. The time series 

results are depicted in Figure 9. 

 
 

Figure 9: Scale errors 

 

The scale factor error obtained from the VO is overall 

noisier and larger than the VO aided by the 3DBM. 

However, it is still clear that there are peaks observed in 

the aided VO scale. These arise when the 3DBM solution 

is not available or significantly degraded.  

The final position output by each system (VO aided by 

the 3D building model and the pure VO) is depicted in 

Figure 10. 
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Figure 10: Trajectories comparison (3DBM stands for 

3D building model) 

 

 

The figure shows that the trajectory obtained from the VO 

aided by the 3D city model closely follows the reference 

solution in terms of scale except for areas where the 3D 

building model solution is not available for long time 

and/or in areas where buildings are missing in the 3D  

model (especially the upper part of Figure 10. The 3D 

building model used in this research was created in March 

2013, and new buildings have since been constructed). 

This justifies the degraded solution at the upper turn (east-

west) for the VO aided 3D building model. This issue can 

be solved by employing a recently created/updated 

3DBM. Also, due to the scale inaccuracy obtained from 

the VO-only case, it can be seen that at the turns, the VO 

solution drifts (went over the reference at the lower turn) 

while the translation magnitude is smaller than the 

reference at the upper corner. 

 

The cumulative distribution function (CDF) of the 

horizontal position error is depicted in Figure 11.  

 

 
 

Figure 11: CDF of the horizontal errors 

 

This figure shows that position error for the VO-only 

scenario is bounded between -30 m to 50 m while for the 

VO-aided 3DBM, the position error is bounded between -

10 m and 15 m. This clearly suggests that the position 

error introduced by the scale drift degrades the VO 

position solutions compared to the VO aided by the 

3DBM. Results are similar about 10% of the time, 

suggesting that the proposed method improved the final 

solution up to 90% of the time. 

 

The assessment of the influence of the scale factor drift on 

other metrics such as the velocity are left for future work. 

It is also worth mentioning that the skyline-based 

positioning performs better in environments with tall 

buildings. It is thus important to consider a camera field-

of-view (FOV) such as it is possible to capture as much as 

possible surrounding buildings.  

 

5 CONCLUSIONS 

 

This paper presents a method of resolving the scale factor 

drift observed in monocular visual odometry systems by 

using a 3D city model to obtain the slant distance, similar 

to the information provided by LiDAR data. The 

proposed method was assessed by using data collected in 

downtown Calgary and compared with monocular visual 

odometry alone. The results have shown that the proposed 

approach improved the final solution 90% of the time 

compared to the VO-only. 
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