# ITSNT 2018 DESIGNING AND EVALUATING NEXT GENERATION OF RESILIENCE RECEIVERS

S. Cancela, J. Navarro, D. Calle, GMV, Spain; A. Dalla Chiara, G. Da Broi, Qascom, Italy; E. Göhler, Ifen, Germany; I. Fernández-Hernández, European Commission, Belgium; J. Simón, GSA; G. Seco, Autonomous University of Barcelona, Spain

NOVEMBER 15, 2018

© GMV, 2018 Property of GMV All rights reserved

#### Introduction

#### **User Terminal description**

#### **Anti-Replay Technique**

- Overview
- Implementation

### **Validation Tests**

- Attack simulation environment
- Test set-up
- Results

### **Conclusions and Way Forward**



# **GALILEO AND RESILIENT RECEIVERS**

- Galileo will provide two civil authentication services
  - Open Service Navigation Message Authentication (NMA) in E1B for receivers having the public key
  - Commercial Service authentication by spreading code encryption (SCE) in E6C for receivers having the encryption/decryption keys
- Next generation resilient receivers will use these signals in combination with other receiver resilient measures
- The main challenges are:
  - How future resilient receivers will manage cryptographic operations required for authenticated signals
  - How to optimally combine data and signal authentication with receiver-based protection measures







# WHAT IS NACSET?

 EC started the Navigation Authentication through Commercial Service-Enhanced Terminals (NACSET) project in Jan 2017

### **Objectives:**

- Develop and test a secure Key Management Simulator for the Galileo CS and OS keys
- Develop a platform resilient to malicious and spoofing attacks
  - Resilient User Terminal
    - Anti-spoofing techniques
    - Accurate Time synchronization
    - Inertial Measurements Unit (IMU)
    - Signal Authentication
  - Synchronization and Authentication Server
    - Time Synchronization provision
    - Navigation message aiding channel
    - Authentication provision (RPA, CSS)
- Keep research on Galileo to define future evolutions.



**Ginda Solutions** 

CGI Experience the commitment®







NACSET

# **NACSET ARCHITECTURE**

- **KMS:** end-to-end key management simulator of secure key management and distribution
  - NavSec Keys
  - OS Authentication keys.
- UT: GNSS terminal client able to perform attack detection and protection and calculate a resilient PVT
- **SAS:** Server to provide synchronization and authentication services





# **USER TERMINAL**

- NavX-NTR Receiver
  - High-End GNSS Receiver
  - Support for signal encryption
  - Accurate clock evolution based on CSAC
  - Height information from Barometer
  - Dual-Antenna input
- Host-PC
  - Receiver commanding
  - Authentication Engine
  - PVT Engine
- Inertial Measurements Unit









### **UT ANTENNA ELEMENT**

|                     | Specifications                   |
|---------------------|----------------------------------|
| Galileo Signals     | E1, E5a, E5b, E5a+b (AltBOC), E6 |
| GPS Signals         | L1, L2                           |
| Element<br>Distance | < λ/2 at 1591 MHz (94 mm)        |
| Passive Gain        | Elev. 90° (zenith): > 3.5 dBic   |
|                     | Elev. 60°: > -3 dBic             |
|                     | Elev. 15°: > -10 dBic            |
| LNA Power<br>Gain   | ~30 dB                           |
| LNA Noise<br>factor | < 2 dB                           |





UNCLASSIFIED INFORMATION

# **UT SOFTWARE MODULE**

### Authentication engine:

- Anti-replay protection
- Dual-antenna measures analysis
- IMUs Hybridization
- Clock Monitoring
- AGC-C/N0 Monitoring
- Galileo Open Service Navigation Message Authentication
- Assisted signal authentication on Galileo E6

### PVT Engine

Computation of PVT using anti-spoofing indicators





### **ANTI-REPLAY PROTECTION**

#### Anti-replay technique based on symbols unpredictability

- Research on literature
  - Todd E Humphreys, "Detection strategy for cryptographic gnss antispoofing," Aerospace and Electronic Systems, IEEE Transactions on, vol. 49, no. 2, pp. 1073– 1090, 2013
  - Gianluca Caparra, Nicola Laurenti, Rigas T Ioannides, and Massimo Crisci, "Improving secure code estimate-replay attacks and their detection on gnss signals"," Proceedings of NAVITEC 2014, 2014
  - I. Fernández-Hernández, G. Seco-Granados, "Galileo NMA Signal Unpredictability and Anti-Replay Protection", ICL-GNSS 2016, 2016
- GNSS signal stream contains data that is authenticated (NMA)
- Data modulated includes unpredictable symbols
- Protection against zero-delay SCER (Security Code estimation and Replay) attacks
- Galileo Open Service Navigation Message Authentication (OSNMA) used as reference on E1B I/NAV

| 1 | 9  | 17 | 25 | 33 | 41 | 49 | 57 | 65 | 73 | 81 | 89 | 97  | 105 | 113 | 121 | 129 | 233 |
|---|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| 2 | 10 | 18 | 26 | 34 | 42 | 50 | 58 | 66 | 74 | 82 | 90 | 98  | 106 | 114 | 122 | 130 | 234 |
| 3 | 11 | 19 | 27 | 35 | 43 | 51 | 59 | 67 | 75 | 83 | 91 | 99  | 107 | 115 | 123 | 131 | 235 |
| 4 | 12 | 20 | 28 | 36 | 44 | 52 | 60 | 68 | 76 | 84 | 92 | 100 | 108 | 116 | 124 | 132 | 236 |
| 5 | 13 | 21 | 29 | 37 | 45 | 53 | 61 | 69 | 77 | 85 | 93 | 101 | 109 | 117 | 125 | 133 | 237 |
| 6 | 14 | 22 | 30 | 38 | 46 | 54 | 62 | 70 | 78 | 86 | 94 | 102 | 110 | 118 | 126 | 134 | 238 |
| 7 | 15 | 23 | 31 | 39 | 47 | 55 | 63 | 71 | 79 | 87 | 95 | 103 | 111 | 119 | 127 | 135 | 239 |
| 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128 |     | 240 |

| 1 | 9  | 17 | 25 | 33 | 41 | 49 | 57 | 65 | 73 | 81 | 89 | 97  | 105 | 113 | 121 | 129 | 233 |
|---|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| 2 | 10 | 18 | 26 | 34 | 42 | 50 | 58 | 66 | 74 | 82 | 90 | 98  | 106 | 114 | 122 | 130 | 234 |
| 3 | 11 | 19 | 27 | 35 | 43 | 51 | 59 | 67 | 75 | 83 | 91 | 99  | 107 | 115 | 123 | 131 | 235 |
| 4 | 12 | 20 | 28 | 36 | 44 | 52 | 60 | 68 | 76 | 84 | 92 | 100 | 108 | 116 | 124 | 132 | 236 |
| 5 | 13 | 21 | 29 | 37 | 45 | 53 | 61 | 69 | 77 | 85 | 93 | 101 | 109 | 117 | 125 | 133 | 237 |
| 6 | 14 | 22 | 30 | 38 | 46 | 54 | 62 | 70 | 78 | 86 | 94 | 102 | 110 | 118 | 126 | 134 | 238 |
| 7 | 15 | 23 | 31 | 39 | 47 | 55 | 63 | 71 | 79 | 87 | 95 | 103 | 111 | 119 | 127 | 135 | 239 |
| 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128 |     | 240 |





# I/NAV OSNMA DATA

### • OSNMA Data:

- 40 bits per page (20 bits/sec rate)
- Two types of messages:
  - Hkroot section
    - Digital Signature Messages
    - Symbols are predictable
  - MACK root section
    - Message Authentication Codes (MACs)
    - Cryptographic Keys
    - Symbols may be unpredictable
- OSNMA data is not available in the Galileo Signal-in-Space so it is simulated inside the project.

|            |           |              |           | I     | E1-1 | в |       |     |            |      |   |              |
|------------|-----------|--------------|-----------|-------|------|---|-------|-----|------------|------|---|--------------|
| Even/odd=1 | Page Type | Data<br>(2/2 | a j<br>2) | OSNMA | SAR  |   | Spare | CRC | Reserved 2 | Tail |   | Total (bits) |
| 1          | 1         | 16           | ;         | 40    | 22   | 2 | 2     | 24  | 8          | 6    | 1 | 20           |
|            |           |              |           |       | MACK |   |       |     |            |      |   |              |
|            |           |              |           | 8     | 32   | Ī |       |     |            |      |   |              |





### **ANTI-REPLAY IMPLEMENTATION**

#### Anti-replay technique based on symbols unpredictability

- Continuous stream of E1B signal samples are sent from the hardware receiver to the Authentication Engine
- $N_c$  chips of the  $N_U$  unpredictable symbols over a given page.
- Once symbols are authenticated, the correlation computation of the stored chips is performed
- If a loss in correlation gain is observed, an alarm is raised.





# **SCER ATTACK SIMULATOR**

#### SCER simulator components

- HackRF One
  - Needed to convert to RF the GNSS baseband signal data streams generated and replay it with the antenna.
- Software Module
  - Galileo E1 and GPS L1 signal sample generation
  - OSNMA data generated by means of the Commercial Service Demonstrator (CSDemo) platform developed in the frame of the AALECS, project managed by the European Commission.
  - Zero delay attack simulated
    - Generation of two signals:
      - Trusted signals with no chip errors
      - Spoofed signal aligned with the trusted signal and with chip errors





# **SCER ATTACK DETAILS**

### SCER simulation definition

- Three phases
  - Phase 1: Only the signal without spoofing is generated, this simulate the real signal. The receiver tracks only this real signal.
  - Phase 2: The spoofing signal perfectly aligned with the real signal simulating a theoretical perfect zero delay.
  - Phase 3: After configurable time, when the receiver tracks the spoofing signal, the spoofing signal starts delaying the signal to spoof the receiver position





# **TEST SET-UP AND CONFIGURATION**

#### Test set-up

- NACSET User Terminal with Anti-Replay protection implemented
- COTS Receiver used for comparison: u-Blox M8T
- SCER attack configuration

| Phase   | Duration | Notes                                                                                                   |
|---------|----------|---------------------------------------------------------------------------------------------------------|
| Phase 1 | 60s      | Real signal simulating<br>position in LLH:<br>(40.59°, -3.7°), 806<br>m                                 |
| Phase 2 | 20s      | Both spoofing signal<br>and real simulate<br>position (40.59°, -<br>3.7°), 806 m with one<br>chip delay |
| Phase 3 | 60s      | Spoofing signal<br>deviate receiver<br>position in a linear<br>trajectory.                              |



Simulated SCER scenario signals



| Parameter                                          |           | Value                                        |
|----------------------------------------------------|-----------|----------------------------------------------|
| Sampling<br>frequency                              |           | 8192000 Hz                                   |
| Threshold                                          |           | 40 % maximum correlation loss from the mean. |
| Unpredictable<br>symbols                           |           | 32 per page                                  |
| Chips to<br>correlated<br>unpredictable<br>symbol. | be<br>per | 10 at the beginning of the symbol            |



2018/11/15 Page 15

# **TEST SCENARIOS**

### Test attack profiles

- Reference attack: Pseudorandom errors are introduced in the estimation of the unpredictable symbols (50% of chip errors at the beginning of each symbol) and no modification of the signal power is done.
- Intermediate attack: low error rate in the estimation of the unpredictable symbols (30% of chip errors at the beginning of each symbol) and no modification of the signal power is done.
- High-power attack: low errors rate in the estimation of the unpredictable symbols (30% of chip errors at the beginning of each symbol) and modification of the signal power per symbol to mask the errors in the estimation process.



### **TEST COTS RECEIVER RESULTS**

COM4 - u-center 8.28 - [Deviation Map]

📝 File Edit View Player Receiver Tools Window Help



### **USER TERMINAL TEST RESULTS**

|                                                                                      | F                                                      | VTE [Corriendo] - Oracle VM VirtualBo | X                                   |                       | -   |
|--------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|-------------------------------------|-----------------------|-----|
| juina Ver Entrada Dispositivos Ayuda                                                 |                                                        | Mon 10'47                             |                                     |                       | 5 1 |
| magie                                                                                |                                                        | Mon 10.47                             |                                     | ovtensine@ovtensine'~ |     |
| Session Settings Window                                                              |                                                        |                                       | File Edit View Search Terminal Help |                       |     |
| Rx Connection O AE Connection Trusted Zone                                           | PVT                                                    | Reset                                 |                                     |                       |     |
| Max<br>Points: 30 CRecenter Display PVT V                                            | Max Points: 30                                         | ÷ Horizontal Vertical                 |                                     |                       |     |
| $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | (m) 13<br>12<br>12<br>10<br>9<br>08:51:46 08:51:53 (0) | 08:52:00 08:52:07 08:52:14<br>Time    |                                     |                       |     |
| Latitude (deg): 40.5913781500 Longitude (deg): -3.7066894677                         | HPL (m) : 9.529                                        | VPL (m) : 11.941                      |                                     |                       |     |

# **TEST RESULTS: REFERENCE ATTACK**

- Clear loss of correlation gain as soon as the spoofing attack starts
- Attack is detected almost immediately
- Considered pessimistic for the spoofer (success rate of 0.5 in the estimation)



|                     | E02  | E08  | E11  | E12  |
|---------------------|------|------|------|------|
| Reference<br>attack | -45% | -51% | -42% | -51% |



# **TEST RESULTS: INTERMEDIATE ATTACK**

- Less clear loss of correlation gain
- Still able to detect the attack and stops computing the positioning solution.
- More realistic rate of success for the estimation of the symbols

20% 10% 0% Correlation -10% -20% -30% -40% -50% -60% 30 35 40 45 50 55 60 65 70 75 Time (seconds)

|                         | E02  | E08  | E11  | E12  |
|-------------------------|------|------|------|------|
| Intermedi<br>ate attack | -27% | -31% | -21% | -28% |



# **TEST RESULTS: HIGH-POWER ATTACK**

- 3 DB increase
  - The correlation variation is more subtle than in the previous cases but a general correlation gain loss can be identified.
- 5 DB increase
  - The NACSET receiver is unable to clearly detect the attack, as it is quite difficult to propose a firm decision based on the correlation values.

|              | E02  | E08  | E11  | E12  |
|--------------|------|------|------|------|
| High-power   |      |      |      |      |
| attack (3dB) | -19% | -29% | -21% | -25% |

|              | E02 | E08 | E11 | E12 |
|--------------|-----|-----|-----|-----|
| High-power   |     |     |     |     |
| attack (5dB) | 26% | 6%  | 15% | 17% |

#### **3 DB power increase**



#### NACSET

2018/11/15 Page 21

# **CONCLUSIONS AND WAY FORWARD**

- Implementation of a solution for protecting against zero delay SCER attacks has been described and tested against a simulated attack.
- Technique behaves well against standard zero-delay SCER attacks
- Combination with other signal-related indicators (AGC, C/N<sub>0</sub>,...)
- Proving the technique with real SIS and in harsher environments
- Refine the statistical analysis to work in those environments
- Characterize the probability of false alarm and time to alert





THANK YOU

Aure D



