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Abstract—An Airport-Sector Network Delays model is 

developed in this paper for flight delay estimation within air 

transport network. This model takes both airports and 

airspace capacities into account by iterating among its three 

main components: a queuing engine, which treats each airport 

in the network as a queuing system and is used to compute 

delays at individual airport, a Link Transmission Model, 

which computes delays at individual sector and transmits all 

air delays into ground delays, and a delay propagation 

algorithm that updates flight itineraries and demand rates at 

each airport on the basis of the local delays computed by the 

queuing engine and flow control delays computed by the Link 

Transmission Model. The model has been implemented to a 

network consisting of the 21 busiest airports in China and 2962 

links that represent to 151 enroute control sectors in mainland 

China, and its performance is evaluated by comparing with the 

actual delay data and results of Airport Network Delays 

model. It is found that the proposed model is well-suited for 

simulating delays in air transport system where either airports 

or airspace could be the bottleneck of the system. 

Keywords—airport and airspace network; flight delays; delay 

propagation 

I.  INTRODUCTION 

Minimizing flight delay is one of the major challenges in 
the air transportation industry today. Flight delay is usually 
defined as the difference between scheduled and actual 
arrival time. A complete flight consists of several segments: 
pushing back from origin airport gate, taxiing out to the 
runway, taking off, climbing, cruising through several 
sectors, landing, and finally taxiing to the arrival gate. At the 
gate, the aircraft waits for turn-around, after which it will 
continue to its next flight leg. Thus, the determination of 
delay is not easy since it can be caused by many factors 
during the whole operation such as airport capacity, severe 
weather conditions, sector capacity, maintenance, etc. 

This paper presents a new model, Airport-Sector 
Network Delays model (ASND), which is a combination of 
Airport Network Delays (AND) model and Link 
Transmission Model (LTM) [1,2]. The model can 
approximately compute flight delays at each individual 

airport and sector in a network. More important, the model 

can help us to understand how flight delays that occur in a 
network will impact the performance of the whole system. 
Three biggest contributors to flight delays in China [3], 
predecessor flight delays, airport capacity constraints, and 
sector capacity constraints, are taken into account in this 
model. 

Early research work focuses on flight delays in a single 
airport [4], while it may neglect the impact of predecessor 
flights from upstream airports. To minimize the effect of 
upstream flight delays, airlines normally insert some 
“buffer” in their flight schedule. For instance, when an 
aircraft is scheduled to be on the ground for turn-around 
process (after it arrives at gate/apron, there will be a series of 
process including unloading passengers/goods, refueling, 
cleaning, boarding etc.) at the airport for 45 minutes, it may 
actually require only 35 minutes to complete all the turn-
around process, thus providing 10 minutes buffer. However, 
these buffers are unable to absorb longer delays that typically 
occur on a daily basis, thus leading to the propagation of 
delay in the network. In order to explore how flight delays 
propagate within a large network system, Nikolas Pyrgiotis 
et al. developed an analytical queuing-based network 
decomposition model [1]. The AND model operates by 
iterating between its two main components: a queuing engine 
(QE), which treats each airport in the network as a queuing 
system and is used to compute delays at individual airport, 
and a delay propagation algorithm (DPA) that updates flight 
itineraries and demand rates at each airport on the basis of 
the local delays computed by the QE. AND is well-suited for 
simulating delays in the United States as it has been 
validated by operating within a large network consisting of 
the 34 busiest commercial airports in the continental United 
States and comparing the system-wide results from AND 
with real observations of delays [1]. 

However, AND model does not consider sector capacity 
or compute flight delays caused by airspace constraints. In 
the United States it is a justified assumption: it has been 
reported that nearly 84% of air traffic delays are generated 
by airports in 2001 and 95% in 2005 [5,6]. Instead, in China, 
airspace capacity is a main factor that causes flight delays 



 

[7]. In general, limited available airspace capacity is 
responsible for up to 20% of the total delays in 2005. By 
2015, this proportion has increased to nearly 30% [8]. The 
main reason could be that air traffic volumes continuously 
grow at 10% per year, while available airspace for civil 
aviation is limited. The imbalance between airspace capacity 
and traffic becomes more and more serious. Therefore, 
airspace capacity must be taken into account when modeling 
flight delays propagation in China. 

P.K.Menon’s Eulerian model seems to be an effective 
tool to model realistic airspace involving multiple traffic 
stream [9]. Unfortunately, although it can simulate and 
adjust traffic in airspace, it can hardly perform the 
adjustment strategies on individual flight. Taking this into 
account, the combination of Menon’s model and AND is 
extremely difficult. We then turn to the Eulerian-Lagrangian 
large-capacity cell transmission model(CTM(L)) for air 
traffic flow developed by Sun et al. [10], which is control 
volume based(Eulerian) and takes the origin-destination 
information of the aircraft(Lagrangian) into account. 
CTM(L) has three progressive levels. The primary level is 
link level, which can be viewed as the connection between 
the entry point and exit point in a specific sector. The 
number of cells in one link is scaled by a unit time. The 
secondary level is sector level model, and since there is no 
interconnection between different links in one sector, the link 
level model can be spontaneously extended to obtain the 
sector level model by gathering all links in the same sector. 
After merge/diverge nodes are added into the network, the 
tertiary level, multicommodity network level model is 
created by putting all sector level models together. Then 
high-altitude routes can be combined by several links from 
different sectors. The overall number of cells accounting for 
the length of a route is obtained by averaging flight time of 
historical trajectories. Since CTM(L) is based on the origin-
destination information of flights, every individual flight can 
be distinguished when operating in the airspace, which 
prompts us with the possibility of a combination of CTM(L) 
with AND. Since almost all links have length that are longer 
than 1-minute interval in CTM(L) model and at the next time 
instant, only a portion of the aircraft in an upstream link will 
fly to the downstream link, Cao et al. then use links instead 
of cells as the most basic element to develop a new model 
named Link Transmission Model(LTM) [2]. By reducing the 
number of state variables to one tenth of CTM(L), LTM is 
about six times faster than CTM(L) while computing [11]. In 
addition, compared with CTM(L), another advantage of the 
LTM is that LTM is able to simulate and predict ground 
delays, by using a special link, defined as the first link of 
each path to represent the airport. But ground delays 
simulated by LTM are all caused by sector capacity. 
Although these delays occur on the ground, they are all 
transmitted from the air delays. LTM does not model the 
airport capacity and the influence among airports. 

As we can see, AND and LTM seem to be 
complementary. AND can calculate flight delays due to 
airport capacity constraints and flight schedule then provide 
transmission coefficients as parameters into LTM, while 
LTM can compute delays due to sector capacity constraints 
between each pair of airports in AND for individual flights. 
Thus, it is advantageous to combine AND and LTM 

together. In this paper, a new model is developed taking both 
airports and airspace capacity into account, the Airport-
Sector Network Delays model(ASND). ASND operates by 
iterating among its three main components: a QE, which is 
the same as that in AND, a LTM, which computes delays at 
individual sector and transmits all air delays into ground 
delays following the control strategy of China, and a delay 
propagation algorithm (DPA) that updates flight itineraries 
and demand rates at each airport on the basis of the local 
delays computed by the QE and flow control delays 
computed by the LTM. 

The main contributions of the present paper are several. 
First, a unique model is constructed by combining AND and 
LTM. In the model, both airport capacity and sector capacity 
are taken into account. Second, A network consisting of the 
21 busiest airports in China and 2962 links that refer to 151 
continental en route control sectors is constructed. ASND is 
successfully validated in that network by comparing with the 
results of AND and the empirical flight delays. 

The rest of paper is organized as follows. Section Ⅱ 
introduces ASND model and main algorithms when running 
the model. Section Ⅲ describes the simulation and validation 
of ASND for 21 busiest airports and related sectors. The 
comparisons of ASND and AND for computing flight delays 
in two typical days are carried out. Section Ⅳ provides a 
summary of conclusions and future work with ASND model. 

II. MODEL DESCRIPTION 

ASND is generally used to simulate one-day operation of 
flights, beginning at a time when there are little air traffic 
activities within the whole network (for example, 6 a.m. in 
China). An entire day is subdivided into 𝑚  sub-periods, 
𝑇1, 𝑇2, ⋯ , 𝑇𝑚  of equal length. Here, we use 𝑚 = 96, with 
each sub-period is 15 min. The five main steps of ASND are 
described as follows. 

Step 1. At first, QE is run for all airports respectively in 
all sub-periods Each airport is modeled as a queuing system 
and its runway system is modeled as a single server that 
serves both arrivals and departures. At each airport, demand 
rates can be obtained from flights itineraries and service rates 
can be obtained from the capacity of the runway system. Let 
𝑝𝑎,𝑗(𝑡) denote the state probability that there are 𝑗 aircraft in 

airport 𝑎  at time 𝑡 .The expected waiting time in queue, 
𝑊𝑎,𝑞(𝑡), is determined as follows: 

 𝑊𝑎,𝑞(𝑡) ≈
𝐿𝑎,𝑞(𝑡)

𝜇𝑎(𝑡)
=

∑ (𝑗−1)𝑝𝑎,𝑗(𝑡)
𝑁
𝑗=1

𝜇𝑎(𝑡)
 

where 𝐿𝑎,𝑞(𝑡)  is the expected number of aircraft in 

airport 𝑎 at time  𝑡, 𝑁  is a sufficiently integer that denotes 
the capacity of the queue, and 𝜇𝑎(𝑡) is the service rate in 
airport 𝑎  at time 𝑡 . The detail information for computing 
𝑝𝑎,𝑗(𝑡) can be found in [12]. 

Step 2. For flight 𝑓, we define the following variables. 

𝑜(𝑓): origin airport of 𝑓 

𝑑(𝑓): destination airport of 𝑓 



 

𝑆𝐷(𝑓): scheduled departure time of 𝑓 

𝐴𝐷(𝑓): adjusted departure time of 𝑓 

𝑆𝐴(𝑓): scheduled arrival time of 𝑓 

𝐴𝐴(𝑓): adjusted arrival time of 𝑓 

F𝑇𝑜(𝑓),𝑑(𝑓): flying time between 𝑜(𝑓) and 𝑑(𝑓) of 𝑓 

𝑓′: the predecessor flight to 𝑓, if there is one 

𝑡𝑢𝑟𝑛(𝑓′, 𝑓): turnaround time, which is the time between 
the scheduled arrival time of 𝑓′ and the scheduled departure 
time of 𝑓 

𝑚𝑖𝑛𝑡𝑢𝑟𝑛(𝑓′, 𝑓): a “minimum turnaround time” which is 
required to complete all the turn-around processes 

Then the “buffer” time associated with 𝑓  defined as 
𝑏𝑢𝑓𝑓𝑒𝑟(𝑓), can be computed as follow: 

 𝑏𝑢𝑓𝑓𝑒𝑟(𝑓) = 𝑡𝑢𝑟𝑛(𝑓′, 𝑓) − 𝑚𝑖𝑛𝑡𝑢𝑟𝑛(𝑓′, 𝑓) 

We initially set 𝐴𝐷(𝑓) = 𝑆𝐷(𝑓)  and 𝐴𝐴(𝑓) = 𝑆𝐴(𝑓) 
for all 𝑓. Then if there is a predecessor flight associated with 
𝑓, DPA is performed to calculate the adjusted departure time 
of 𝑓 as follow: 

𝐴𝐷(𝑓) = max [𝑆𝐷(𝑓), 𝑆𝐷(𝑓) + 𝐴𝐴(𝑓′) +𝑊𝑑(𝑓′),𝑞(𝐴𝐴(𝑓′)

 −𝑆𝐴(𝑓′) − buffer(𝑓)] 

And the adjusted arrival time can be calculated for all 
flights as follows: 

𝐴𝐴(𝑓) = max [𝑆𝐴(𝑓), 𝐴𝐷(𝑓) +𝑊𝑜(𝑓),𝑞(𝐴𝐷(𝑓))

 +𝐹𝑇𝑜(𝑓),𝑑(𝑓)] 

Step 3. Update demand rates of each airport by using the 
adjust departure and arrival times that are calculated above. 
Then, QE is performed to recalculate the expected waiting 
time after the time 𝑡𝑑, which is the earliest time that demand 
rate changes. The adjust departure and arrival time after 𝑡𝑑 
should also be update by using (3) and (4) since the expected 
waiting time may have changed. This step will repeat until 
no demand rates change during the whole day. So far we 
have run Pyrgiotis’ AND completely. The flight delays 
obtained can be regarded as under un-capacitated sector 
capacity. 

Step 4. Let 𝑘 be the index of path, and 𝑠 be the index of 
sector. We define 𝑙  to be the index of link, which can be 
understood as the connection between the entry point and 
exit point inside a sector [10]. The length of a link is scaled 
by expected travel time of a flight through it. Then we define 

𝑇𝑙
𝑘 to denote the length of link 𝑙 on path 𝑘. In particular, 𝑇0

𝑘 
denotes the length between the flight’s takeoff and the 
entrance time of first en route control sector on path 𝑘. Since 
most of the links are longer than 1-minute interval and at the 
next minute, only a proportion of the aircraft in an upstream 

link will fly to the downstream link, ℎ𝑙
𝑘(𝑡) is used to indicate 

the number of aircraft that transit from link 𝑙 to link 𝑙 + 1 on 
path 𝑘 at time 𝑡, which can be determined by adjusted flights 
itineraries that are calculated above [2]. The number of 

aircraft 𝑥𝑙
𝑘(𝑡) in link 𝑙 on path 𝑘 at time 𝑡 can be determined 

as follows (no flight in the links at 𝑡 = 0): 

 

𝑥𝑙
𝑘(𝑡 + 1) = 

{
 
 
 
 

 
 
 
 
𝑥𝑙
𝑘(𝑡) − ℎ𝑙

𝑘 (𝑡 −∑𝑇𝑖
𝑘

𝑙

𝑖=0

) + ℎ𝑖
𝑘 (𝑡 −∑𝑇𝑖

𝑘

𝑙−1

𝑖=0

) , 𝑡 ≥ ∑𝑇𝑖
𝑘

𝑙

𝑖=0

𝑥𝑙
𝑘(𝑡) + ℎ𝑖

𝑘 (𝑡 −∑𝑇𝑖
𝑘

𝑙−1

𝑖=0

),                  ∑𝑇𝑖
𝑘

𝑙−1

𝑖=0

≤ 𝑡 <∑𝑇𝑖
𝑘

𝑙

𝑖=0

0,                                                                        0 ≤ 𝑡 <∑𝑇𝑖
𝑘

𝑙−1

𝑖=0



 𝑥0
𝑘(𝑡 + 1) = {

𝑥0
𝑘(𝑡) + ℎ0

𝑘(𝑡) − ℎ0
𝑘(𝑡 − 𝑇0

𝑘), 𝑡 ≥ 𝑇0
𝑘

𝑥0
𝑘(𝑡) + ℎ0

𝑘(𝑡),                   0 ≤ 𝑡 < 𝑇0
𝑘

Then, the number of aircraft in sector 𝑠 can be counted 
as: 

 𝐸𝑠(𝑡) = ∑ 𝑥𝑙
𝑘(𝑡)(𝑙,𝑘)∈𝑠  

Let 𝐶𝑠(𝑡) denote the capacity of sector 𝑠 at time 𝑡. The 
number of aircraft in the sector should not exceed the sector 
capacity, this is: 

 𝐸𝑠(𝑡) ≤ 𝐶𝑠(𝑡) (7)

By using LTM, the earliest time 𝑡𝑟  can be determined 
when sector overload occurs, then all overflow aircraft 
should be adjusted to their previous sectors, as well as the 
previous links. In order to reduce the influence on the 
demand rates, the flight with later adjusted departure time 
will be pushed back preferentially. When there is no 
overload sector, we then calculate air delays of flights which 
have been pushed back as: 

 𝑊𝑓,𝑠 = 𝑡𝑟 − (𝐴𝐷(𝑓) +𝑊𝑜(𝑓),𝑞(𝐴𝐷(𝑓)) − ∑ 𝑇𝑖
𝑘𝑙

𝑖=0 ) 

where 𝑙 is the link that 𝑓 has been adjusted into. Then all 
air delays should be transmitted into ground delays by 
performing further adjustment on the adjusted departure time 
of those flights by: 

 𝐴𝐷′(𝑓) = 𝐴𝐷(𝑓) +𝑊𝑓,𝑠 

Step 5. Update demand rates of each airport by using the 
adjust departure and arrival time that are changed due to 
sector capacity constraints. Then from the period 𝑇𝑟 , run 
AND again. 𝑇𝑟 is the period that contains the earliest adjust 



 

departure time of flight being pushed back, for it is the 
earliest period that some other flights’ adjusted departure or 
arrival times in it may also change. After that, we can run 
LTM again to check the requirement of sector capacity. This 
loop “LTM-AND-LTM-AND-LTM” continues until no 
overload sector can be found at any time. 

Input aircraft itineraries for a 

single day demand, capacity 

profile at each airport and sector, 

and length of each link.

Run QE for every airport:

Calculates the expected delay on 

landing and takeoff for every T.

Start at T0

(first period of day).

Run DPA:

Determine td.

The time when the first 

significant delay 

occurs.

Assign delays and 

revise arrival and 

departure times of 

successor flights. 

td < End 

of day

Input: Updated airport 

demand profile.

Run LTM:

Determine tr.

The time when the first 

sector overload 

occurs.

tr = end of day

tr < End 

of day
Update departure 

time of flights 

that cause sector 

overload.

End.

td = End of day

Input: Updated airport 

demand profile.

Input: Expected delay by 

time of day per airport.

 

Fig. 1. The schematic of ASND model 

To satisfy all airports’ and sectors’ constraints, the 
calculations of “LTM-AND-LTM-AND-LTM” may run 
many times. Some tricks can be used to improve its 
computing efficiency. For example, from the second time we 
run LTM, its start time can be set on the earliest adjusted 
time of flights which have been readjusted, for flights before 
that time are not changed and the airspace condition will stay 
the same. When we use DPA to adjust flights after running 
LTM, we can only run DPA on flights within two hours from 
the start time, since it is unlikely that there will be no 
overload sectors during the next two hours. These tricks will 
greatly reduce running time of ASND. 

III. SIMULATION AND RESULTS 

Detailed, auto recorded flights data were obtained from 
Operations Management Center of Civil Aviation 
Administration of China (CAAC). The database details the 
flights departure and landing in every Chinese mainland 
airport, providing a comprehensive picture of air transport in 
China. Each flight record reports the flight number, execute 
date, schedule/actual departure (arrival) time, and the unique 
aircraft register number (tail number). Such data allows us to 
easily reconstruct the path of each aircraft flying in the 
network. Additional information about airport runway 
information, airspace structure, and aircraft performance are 
also provided, to determine airport capacity, flying time, and 
turnaround time. 

The ASND model then is implemented with Python 3.5. 
The investigated air transport network consists of the 21 
busiest airports in China and 2962 links that refer to 151 
mainland en route control sectors (89.35% of total). In 
addition, a 22nd “virtual airport” acts as an un-capacitated 
source to generate and “absorb” flights. All flights between 
the 21 busiest airports and some other airports can be taken 
into account by having the relevant aircraft fly to/from the 
virtual airport, which include most of daily flights.  

The following five sets of inputs are critical to the ASND 
model. 

 Aircraft itineraries, including aircraft tail 
number, the aircraft type, the airline, the origin 
and destination airports and the scheduled 
departure and scheduled arrival times; 

 Expected service rate at each airport, which 
indicates the expected number of arrivals and 
departures that can be served per sub-period at 
each airport; 

 Minimum turnaround time, which is the shortest 
necessary time between a flight and its 
immediate predecessor flight (unload, clean, 
refuel, load, etc.); 

 Link length, which is the expected travel time 
between the entry point and exit point inside a 
sector, can be computed from historical traffic 
data of all flights in the network (one year in the 
present work from 1 January to 31 December in 
2016); 

 Sector capacity, which is the maximum number 
of aircraft that can exit in the sector at the same 
time, is determined by experienced controllers, 
referring to several indicators such as maximum 
capacity of sector in history, weather condition 
and so on. 

To illustrate and validate the ASND, the results from the 
model of a day should be compared with the actual operation 
data. In particular, since sector capacity is the bottleneck of 
civil aviation in China, we would like to select actual 
operation data of two contrasting days from 2016 for our 
demonstration. On one of the two days, the volume of flights 
is more than average throughout the year, while on the other 
day, it is less than the average. Ideally, the service rates and 
sector capacities depend largely on some factors, such as 
weather, and special use of airspace etc. The two days we 
choose are both have no severe weather or large-scale 
military activities, so that they can be considered to 
approximately have the same condition. Therefore, the input 
of expected service rate at each airport and sector capacities 
are the same when using ASND to model for the two days, 
so that it will make it easier for us to analyze our model. We 
also compare the results obtained from ASND with AND, to 
demonstrate the improvement our model when investigating 
flight delays in China. Finally, as ASND is a macroscopic 
model of airport delays, rather than to predict individual 
flight delays, we then validate our model by comparing 
airport hourly delay obtained from our model and real data. 
A delayed flight is defined by CAAC as one whose actual 



 

arrival time is later than its schedule arrival time by more 
than 15 minutes [13]. 

The flight data tested here include all the flights within 
China mainland from 0600 CST on 11 July 2016 to 0559 
CST on 12 July 2016, containing 10765 flights. Figure 2 
shows flight delay rates at the main airports estimated by 
AND and ASND, and the actual delay rates (the ratio of 
delay flights to the total arrival flights) at these airports 
reported by CAAC. We can see that ASND displays a better 
result than AND, for flight delay rates are closer to the actual 
delay rates at most airports, especially the hub ones such as 
Beijing Capital International Airport (ZBAA), Guangzhou 
Baiyun International Airport (ZGGG) and Shanghai Pudong 
International Airport (ZSPD). These results may reveal the 
actual air transportation in China, that nearly 30 percent of 
delays are caused by sector limitation. Figure 3 shows the 
hourly delay distributions from 0800 to 2300 on 11 July 
computed by the two models and the actual hourly delay 
distribution at ZSPD. Compared with AND, ASND follows a 
pattern more similar to the observed data. 

The results of Wuhan Tianhe International Airport 
(ZHHH) is another evidence for the validity of ASND. 
Figure 4 shows the hourly delay distributions from 0800 to 
2300 on 11 July computed by the two models and the actual 
hourly delay distributions at ZHHH. Compared with AND, 
in some hour periods the delay aircraft estimated by ASND 
become fewer. Although we just added sector capacity 
constraints into the network, it can be found that not all 
airports’ delays have become more serious and delays at 
some airports like ZHHH have even eased and become 
closer to the real data. It demonstrates that ASND does not 
simply increase the delays at all airports, but more 
appropriately simulates the actual operation. 

 

Fig. 2. Delay rates at major airports on 11 July 

 

Fig. 3. Hourly delay destributions of ZSPD on 11 July 

 

Fig. 4. Hourly delay destributions of ZHHH on 11 July 

The second validation test is based on the flights operated 
between 0600 CST on 1 January 2016 and 0559 CST on 2 
January 2016, containing 9138 flights (less than the daily 
average). Because of fewer flights on that day, sector 
capacity constraints should have less influence on flight 
delays compared with 11 July. Figure 5 shows the flight 
delay rates at airports estimated by AND and ASND, and the 
actual delay rates at these airports reported by CAAC. It can 
be seen that the difference between results of the two models 
are not obvious and they are both consistent with the actual 
operation. In fact, the amount of delayed flights obtained by 
ASND is 2022, 320 more than the result computed by AND, 
while on 11 July, the increase number is 1572. Figure 6 
shows the hourly delay distributions from 0800 to 2300 on 1 
January computed by the two models and the actual hourly 
delay distributions at ZBAA. We can see that expect for the 
first two hours, ASND and AND obtain similar results, 
which reveals that sector compacity constraints have a 
limited impact on delays, even at the busiest airport in China. 
These results above conform to our expectations. 

 

Fig. 5. Delay rates at major airports on 1 January 



 

 

Fig. 6. Hourly delay destributions of ZBAA on 1 January 

IV. CONCLUSIONS  

This paper develops an Airport-Sector Network Delays 
model for flight delay estimation within air transport 
network. Performance of the proposed model is evaluated in 
this paper by comparing with the actual delay data and 
results of AND. It is found that ASND is well-suited for 
simulating delays in air transport system where either 
airports or airspace could be the bottleneck of system, such 
as the system in China. It can be used to explore critical 
sectors or airports within air transport network and simulate 
the scenario when some sectors’ or airports’ capacities 
decrease suddenly. Since some potential delays can be 
identified by ASND in air transport network, it is able to 
support the pre-warning system for serious flight delays and 
strategies concerning demand management. 

Ongoing work involves further validation of ASND. 
More major airports and sectors can be added into the model 
to make it more complete. In addition, uncertain capacities 
can be considered, which means the sector capacity will not 
be fixed during a piece of time, but randomly fluctuation 
within a certain range, which will approach to the actual 
operation better. 
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