
HAL Id: hal-01888093
https://enac.hal.science/hal-01888093

Submitted on 15 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Support for Verification of Adaptative Systems
with Djnn

Daniel Prun, Mathieu Magnaudet, Stéphane Chatty

To cite this version:
Daniel Prun, Mathieu Magnaudet, Stéphane Chatty. Towards Support for Verification of Adapta-
tive Systems with Djnn. COGNITIVE 2015, 7th International Conference on Advanced Cognitive
Technologies and Applications, Mar 2015, Nice, France. pp.ISBN: 978-1-61208-390-2. �hal-01888093�

https://enac.hal.science/hal-01888093
https://hal.archives-ouvertes.fr

Towards Support for Verification of Adaptative Systems with Djnn

Daniel Prun, Mathieu Magnaudet, Stéphane Chatty
Université de Toulouse - ENAC

Toulouse, France
e-mail: {daniel.prun, mathieu.magnaudet, chatty}@enac.fr

Abstract—Djnn is a general framework dedicated to the
development of complex interactive systems. We describe
ongoing work aimed at developing verification mechanisms
through the definition of syntax, grammar and semantics for
djnn models. The results will serve to perform formal
verification of interactive systems.

Keywords-interactive system; component; control structure;
model; syntax; semantic; formal verification.

I. INTRODUCTION

For more then 30 years, dedicated languages and
methods have been designed and used to deal with the
development of critical systems (transportation, health,
nuclear and military systems). These languages and methods
are used for the development of safe, functionally correct
systems. For example, VHDL (VHSIC Hardware
Description Language) [1] is hugely used for the
development of hardware circuits, SCADE (Safety Critical
Application Development Environment) [2] language is used
for control and command systems.

However, highly interactive and adaptive systems have
recently and progressively appeared [3], [4]. For example, air
traffic control systems, surveillance systems or automotive
systems have to react to many event sources: user events
(from classic keyboard/mouse to more advanced interaction
means such as multi-touch surfaces, gesture recognition and
eye gaze), pervasive sensors, input from other subsystems,
etc.

Difficulties have been observed in using existing
languages and methods on these kinds of systems. Indeed,
these systems require new control structures in order to
manage dynamicity or to support different design styles,
such as state machines and data flows, and when using
existing languages this often leads to problems in the
software architecture [5], [6]. We argue that part of these
issues are due to the lack of a well-defined language for
representing and describing interactive software design in a
way that allows, on the one hand, system designers to iterate
on their designs before injecting them in a development
process and on the other hand, system developers to check
their software against the chosen design.

This paper describes a work in progress within the
development of a general framework (named Djnn)
dedicated to the development of interactive systems. Section
II presents the current state of Djnn and introduces
requirements for its supporting systems verification. Section
III discusses the early results obtained so far in the context of

HoliDes (Holistic Human Factors and System Design of
Adaptive Cooperative Human Machine System) project.
Section IV concludes with description of future
developments.

II. DJNN

Djnn [7] is a general framework aimed at describing and
executing interactive systems. It is an event driven
component system with:

• a unified set of underlying theoretical concepts
focused on interaction,

• new architectural patterns for defining and
assembling interactive components,

• support for combining interaction modalities,
• support for user centric design processes (concurrent

engineering, iterative prototyping).

A. Control primitives

Djnn relies on a fundamental control primitive called
“binding”. A binding is a component that creates a coupling
between two existing components. If there is a binding
between components C1 and C2, then whenever C1 is
activated, C2 is activated (C1 is called trigger and C2 is
called action). A binding can be interpreted as a transfer of
control, like a function call in functional programming or a
callback in user interface programming. Figure 1. shows
examples of binding definitions.

Figure 1. Examples of bindings definitions in Djnn.

Bindings can be used to derive a set of control structures
required to describe interactive softwares: Finite State
Machine (FSM), Connector (used to transfer data between
two components), Watcher (allow to connect C1 and C2 to
C3 where C3 is activated only when C1 and C2 are
synchronously activated) or Switch (activates one of several
components according to input data values). Figure 2. shows
examples of derived control structure definitions.

beeping at each clock tick
binding (myclock, beep)

controlling an animation with a mouse button
binding (mouse/left/press, animation/start)
binding (mouse/left/release, animation/stop)

quitting the application upon a button press
binding (quitbutton/trigger, application/quit)

191Copyright (c) IARIA, 2015. ISBN: 978-1-61208-390-2

COGNITIVE 2015 : The Seventh International Conference on Advanced Cognitive Technologies and Applications

Figure 2. Examples of derived control structure definitions in Djnn.

FSMs are one of the most used control structures for
describing user interfaces with Djnn. They contain other
components named states and transitions. Transitions are
bindings between two states (named origin and destination).
A transition is active only when its origin is active. It
behaves as a binding with a default action: changing the
current state of the FSM to its destination state. Therefore,
the transitions define the inputs of the state machine: the
state evolves on the sequence of activation of the triggers of
the transitions, and ignores events that do not match the
current state. Figure 3. shows the internal behavior of a
software button designed for use with a mouse: the Djnn
code above implement the FSM shown at the bottom. r is the
graphical representation of the button (a rectangle
component).

Figure 3. Example of a FSM definition.

B. An architecture of reactive components

In Djnn, every entity you can think of, abstract or
physical, is a component. In addition to the control structures
introduced above, Djnn comes with a collection of basic
types of components dedicated to user interfaces: graphical
elements, input elements (mouse, multi-touch, sensors, etc.),
file elements, etc. Every type of component can be
dynamically created or deleted.

To design interactive systems, components must be

interconnected and organized. Interconnection is obtained
with control structures, and can be performed independently
of the nature and location of components. For example, a

binding can connect the position of a mouse press to the
position of a rectangle, so that the rectangle moves whenever
the mouse is pressed. Structuration is obtained with a
dedicated control structure: the parent-child interconnection
that allows creating a hierarchy of components. For example,
a complex graphical scene is composed of several graphical
sub-components; a mouse is made of two buttons and one
wheel; a FSM is made of several bindings etc. The designer
can explicitly manage this tree-oriented architecture.

Combining the tree structure and the other control
structures can be used for creating complex interactive
behaviors and not only graphical scenes. For instance,
combining FSMs by coupling their transitions, or by
controlling the activation of one by a state or a transition of
another, makes it possible to create complex behaviors (see
example in Figure 4.). The tree structure also makes it easier
to structure applications as collections of reusable
components.

Figure 4. Example of connection with FSM.

Whenever a composite component is activated, the
activation of its children components is iteratively
performed. Each visited component is then activated and
eventual transversal connections are activated.

C. Djnn in use: realizations and limitations

Djnn components can be created with various
programming languages (Perl, Python, C, C++ or Java) or
loaded from XML (Extensible Markup Languages) files. For
instance, complex graphic scenes can be loaded from SVG
(Scalable Vector Graphics) files. The final application is then
compiled and linked with specific Djnn libraries. Dedicated
available target are Windows, Linux or Mac OSX platform.

Djnn has been used for several realizations related to
complex interactive systems. For example, in [8], Djnn has
been used for the design and implementation of a ground
control station for squads of civil Unmanned Aerial Vehicles
(UAVs) (see Figure 5.). With Djnn, programming user
interface adaptation comes down as a special case of
programming interactive behavior. This allowed to easily
implement many scenarios of adaptation, from simple state
transition to complex graphical reconfigurations triggered by
heterogeneous event sources. Thus, we have been able to
demonstrate that Djnn provides a suitable framework to
develop complex adaptive interfaces.

In [10], Djnn has been used to develop a prototype of a
drawing tool overlapped on top of maps in a maritime
surveillance system. The tool is used to share information
between the crew during search and rescue missions. This
example demonstrated how Djnn facilitates the development
of user interfaces by offering a support for rapid prototyping
and iterative processes.

ensure that rectangle rect1 will move with
the mouse.
connector (mouse/position/x, rect1/position/x)
connector (mouse/position/y, rect1/position/y)

m is performed when input1 and anput2 are
simultaneously activated
multiplication m (input1, input2, output)
watcher (input1, input2, m)

component mybutton {
 rectangle r (0, 0, 100, 50)
 fsm f {
 state idle, pressed, out
 transition press(idle, r/press, pressed)
 transition trigger(pressed, r/release, idle)
 transition leave (pressed, r/leave, out)
 transition enter (out, r/enter, pressed)
 }
} pressed

idle out

press
r/press

trigger
r/release

leave
r/leave

enter
r/enter

pressed

idle out

press
r/press
press

r/press

trigger
r/release
trigger

r/release

leave
r/leave
leave

r/leave
enter

r/enter
enter

r/enter

connect “trigger” transition to a component
action “quit”
binding (mybutton/trigger, application/quit)

192Copyright (c) IARIA, 2015. ISBN: 978-1-61208-390-2

COGNITIVE 2015 : The Seventh International Conference on Advanced Cognitive Technologies and Applications

<xs:complexType name="binding">
 <xs:complexContent>
 <xs:extension base="cmn:core-component">
 <xs:attribute name="source"
 type="xs:string" use="required" />
 <xs:attribute name="action"
 type="xs:string" use="required" />
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="fsm">
 <xs:complexContent>
 <xs:extension base="cmn:core-component">
 <xs:sequence>
 <xs:element name="state"
 type="state"
 minOccurs="2"
 maxOccurs="unbounded" />
 <xs:element name="transition"
 type="transition"
 minOccurs="1"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Figure 5. Djnn used for the design of a UAVs squad control.

Djnn is the visible result of an ongoing research project
on programming languages for interactive systems. So far,
verification of interactive systems designed with Djnn has
not been studied. Focus has been put on the development of
the implementation of the framework. Clearly, Djnn lacks
several elements to enable the development of critical
interactive systems:

• #1: a formal syntax and semantic for Djnn models,
• #2: mechanisms to translate Djnn applications into

languages supporting model checking simulation or
formal verification such as Event B [12] or
Spin/Promela [11],

• #3: mechanisms to perform property verification
directly on Djnn models.

Note that #1 is a prerequisite: without formal semantic,
there is no possibility for verification. In the next section,
we present our first results in this direction.

III. DJNN IN HOLIDES

The research results presented in this section are part of
the HoliDes project, whose main goal is to design adaptive
cooperative systems, focusing on the optimization of the
distribution of workloads between humans and machines [9].
During the first year of this project, Djnn has been improved
to prepare it for verification of interactive systems along two
axes:

• Specification of the syntax and grammar through
XML formats,

• Development of a formal semantic in Petri Nets.

A. Syntax and grammar

An abstract syntax and a grammar for Djnn have been
defined through an XML schema. The model addresses most
components available in Djnn, particularly control
primitives. For example, Figure 6. contains the description of
a binding and a FSM: a binding is an extension of a
component containing identification of a source (“trigger”)
and of a target (“action”). A FSM is an extension of a
component containing a sequence of minimum of two states
and a sequence of a minimum of one transition (state and
transition are defined elsewhere in the XML schema).

Figure 6. Djnn binding and FSM control structures described by the
XML schema.

The main advantages provided by these definitions are:
• Definition of a well-defined model for Djnn: illicit

constructs using the language can easily and
automatically be detected during edition of the
model thanks to the XML schema.

• Improvement of interoperability: this evolution is a
first step towards the definition of a better integrated
tool chain with the capability to dump a concrete
GUI (Graphical User Interface) in an XML file, and
conversely, to load and to execute a GUI from an
XML based description.

B. Towards a formal semantic

Semantic of Djnn model is expressed through colored
Petri Nets [13] extended with reset arcs [15]. We chose this
formalism because, at a first glance, it offers good
characteristics to represent both static and dynamic concerns
through a state-transition semantic. It also allows to model
simple data. All Djnn components are currently being
individually modeled with Petri Nets. Figure 7. and Figure 8.
give overviews of the semantic. The left part of Figure 7.
represents a binding between a source and an action with a
simple and unique transition. As a binding is a component,
its interface also offers run and stop operations. The right
part represents a connector: when activated, input data <X>
is copied to the output. Figure 8. shows Petri Nets model of
the button as defined in Figure 3.

193Copyright (c) IARIA, 2015. ISBN: 978-1-61208-390-2

COGNITIVE 2015 : The Seventh International Conference on Advanced Cognitive Technologies and Applications

Figure 7. Models of a binding and a connector.

Figure 8. Model of FSM (as defined in Figure 3.

Composition of components is achieved through the
merging of places of Petri Nets. This model of composition,
even if it is asynchronous, seems to perform best for our
purpose.

Such a formal definition of the semantic is central for
verification purpose because:

• semantic of Djnn is no longer subject to
misunderstandings or interpretations. A Djnn model
has the same meaning for every actor in interaction
with it (designer, code developer, final user, etc.);

• as the Petri Nets semantic is formal, several
mathematical verifications become enabled: for
example, LTL (Linear Temporal Logic) or CTL
(Computation Tree Logic) properties [14], liveness
or boundness properties. Moreover, translations to
other languages specialized on formal verification
become possible.

IV. CONCLUSION AND FUTURE PLANS

In this paper, current research related to a framework for
the development and the verification of interactive safety
critical systems has been presented. Although bases have
already been developed (syntax and grammar through a
XML schema, part of the semantic with Petri Nets),
investigations remain to be done:

• So far, Petri Nets have showed their capability to
model Djnn elements and mechanisms but some
further analysis must be done on dynamic aspects of
Djnn (creation/destruction of components).

• Use of the Petri Nets models to perform verification
through simulation or through model analysis.

• Connections with tools specialized in formal
verification.

Application on some real use cases, hopefully brought by
HoliDes project, are also planned for the next phases.

V. ACKNOWLEDGMENTS

This research has been performed with support from the
EU ARTEMIS JU project HoliDes (http://www.holides.eu/)
SP-8, GA No.: 332933. Any contents herein reflect only the
authors' views. The ARTEMIS JU is not liable for any use
that may be made of the information contained herein.

REFERENCES
[1] “VHDL Language Reference Manual”, IEEE Std 1076-2008.
[2] Scade homepage, http://www.esterel-technologies.com,

[retrieved: 02, 2015]
[3] L. Bass et al. “The Arch model: Seeheim revisited”, CHI’91

User Interface Developers Workshop, Apr. 1991.
[4] G.E. Pfaff, “User Interface Management Systems,”

Eurographics Seminars, Springer-Verlag, 1985.
[5] B. A. Myers, “Separating application code from toolkits:

Eliminating the spaghetti of callbacks,” In Proc. UIST, 1991,
pp. 211–220, Addison-Wesley.

[6] B. A. Myers and M. B. Rosson, “Survey on user interface
programming,” In Proc. CHI, 1992, pp. 195–202, ACM Press.

[7] Djnn project homepage, http://djnn.net, [retrieved: 02, 2015].
[8] M. Magnaudet and S. Chatty, “What should adaptivity mean

to interactive software programmers?” EICS 2014, ACM
SIGCHI, Rome, Italy, Jun 2014, pp 13-22.

[9] HoliDes (Holistic Human Factors and System Design of
Adaptive Cooperative Human Machine System) R&D project
www.holides.eu, [retrieved: 02, 2015].

[10] C. Letondal, P. Pillain, E. Verdurand, D. Prun, and O.
Grisvard, “Of Models, Rationales and Prototypes: Studying
Designer Needs in an Airborne Maritime Surveillance
Drawing Tool to Support Audio Communication,” In Proc. of
BCS HCI, ACM, 2014, pp. 92-102.

[11] G.J. Holzmann, “The Spin Model Checker: Primer and
Reference Manual,” 2003, Addison-Wesley.

[12] J.-R. Abrial, “Modeling in Event-B: System and Software
Engineering,” May 2010, ISBN: 9780521895569.

[13] K. Jensen, “Coloured Petri Nets,” Berlin, Heidelberg, 1996,
ISBN 3-540-60943-1.

[14] C. Baier and J.-P. Katoen, “Principles of Model Checking,”
2008, The MIT Press.

[15] C. Dufourd, A. Finkel, and P. Schnoebelen, “Reset nets
between decidability and undecidability,” In 25th ICALP, vol.
1443 of LNCS, Springer, July 1998, pp. 103-115.

source action

binding

run stop

source action

binding

run stop

idle

pressed

triggerpress

leave

enter

press

release

move

enter

leave

r

x

y

run

stop

rx

ry

width

height

0

0

0

0

100

50

out

f

my_button

idle

pressed

triggerpress

leave

enter

press

release

move

enter

leave

r

x

y

run

stop

rx

ry

width

height

0

0

0

0

100

50

out

f

my_button

connector

source action

run stop

input output
<x>

<x>
<x>

connector

source action

run stop

input output
<x>

<x>
<x>

194Copyright (c) IARIA, 2015. ISBN: 978-1-61208-390-2

COGNITIVE 2015 : The Seventh International Conference on Advanced Cognitive Technologies and Applications

