N

N

Towards Support for Verification of Adaptative Systems
with Djnn
Daniel Prun, Mathieu Magnaudet, Stéphane Chatty

» To cite this version:

Daniel Prun, Mathieu Magnaudet, Stéphane Chatty. Towards Support for Verification of Adapta-
tive Systems with Djnn. COGNITIVE 2015, 7th International Conference on Advanced Cognitive
Technologies and Applications, Mar 2015, Nice, France. pp.ISBN: 978-1-61208-390-2. hal-01888093

HAL Id: hal-01888093
https://enac.hal.science/hal-01888093

Submitted on 15 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://enac.hal.science/hal-01888093
https://hal.archives-ouvertes.fr

COGNITIVE 2015 : The Seventh International Conference on Advanced

Cognitive Technologies and Applications

Towards Support for Verification of Adaptative Systems with Djnn

Daniel Prun, Mathieu Magnaudet, Stéphane Chatty
Université de Toulouse - ENAC

Toulouse,

France

e-mail: {daniel.prun, mathieu.magnaudet, chatty}@efr

Abstract—Djnn is a general framework dedicated to the
development of complex interactive systems. We dete
ongoing work aimed at developing verification mechaisms
through the definition of syntax, grammar and sematics for
djnn models. The results will serve to perform fornal
verification of interactive systems.

Keywords-interactive system; component; control structure;
model; syntax; semantic; formal verification.

l. INTRODUCTION

For more then 30 years, dedicated languages and s
methods have been designed and used to deal wéth th

development of critical systems (transportation altime
nuclear and military systems). These languagesraettdods
are used for the development of safe, functionatiyrect
systems. For example, VHDL (VHSIC Hardware
Description Language) [1] is hugely used for
development of hardware circuits, SCADE (SafetytiCl
Application Development Environment) [2] languagaused
for control and command systems.

However, highly interactive and adaptive systemgeha
recently and progressively appeared [3], [4]. BPameple, air
traffic control systems, surveillance systems diomotive
systems have to react to many event sources: wssitse
(from classic keyboard/mouse to more advancedadtien
means such as multi-touch surfaces, gesture reamyind
eye gaze), pervasive sensors, input from otherystdms,
etc.

Difficulties have been observed in using existing
languages and methods on these kinds of systemisedn
these systems require new control structures irerotd
manage dynamicity or to support different desigylest
such as state machines and data flows, and whemy usi
existing languages this often leads to problemsthe
software architecture [5], [6]. We argue that pafrtthese
issues are due to the lack of a well-defined laggutor
representing and describing interactive softwarggiein a
way that allows, on the one hand, system desigoétsrate
on their designs before injecting them in a develept
process and on the other hand, system developeisettk
their software against the chosen design.

HoliDes (Holistic Human Factors and System Desidgn o
Adaptive Cooperative Human Machine System) project.
Section IV concludes with description of future
developments.

Djnn [7] is a general framework aimed at descrilamgl
executing interactive systems. It is an event drive
component system with:

a unified set of underlying theoretical concepts
focused on interaction,

new architectural patterns for
assembling interactive components,
support for combining interaction modalities,
support for user centric design processes (conaurre
engineering, iterative prototyping).

DJINN

defining and

theA. Control primitives

Djnn relies on a fundamental control primitive edll
“binding”. A binding is a component that createsoaipling
between two existing components. If there is a ibopd
between components C1 and C2, then whenever C1 is
activated, C2 is activated (C1 is called trigged &R is
called action). A binding can be interpreted asaagfer of
control, like a function call in functional programng or a
callback in user interface programming. Figure Boves
examples of binding definitions.

beeping at each clock tick
binding (myclock, beep)

controlling an animation with a mouse button
binding (mouse/left/press, animation/start)
binding (mouse/left/release, animation/stop)

quitting the application upon a button press
binding (quitbutton/trigger, application/quit)

Figure 1. Examples of bindings definitions in Djnn.

Bindings can be used to derive a set of contraktires
required to describe interactive softwares: FinBéate
Machine (FSM), Connector (used to transfer datavéet
two components), Watcher (allow to connect C1 aBdtdC

This paper describes a work in progress within thec3 where C3 is activated only when C1 and C2 are
development of a general framework (named Djnnkynchronously activated) or Switch (activates oheeweral

dedicated to the development of interactive syst&astion
Il presents the current state of Djnn and introduce
requirements for its supporting systems verifigatiSection
Il discusses the early results obtained so fahéncontext of

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-390-2

components according to input data values). Figushows
examples of derived control structure definitions.

191

COGNITIVE 2015 : The Seventh International Conference on Advanced

ensure that rectangle rectl will move with

the mouse.

connector (mouse/position/x, rectl/position/x)
connector (mouse/position/y, rectl/position/y)

m is performed when inputl and anput2 are
simultaneously activated

multiplication m (inputl, input2, output)
watcher (inputl, input2, m)

Figure 2. Examples of derived control structure definitiam®jnn.

Cognitive Technologies and Applications

binding can connect the position of a mouse presthe¢
position of a rectangle, so that the rectangle mavieenever
the mouse is pressed. Structuration is obtained \&it
dedicated control structure: the parent-child rwenection
that allows creating a hierarchy of components.éxample,
a complex graphical scene is composed of seveaphgral
sub-components; a mouse is made of two buttonsoaed
wheel; a FSM is made of several bindings etc. Témgher
can explicitly manage this tree-oriented architextu

Combining the tree structure and the other control

FSMs are one of the most used control structures fostructures can be used for creating complex intiesac

describing user interfaces with Djnn. They contather
components named states and transitions. Trarsitéwe
bindings between two states (named origin and rokg&tin).
A transition is active only when its origin is a&i It
behaves as a binding with a default action: change
current state of the FSM to its destination stateerefore,
the transitions define the inputs of the state rnmechthe
state evolves on the sequence of activation ofrtggers of
the transitions, and ignores events that do notciméte
current state. Figure 3. shows the internal belmaef a
software button designed for use with a mouse: Djrn
code above implement the FSM shown at the bottasnthe
graphical representation of the button (a rectangl
component).

component mybutton {

rectangle r (0, 0, 100, 50)

fsm f {
state idle, pressed, out
transition press(idle, r/press, pressed)
transition trigger(pressed, r/release, idle)
transition leave (pressed, r/leave, out)
transition enter (out, r/enter, pressed)

pressed

r/release

idle

Figure 3. Example of a FSM definition.

B. An architecture of reactive components

In Djnn, every entity you can think of, abstract or
physical, is a component. In addition to the cdrgtuctures
introduced above, Djnn comes with a collection akib
types of components dedicated to user interfaceshical
elements, input elements (mouse, multi-touch, gensdc.),

behaviors and not only graphical scenes. For igstan
combining FSMs by coupling their transitions, or by
controlling the activation of one by a state oramsition of
another, makes it possible to create complex belaysee
example in Figure 4.). The tree structure alsognakeasier
to structure applications as collections of reusabl
components.

connect “trigger” transition to a component
action “quit”
binding (mybutton/trigger, application/quit)

Figure 4. Example of connection with FSM.

Whenever a composite component is activated, the
activation of its children components is iteratel
performed. Each visited component is then activaed
eventual transversal connections are activated.

C. Djnninuse: realizations and limitations

Djnn components can be created with various
programming languages (Perl, Python, C, C++ or)Java
loaded from XML (Extensible Markup Languages) filesr
instance, complex graphic scenes can be loaded $d@
(Scalable Vector Graphics) files. The final apgima is then
compiled and linked with specific Djnn librariesedicated
available target are Windows, Linux or Mac OSX folah.

Djnn has been used for several realizations rel&wed
complex interactive systems. For example, in [§hrDhas
been used for the design and implementation ofcairgt
control station for squads of civil Unmanned Aekahicles
(UAVS) (see Figure 5.). With Djnn, programming use
interface adaptation comes down as a special cése o
programming interactive behavior. This allowed tasily
implement many scenarios of adaptation, from sinspéte
transition to complex graphical reconfiguratiorigdered by
heterogeneous event sources. Thus, we have beentabl
demonstrate that Djnn provides a suitable framewtork
develop complex adaptive interfaces.

In [10], Djnn has been used to develop a prototypa

file elements, etc. Every type of component can bejrawing tool overlapped on top of maps in a mastim

dynamically created or deleted.

surveillance system. The tool is used to sharernmdtion
between the crew during search and rescue missidns.

To design interactive systems, components must bexample demonstrated how Djnn facilitates the dgrakent

interconnected and organized. Interconnection iwioéd
with control structures, and can be performed iedepntly
of the nature and location of components. For eXarg

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-390-2

of user interfaces by offering a support for rapidtotyping
and iterative processes.

192

COGNITIVE 2015 : The Seventh International Conference on Advanced Cognitive Technologies and Applications

Figure 5. Djnn used for the design of a UAVs squad control.

Djnn is the visible result of an ongoing researobjqct
on programming languages for interactive systenosfas,
verification of interactive systems designed witjniD has
not been studied. Focus has been put on the dewefdypof
the implementation of the framework. Clearly, Djlatks
several elements to enable the development ofcalriti
interactive systems:

« #1: aformal syntax and semantic for Djnn models,

e #2: mechanisms to translate Djnn applications into

<xs:complexType name="binding">
<xs:complexContent>
<xs:extension base="cmn:core-component">
<xs:attribute name="source"
type="xs:string" use="required" />
<xs:attribute name="action"
type="xs:string" use="required" />
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="fsm">
<xs:complexContent>
<xs:extension base="cmn:core-component">
<xs:sequence>
<xs:element name="state"
type="state"
minOccurs="2"
maxOccurs="unbounded" />
<xs:element name="transition"
type="transition"
maxOccurs="unbounded" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

languages supporting model checking simulation or Figure 6. Djnn binding and FSM control structures describgdhe

formal
Spin/Promela [11],

e #3: mechanisms to perform property verification

directly on Djnn models.
Note that #1 is a prerequisite: without formal setita
there is no possibility for verification. In thext section,
we present our first results in this direction.

I1l. DJINN INHOLIDES

The research results presented in this sectiompanteof
the HoliDes project, whose main goal is to desidaptive
cooperative systems, focusing on the optimizatibnthe
distribution of workloads between humans and mah[A].
During the first year of this project, Djnn has bémproved
to prepare it for verification of interactive syste along two
axes:

verification such as Event B [12] or

XML schema.

The main advantages provided by these definitioas a

» Definition of a well-defined model for Djnn: illiti
constructs using the language can easily and
automatically be detected during edition of the
model thanks to the XML schema.

» Improvement of interoperability: this evolution as
first step towards the definition of a better imagd
tool chain with the capability to dump a concrete
GUI (Graphical User Interface) in an XML file, and
conversely, to load and to execute a GUI from an
XML based description.

B. Towards aformal semantic

Semantic of Djnn model is expressed through colored

« Specification of the syntax and grammar throughPetri Nets [13] extended with reset arcs [15]. Wese this
XML formats, formalism because, at a first glance, it offers dyoo

« Development of a formal semantic in Petri Nets. ~ characteristics to represent both static and dynaomcerns
through a state-transition semantic. It also alldavsnodel
A. Syntax and grammar simple data. All Djnn components are currently bein
An abstract syntax and a grammar for Djnn have beeﬁllelduauy modeled with Petri _Nets. Figure 7. dﬁgur_e 8.
defined through an XML schema. The model addreseest ~ give overviews of the semantic. The left part ofufe 7.
components available in Djnn, particularly control represents a binding between a source and an aetibra
primitives. For example, Figure 6. contains thecdption of ~ simple and unique transition. As a binding is a ponent,
a binding and a FSM: a binding is an extension of dts interface also offers run and stop operatidite right
component containing identification of a sourceigtier’)y part represents a connector: when activated, idatat <X>
and of a target (“action”). A FSM is an extensioha IS copied to the output. Figure 8. shows Petri Metslel of
component containing a sequence of minimum of tates the button as defined in Figure 3.
and a sequence of a minimum of one transition gstad
transition are defined elsewhere in the XML schema)

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-390-2 193

COGNITIVE 2015 : The Seventh International Conference on Advanced Cognitive Technologies and Applications

IV. CONCLUSION AND FUTURE PLANS

In this paper, current research related to a fraonlevior
the development and the verification of interactaafety
critical systems has been presented. Although bhaes
already been developed (syntax and grammar thraugh
XML schema, part of the semantic with Petri Nets),
investigations remain to be done:

» So far, Petri Nets have showed their capability to
model Djnn elements and mechanisms but some
further analysis must be done on dynamic aspects of
Djnn (creation/destruction of components).

» Use of the Petri Nets models to perform verificatio
through simulation or through model analysis.

e Connections with tools specialized in formal
verification.

Application on some real use cases, hopefully bbby

HoliDes project, are also planned for the next phas

connector

binding

..

V. ACKNOWLEDGMENTS

This research has been performed with support trem
EU ARTEMIS JU project HoliDes (http://www.holides/@

SP-8, GA No.: 332933. Any contents herein refledy ahe

authors' views. The ARTEMIS JU is not liable foryamse

that may be made of the information contained herei

Mrigger

-.@_\4

REFERENCES

o

“VHDL Language Reference Manual”, IEEE Std 1076-200
[21 Scade homepage, http://www.esterel-technologies.com
width [retrieved: 02, 2015]
[3] L. Bass et al. “The Arch model: Seeheim revisitedHI'91
height ledve User Interface Developers Workshop, Apr. 1991.
: pETTTmmmmmosmsssssssssosososssoosooosoooot [4] G.E. Pfaff, “User Interface Management Systems,”
O ' Eurographics Seminars, Springer-Verlag, 1985.
run ’ [5] B. A. Myers, “Separating application code from tots:
: O Eliminating the spaghetti of callbacks,” In ProdSU, 1991,
Q mdve pp. 211-220, Addison-Wesley.
A i [6] B. A. Myers and M. B. Rosson, “Survey on user ifstee
__ programming,” In Proc. CHI, 1992, pp. 195-202, AGXEsSs.
Figure 8. Model of FSM (as defined in Figure 3. [7] Djnn project homepage, http:/djnn.net, [retrieved; 2015].

[8] M. Magnaudet and S. Chatty, “What should adaptiwiyan
Composition of components is achieved through the to interactive software programmers?” EICS 2014,MAC
merging of places of Petri Nets. This model of cosifon, SIGCHI, Rome, ltaly, Jun 2014, pp 13-22. _
even if it is asynchronous, seems to perform bestofir HoliDes (Holistic Human Factors and System Design o
purpose. Adaptive Cooperative Human Machine System) R&D ¢rbj

_ . www.holides.eu, [retrieved: 02, 2015].
_S_uch a formal definition _Of the semantic is cenfral C. Letondal, P. Pillain, E. Verdurand, D. Prun, a@d
verification purpose because:

9]

[10]

Copyright (c) IARIA, 2015.

semantic of Djnn is no longer subject to
misunderstandings or interpretations. A Djnn model
has the same meaning for every actor in interaction
with it (designer, code developer, final user,)etc. [11]
as the Petri Nets semantic is formal, several
mathematical verifications become enabled: fort
example, LTL (Linear Temporal Logic) or CTL [13]
(Computation Tree Logic) properties [14], liveness
or boundness properties. Moreover, translations tg,4
other languages specialized on formal verification

become possible. [15]

ISBN: 978-1-61208-390-2

Grisvard, “Of Models, Rationales and Prototypesid$ing
Designer Needs in an Airborne Maritime Surveillance
Drawing Tool to Support Audio Communication,” Inder of
BCS HCI, ACM, 2014, pp. 92-102.

G.J. Holzmann, “The Spin Model Checker: Primer and
Reference Manual,” 2003, Addison-Wesley.

12] J.-R. Abrial, “Modeling in Event-B: System and Sudire

Engineering,” May 2010, ISBN: 9780521895569.

K. Jensen, “Coloured Petri Nets,” Berlin, Heidelhet996,
ISBN 3-540-60943-1.

] C. Baier and J.-P. Katoen, “Principles of Model Citieg,”

2008, The MIT Press.

C. Dufourd, A. Finkel, and P. Schnoebelen, “Resetsn
between decidability and undecidability,” In 25@ALP, vol.
1443 of LNCS, Springer, July 1998, pp. 103-115.

194

