
HAL Id: hal-01886537
https://enac.hal.science/hal-01886537

Submitted on 20 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct Route Optimization for Air Traffic Management
Improvement

Andrea Pasini, Philippe Notry, Daniel Delahaye

To cite this version:
Andrea Pasini, Philippe Notry, Daniel Delahaye. Direct Route Optimization for Air Traffic Manage-
ment Improvement. DASC 2018, 37th AIAA/IEEE Digital Avionics Systems Conference, Sep 2018,
Londres, United Kingdom. �10.1109/DASC.2018.8569362�. �hal-01886537�

https://enac.hal.science/hal-01886537
https://hal.archives-ouvertes.fr

Direct Route Optimization for Air Traffic
Management Improvement

Andrea Pasini∗, Philippe Notry†,Daniel Delahaye†
∗ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse, FRANCE

Email: andrea.pasini@student.isae-supaero.fr
†ENAC, Université de Toulouse, 31055 Toulouse, FRANCE

Email: philippe.notry@enac.fr
‡ENAC, Université de Toulouse, 31055 Toulouse, FRANCE

Email: delahaye@recherche.enac.fr

Abstract—Aircraft are able to connect any pair of points on
earth by using direct routing thanks to the flight management
system (FMS) which is the on-board system in charge of the
navigation. From an air traffic control point of view, such direct
routing is only possible in low density areas. When demand is
high, aircraft have to stay on a route network for which crossing
points are well located and do not change with time. This location
stability, helps controllers to manage efficiently the traffic and
ensure a higher capacity compared with management of the same
traffic with direct routes for which crossing points always change
in space and in time dimensions. This instability reduces the
overall capacity of sectors. During the night, when traffic demand
decreases, air traffic controllers often deliver direct routes to
aircraft because they know that such aircraft will not interfere
with other traffic. During the day, such direct route assignments
are not proposed anymore and the controller keeps the aircraft
on the route network in order to structure the traffic and to
reduce the associated complexity. In this research we propose an
intermediate milestone for which direct routes could be proposed
to aircraft during the day when it is possible and this in order
to reduce also the congestion at some points in the airspace.
We then consider a real crossing in the French airspace where
aircraft have to merge at the same point and exit toward different
directions. An optimization algorithm has been developed for this
crossing in order to minimize the workload of the controller
in charge of this airspace. Three decision variables are then
assigned to each aircraft: speed regulation, flight level setting and
direct route setting. The associated objectives of this problem are
the minimization of the conflict between aircraft (has to reach
zero), the maximization of the number of aircraft having a direct
route (avoiding the crossing) and the minimization of the flight
deviation (speed and FL). When a direct is given to an aircraft,
we must ensure that such aircraft is separated from other aircraft
by one when they share the same spatial location; this ensure
that the controller in charge of such aircraft has few monitoring
workload for this aircraft (because it has no interaction with
other traffic). This optimization must satisfy some constraints:
speed and FL have to stay in a given range. This algorithm
has been applied successfully to a test case quite similar to one
located in the west of France ACC (Brest) for which the capacity
of the crossing point has been strongly increased thanks to many
direct routes that have been given.

Keywords: Air Traffic Management, Air Traffic Optimization,
Direct Routes, Simulating Annealing.

I. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL

A. Problem description

This study is focused on the decongestion and conflict
resolution of air traffic over a waypoint in order to improve
the Air Traffic Management. An ad hoc algorithm has been
implemented and tested with a fictitious example, as presented
in the following. The first application to solve real traffic cases
will be done at the RESMI waypoint that is often overcrowded
around flight level FL370. At this altitude the airspace is
controlled by the LFRR-ZU sector, that is a portion of the
airspace of Brest FIR. In RESMI 6 airways merge, coming
from the continental Europe and the Atlantic Ocean. After
RESMI, aircraft trajectories can proceed through 8 different
airways overflying Europe(see figure 1). The actual traffic
needs to be sequenced to avoid conflicts.

Fig. 1. Actual air traffic situation in Brest airspace: 6 incoming airways and
8 outgoing airways affect RESMI way-point

The final purpose is to have a possibility for the Air Traffic
Controllers to give clearance to aircraft to directly cross the

airspace. We want to propose an advanced automation while
maintaining the controller behind the final decision.

B. State of the art

Studies concerning an improved interaction between auto-
matic systems and controllers have already been undertaken,
as evidenced by ERASMUS [1]. This project proposes an air-
ground cooperative work aiming at defining and validating
innovative automation and concepts of operations for the En-
route phase. Its goal is to propose an advanced automation
while maintaining the controllers in the decision loop. In this
project, as possible solution for conflicts, it has already been
proposed an algorithm that can solve conflicts by minor alter-
ations of the vertical/horizontal speeds or rate of climb/descent
for a given aircraft. Some other studies, as the ones presented
in [2], have used an automated optimization to resolve conflicts
and to maintain separation between aircraft considering the
possibility to control and modify the speed of an aircraft.

As regards our proposal to offer aircraft a possible direct
route inside an airspace, a similar approach is already pro-
posed in the actual air traffic. Some northern European Air
Navigation Service Providers, like the Irish Aviation Authority
and the UK National Traffic Services, already enabled airlines
to fly direct routes during the night over Ireland into oceanic
airspace. The airlines confirmed a predicted savings in terms of
fuel and flight time and they request a further extension of this
free route airspace. This was accommodated in cooperation
with UK NATS by launching a new project called Night Time
Fuel Saving Routes (NTFSR) across Ireland and UK airspace
which allows direct routings to selected destinations during
the night, resulting in further benefits [3]. Nevertheless, this
implementation risks to affect air traffic controllers’ workload,
who are called to tackle new routes and, thus, new potential
conflicts. That is why this direct route proposal should be
addressed in an automatic way, like the approach we want
to propose.

C. Given Data

The airspace sector we consider hosts trajectories that we
have decided to represent through a network modeled as a
graph G = (P,E) in which aircraft are allowed to fly. P is the
node set and E is the link set. We have P = Pin∪Pout∪{w},
where Pin = {1, ..., pin} represents the set of entry points,
Pout = {1, ..., pout} represents the set of exit points and w is
the considered crossing waypoint; pin is the total number of
entry points and pout is the total number of exit points. The
set E is composed of those links connecting every entry point
to w and w to every exit point. Since one of our objectives
is to give aircraft the possibility to straight cross the sector,
we add to E all those links that directly connect every entry
point with all the exit points.

Each trajectory is defined by a succession of nodes and
links. In this network, we consider two types of trajectories:
the direct trajectories and the classical trajectories. The first
type (direct route) is composed by a succession of just three
elements: {in, link, out}, while the second one is composed

waypoint

in1

in2

in3

out1

out2

out3

l1
l2 l3

l4 l5
l6

d11
d12

d21 d23

d32
d33

Fig. 2. Example graph representing a network of 3 entry points, a central
way-point and 5 exit points. Direct routes are represented by a dashed line,
classical routes by solid line.

of five elements: {in, link1, w, link2, out}. Classical trajec-
tories are those that are already planned by the ATM, direct
trajectories are those that we want to suggest to ATC after
analyzing the current traffic situation.

In the graph presented in Figure 2, an example with
three entry points and three exit points is shown.
The node set is given by Pin = {in1, in2, in3},
Pout = {out1, out2, out3} and waypoint. The link set is E =
{l1, l2, l3, l4, l5, l6, d11, d12, d13, d21, d22, d23, d31, d32, d33},
where li represent the links connecting the waypoint with the
other points, while dij represent the links directly connecting
an entry point i with an exit point j.

We then provide a list of flights in this network. For each
flight f ∈ F = {1, ..., Nf}, the following data are given:
• identification number of the aircraft;
• traveled trajectory (we then know the entry point pNi

in ∈
Pin and the exit point pNi

out ∈ Pout)
• entry time in the sector tNi

in at entry point ini
• entry speed vNi

in

• flight level FL
The fictitious network we will consider for our tests is

formed by 5 aligned entry points, a central way-point and 5
aligned exit points, as shown in Figure 8.

D. Decision variables and constraints

We consider three possible maneuvers for each flight to
solve a potential conflict:
• Modification of its entering speed in the sector through

a speed decision variable ∆vi ∈ [∆vimin,∆v
i
max]. We

assumed this interval to be discretized in speed-steps, ac-
cording with practice of controllers, who modify aircraft
speed by accelerating or reducing by a discretized value.
In this study, for each flight we set ∆vmin = −40kts
and ∆vmax = 20kts;

• Change of its entering flight level in the sector through
a FL decision variable ∆FL ∈ [∆FLmin,∆FLmax]. In
this study we consider ∆FL ∈ [−4; 4] ;

• Choice between the classical route through w and a direct
route from the entry point pNi

in to the exit point pNi
out

through a boolean value Di ∈ {true, false}, where we
consider true if the aircraft is allowed to follow a direct
route, false otherwise.

Since we want to maximize the number of direct routes and
minimize the deviations in speed and FL, the first situation
we feed the simulator with, is the ideal situation where each
aircraft f is assigned a direct route (D = true), no speed
modification (∆v = 0) and no flight level change (∆FL = 0).
All this information is contained in a decision variable vector
u=(D, ∆v, ∆FL) where, for each aircraft, are stored all the
applied changes.

E. Separation rules

Two separation requirements have to be satisfied:
• Spatial separation constraint: in the sector we consider,

air traffic regulations impose an horizontal minimum
separation of 5 nautical miles and a vertical minimum
separation of 1000 feet. One can consider that at any
given time, each aircraft has a bounded and closed
reserved block of airspace defined by a three-dimensional
cylinder in which other aircraft are not allowed to enter;

• Time separation constraint: proposing possible direct
routes, new intersection points between trajectories are
created. Each of these points can be overflown by an
aircraft at most every minute.

Fig. 3. Separation Rules: a) Intersection points can be overflown at most
every minute; b) An aircraft has a reserved block of airspace corresponding
to a cylinder of 5NM radius and 1000 feet height.

F. Conflict detection

Before describing the solution used to detect conflicts, we
present the assumptions considered in our study:

- The airspace is considered as an euclidean space: latitudes
and longitudes on the Earth surface are projected into
(x, y) coordinates, while the altitude is represented by
the z coordinate;

- Each trajectory i = 1, ..., N is discretized through a set
of 4D points (x, y, z, t) sampled with a given sampling
time ts. In our study we consider ts = 10s;

- The entire network is built in the first quadrant of the
Cartesian system in order to have only positive coordi-
nates and thus simplify the calculations.

As already mentioned in SectionI-B, to detect conflicts we
use the approach used in [4]. We proceed as described below
and we consider as example the trajectories A, B and C in
Figure 4.

Fig. 4. Interactions, ΦB,4, at sampling point PB,4 of trajectory B.

We define an interaction at a trajectory point Pi,k(ui)
to be the sum of all the conflicts associated with point
Pi,k(ui), where ui is the ith component of u. We further
define the interaction, Φi, associated with trajectory i, as:
Φi(u) :=

∑Ki

k=1 Φi,k(u) where Ki is the number of trajectory
points obtained through the discretization, mentioned in the
assumptions, of the trajectory of the ith flight. Figure 4
illustrates the case of trajectory i = B at the trajectory point
PB,4. Finally, interaction between trajectories, Φtot, for a
whole traffic situation is simply defined as:

Φtot(u) :=

N∑
i=1

Φi(u) =

N∑
i=1

Ki∑
k=1

Φi,k(u). (1)

To check if any conflict occurs, one needs to compute
the interaction, Φtot, between the N aircraft trajectories. To
avoid the N(N−1)

2 time-consuming pair-wise comparisons,
we propose a 4D grid-based conflict detection scheme as
illustrated in Figure 5 (see [4], [5] for further details). First, we
define a four-dimensional (3D space + time) grid. Its spatial
dimension has to be large enough to include the considered
airspace and the time-span has to be long enough to cover
the period considered. The size of each cell in the x, y, and z
directions is defined by the minimum separation requirements,
Nh = 5 NM and Nv = 1, 000 feet. The size of the cell in
the time domain is set according to the given discretization
step size, ts. To detect conflicts, every ts seconds, only the
surrounding cells will be checked to verify the separation
constraints. In fact, the violation of the protection volume can
only occur when the considered points are in the same or in
the adjacent grid cells.

G. Objective function

The main objective is to guarantee a conflict-free scenario
when direct routes are proposed to aircraft. We face then a
minimization problem where we have to bring to zero the

Fig. 5. 4D Conflict Grid used to detect potential conflicts

number of conflicts C. At the same time, since aircraft are
also requested to change either flight level or speed to avoid
potential conflicts, we want to minimize as well the changes
of flight level ∆FL and the changes of speed ∆v requested.
The objective function to be minimized is then

F (u) = µ1C(u) + µ2

Nf∑
i=1

|∆v(u)|+
Nf∑
i=1

µ3 |∆FL(u)|

where µ1, µ2 and µ3 are weighting coefficient that can be
tuned to give the desired priority to the three parameters. µ1

shall have the greatest value since the main objective is to set
at zero the number of conflicts. To maximize the number of
direct routes we act as described in Section I-D: we start the
simulation process with the ideal situation where each aircraft
follows a direct route.

II. OPTIMIZATION ALGORITHM

A. Simulated Annealing

The optimization approach relies on a standard Simulated
Annealing (SA) algorithm. SA is a metaheuristic optimization
method introduced by S. Kirkpatrick in 1983 and V. Cerny in
1985 [6]. Its popularity comes from its ability to avoid getting
trapped in local minima and to find a near-global optimal
solution for NP-hard combinatorial optimization problems [7],
[4]. This method is based on an analogy with the physical
phenomenon experienced in metallurgy where the state of
a material is modified by controlling its temperature. The
first phase consists in heating up the material in order to
reach the point of fusion characterized by a high-energy
state. Then, following a cooling schedule, the solid is brought
to solidification, characterized by a low-energy state. It is
important to choose an appropriate duration for each step
during the cooling in order to allow the material to reach its
thermal equilibrium before further reduction of temperature.
In this way, it is possible to reach the solid state with minimal
energy. If the temperature is decreased too rapidly, the solid
enters a metastable state of non-minimal energy, remaining
stuck in a locally-optimal energy level. In our optimization
problem, the cost function to be minimized is equivalent to

the energy of the physical problem. A control parameter that
decreases as the number of iterations grows, plays the role
of the temperature schedule. Finally, a determined number of
iterations at each temperature step plays the role of the time
duration the material is kept at each temperature stage.

The Metropolis Algorithm, developed in 1953, simulates the
physical process of annealing on a computer. Considering a
current state i of energy Ei, the algorithm creates a disturbance
in order to transform the current state in a new one. If
the energy Ej of the new state j is smaller than Ei, the
new state is accepted as the new current state. If Ej is
greater than Ei, state j is accepted as the new state with a
probability P = e(Ej−Ei)/(kbT), where T is the temperature
and kb is Boltzmann’s constant [5]. At higher temperatures
there are more possibilities of acceptance of a higher energy
state. The basic idea is that, in a first moment, a solution
that increases the energy of the current state is occasionally
accepted, in order to escape from local minima; in a second
moment, when the temperature decreases, such possibility
is less and less frequent. Other optimization methods can
guarantee convergence to a global optimum to the problem.
However, metaheuristic methods have been shown to provide
good solutions to the air traffic management problem within
reasonable computational time [4].

Algorithm 1 Simulated Annealing
Require: ~xi, C0, L0, k = 0
repeat

for l = 0→ Lk do
Generate a solution ~xj from the neighborhood S ~xi

of the current solution ~xi

If f(~xj) < f(~xi), then ~xj becomes the current solution; otherwise, ~xj

becomes the current solution with probability p = e

f(~xi)−f(~xj)

Ck

end for
k = k + 1
calculate (Lk, Ck)

until Ck ' 0

B. Objective Evaluation

The objective function is evaluated thanks to a computer
simulation process which requires a simulation environment.
The optimization algorithm controls the vector of decision
variables, X , which are used by the simulation process in order
to compute the performance (quality), y, of such decisions, as
shown in Figure 6.

In the standard simulated annealing algorithm, a copy of a
state space point is requested for each proposed transition. In
fact, a point ~Xj is generated from the current point ~Xi through
a copy in the memory of the computer. In our study, the simple
process of implementing such a copy would be inefficient and
would reduce the performance of simulated annealing. That is
why we consider a much more efficient operator called come
back, which cancels the effect of a generation. Let G be the
generation operator which transforms a point from ~Xi to ~Xj :

G
~Xi → ~Xj

the comeback operator is the inverse G−1 of the generation
operator.

Optimization

Environment

Simulation

Data

yX

Fig. 6. Objective function evaluation based on a simulation process

d 2 d 3 d 41 d i d Nd

GENERATION

d 2 d 3 d 41 d i d Nd

COME BACK

d 2 d 3 d 41 d d Nd j
~
di

Fig. 7. Optimization of the generation process. In this figure, the state space
is built with a decision vector for which the generation process consist of
changing only one decision (di) in the current solution. If this modification
is not accepted, this component of the solution recovers its former value. The
only information to be stored is the integer i and the real number di.

Such a generation modifies only one component of the
current solution. The vector ~Xi can then be modified without
being duplicated. Depending on the value obtained when
evaluating this new point, two options may be considered:

1) the new solution is accepted and, in this case, only the
current objective function value is updated.

2) else, the come back operator G−1 is applied to the new
position in order to come back to the previous solution,
again without any duplication in the memory.

This process is summarized in Figure 7.

III. IMPLEMENTATION

This section presents how the problem has been imple-
mented through an algorithm developed in Java, describing
all the steps that are executed when the program is run.

A. Pre-processing

First of all, the node list and the route list are automatically
read and the corresponding points and links are built in the
space. Afterwards, a list of flights belonging to this network is
read and processed. At this stage, every external information
has been read and translated according to the mathematical
model presented in Section I-C. The simulation process is then
launched.

B. Simulation and optimization process

The SA heating up loop is launched and its output provides
us with the initial temperature Tinit we need to start the
cooling loop. This temperature is computed by first generating
100 deteriorating transformations at random and then by eval-
uating the average variations, ∆Φavg , of the objective function
values. The initial temperature, c0, is then deduced from the
relation: c0 = e

∆Φavg
T0 , where τ0 is the initial acceptance rate

of degrading solutions (which it is empirically set).
The cooling loop can now start. In order to reach an

equilibrium, a sufficient number of iterations, denoted Lk,
have to be performed at each temperature step k. In our case,
we assume for simplicity purposes that Lk is constant and
empirically set.

We start by initializing the state as presented in Section
I-D: each flight has a decision vector u = (true, 0, 0). In
the state we store all the information regarding the decision
for each aircraft. Then, we compute for each flight the 4D
points representing its trajectory. To optimize the memory
allocation, these 4D points are not directly placed in the 4D
grid. Their coordinates are stored in a specific array along with
two indexes used to identify them: a first index i referring to
the trajectory to which they belong, and a second index j
that refers to the sequence number inside that trajectory. For
example, the point P5,34 will be the 34th point of trajectory 5.
Thanks to these only 2 indexes we are able to refer to any 4D
Point and we are able to retrieve in every moment its spatial
and time coordinates. This allows us to save memory space.
We refer to this way to indicate the points as 4DPointInfo. The
4D grid is then populated with the 4DPointInfo.

At this stage, potential conflicts have to be detected follow-
ing the procedure presented in Section I-F. If two or more
points are detected to be in the same cell or in adjacent ones,
their distance have to be computed to check if the protection
volume is violated. To do that, their spatial coordinates are re-
trieved from the above-mentioned array. Finally, the objective
function is computed.

From this point, a for loop is triggered (Algorithm 2):

Algorithm 2 Cooling
for (i = 0; i < nbTransitions; i+ +) do
~xj=generateNeighbour(~xi);
computeFunction yj = f(~xj)
if accepted then
~xi = ~xj
yi = yj

else
comeBack

end if
end for

First, a neighborhood function is defined to generate a local
change from the current solution. One of the three decision
parameters of one of the Nf flights is randomly changed.
Simultaneously, the 4DPointInfo of that flight are removed

from the 4D grid, the 4D points are re-computed and its
new 4DPointInfo are placed in the 4D grid. To generate a
neighborhood solution, instead of simply choosing randomly
a flight f in the active-flight set, we use a method similar
to the roulette wheel selection, as presented and used in [2].
This way of operating augments the likelihood that a flight
involving many conflicts, or its neighboring aircraft, will be
chosen.

Once more, all the potential conflicts are detected and the
objective function is anew calculated. If the neighbour is
accepted, it becomes the new current solution and its objective
value becomes the new value for the objective function. If it is
not accepted, all the 4D points that had been computed and all
the 4DPointInfo that had been placed in the grid, have to be
removed and replaced with the previous ones. The temperature
is then decreased following a geometrical law, ck+1 = αck,
where 0 ≤ α ≤ 1 is a pre-defined constant value. The process
is then restarted. This cooling loop goes on either until the best
solution is found, i.e. F (u) = 0, or until a target temperature
set up by the user is reached. In our study this temperature is
set to be Tstop = 0.001Tinit.

Conflicts computation: In the SA optimization pro-
cess, the computation of the objective function is repeated
many times, according to the number of iterations set by the
user. Therefore it must be computed as efficiently as possible.
To avoid checking interactions over all the N trajectories
at each iteration, we proceed as follows. First, the 4D grid
is initialized with every cell empty. Then, the initial N
trajectories, corresponding to the initial value of the decision
vector, u (with all its component = [true, 0, 0]), are placed
in the 4D grid and the current interaction, ΦiC , associated
with each trajectory i, and the current total interaction between
trajectories, ΦtotC , are computed.

During the optimization process, at each iteration, only one
parameter can be changed. This implies that only one of the
N trajectories is changed. We denote it as τ . To update the
value of total interaction, we first remove τ from the 4D
grid. Therefore, the interaction associated to τ is set to an
intermediate value Φτ,inter(u) = 0. It should be noted that
the interaction measurement is symmetrical: if Φij(u) denotes
the contribution of trajectory i to the interaction associated
with trajectory j, then Φij(u) = Φji(u). Let Ni be a set
of trajectories currently interacting with trajectory τ . The
interaction associated with trajectory j ∈ Ni over τ , is set to
an intermediate value Φj,inter(u) = Φj(u) − Φτ . Thereafter,
the modified trajectory corresponding to the new decision
variable values, is placed in the 4D grid and the interaction
detection is performed only over it. Then, the new interaction
Φτ is computed. Again, the interaction associated with each
trajectory, j, interacting with τ is updated as follows: Φj(u) =
Φj,inter(u) + Φτ . Finally, the total interaction between trajec-
tories is simply computed as Φtot(u) =

∑N
i=1 Φi(u). This

interaction computation method allows us to update the value
of the objective function when one trajectory is modified

0 20 40 60 80

0

20

40

60

80

100

Fig. 8. Network used for the simulation: 5 aligned entry points and 5 aligned
exit points symmetrically located with respect to the central way-point.

within a very short computation time, since we do not need
to compute the change of interaction for decisions that are not
modified at the current optimization iteration.

IV. RESULTS

A. Environment and Parameter Values

The proposed methodology is tested with the fictitious
network shown in Figure 8. Its nodes are represented by a
central way-point, 5 entry points aligned along an entry line,
and 5 exit points aligned along an exit line. A distance of
20 NM separates each entry point as well as for each exit
point. The exit line is 100 NM distant from the entry line.
This results in an airspace whose total dimension is 100x80
NM. Trajectories are represented by a solid line if they overfly
the way-point or by a dashed line if they are direct routes.
All the flights following these trajectories are read from a
randomly generated list using the parameter presented in Table
I. Looking at entry time set of possible values, we can see that
we are considering a time frame of 2 hours and 46 minutes
(10000s).

The parameter values chosen to specify the instance consid-
ered, and the empirically set parameters defining the overall
SA problem-solving methodology, are given in Table II. In
our study, the conflict weight coefficient µ1 is set to a much
higher value than µ2 and µ3 in order to ensure that the conflict
resolution is the first priority. The SA adapted to solve the
strategic trajectory planning problem is implemented in Java.
We address this problem instance with an AMD Radeon 2
GHz processor with 6 Gb RAM.

B. Simulation Results

Numerical results obtained from several simulations are
reported in Table III. Twelve different simulations have been
run on 8 different scenarios, increasing from time to time the
number of aircraft fed to the network. In those scenarios where
a conflict free solution has not been found, more simulations

Entry parameter Possible values
Entry time 0 < tin < 10000s
Entry speed 400 < v < 420kts
Entry flight level 260 < FL < 320

TABLE I
POSSIBLE VALUES FOR THE ENTRY PARAMETERS FOR THE RANDOMLY

GENERATED FLIGHTS

Parameter Value
Number of iterations at each temperature step 100
Geometrical temperature-reduction coefficient α 0.95
Final temperature Tstop 0.001Tinit

Conflict weighting coefficient µ1 100
FL weighting coefficient µ2 1
Speed weighting coefficient µ3 1
Discretization step ts 10s
Speed deviation ∆v in kts −40 < ∆v < 20
FL deviation ∆FL −4 < ∆ FL< 4

TABLE II
EMPIRICALLY-SET (USER-DEFINED) PARAMETER VALUES

have been run changing randomly the entry values of the
aircraft, in order to check if it was possible to have 0 residual
conflicts.

A free-conflict scenario has been reached for scenario A,
B, C, D and E. This shows that the considered network is
suitable for up to about 210 aircraft. For a heavier traffic
condition, there remain unsolved conflicts. It is recalled that
we are considering a time frame of about 2 hours and 45
minutes and a fictitious airspace of 100x80 NM.

In Figure 9, 10 and 11 it is possible to observe the evolution
of the number of conflicts, the total ∆FL and the total ∆v
respectively. In those scenarios where more tests have been
conducted (namely Scenario F and G), average values of the
three different tests have been considered for conflicts, ∆FL
and ∆v. It is possible to notice that, whatever the scenario,
only few iterations are needed to drastically decrease the
number of potential conflicts. For those scenarios that reach
a conflict-free situation, less than 14 iterations are required to
solve any conflict. As regards the total ∆FL and ∆v, both

Sim Scenario: Initial Residual No direct Modified
No A/C conflicts conflicts route flights

1 A: 50 0 0 37 15
2 B: 100 115 0 58 48
3 C: 150 1554 0 63 101
4 D: 200 5434 0 71 144
5 E: 210 6041 0 63 167
6

F: 225
12338 4 63 181

7 6141 4 64 176
8 9402 6 62 177
9

G: 250
13005 8 67 204

10 13661 8 66 204
11 15811 5 79 199
12 H: 300 26633 19 79 248

TABLE III
SIMULATION RESULTS

present the same trend for each scenario: to give priority to
the conflict resolution, their values show an initial increase.
Subsequently, when the number of conflicts is remarkably
reduced, they also start to decrease so that the objective
function continues to improve (see Figure 12). Both Figure
9 and 12 have been zoomed in the first iterations (compared
with the others figures) to see clearly the decreasing phase.

Fig. 9. Number of conflicts evolution with respect to iterations

0 20 40 60 80 100 120 140

Iteration

0

500

1000

1500

2000

2500

3000

3500

D
e

lt
a

F
L

50 aircraft

100 aircraft

150 aircraft

200 aircraft

210 aircraft

225 aircraft

250 aircraft

300 aircraft

Fig. 10. DeltaFL evolution with respect to iterations

0 20 40 60 80 100 120 140

Iteration

0

200

400

600

800

1000

1200

D
e

lt
a

V
50 aircraft

100 aircraft

150 aircraft

200 aircraft

210 aircraft

225 aircraft

250 aircraft

300 aircraft

Fig. 11. DeltaV evolution with respect to iterations

Fig. 12. Objective function evolution with respect to iterations

The percentage of flights that are subjected to a modification
on the trajectory compared to the initial situation (where each
aircraft follows a direct route, with no ∆FL and no ∆v) is
presented in Figure 13 for each scenario. Finally, in Figure
14 it is possible to observe the percentage of direct routes at
the end of the optimization process. The more the network is
busy, the less direct in term of percentage.

All the simulations that led to a conflict-free situation have
been run in a maximum computation time of 14 minutes.
That means that 6.2 seconds are needed for each one of the
135 iterations requested to reach Tstop. Since after only 14
iterations we have been able to find a conflict-free situation,
we can say that only 90 seconds are needed to reach a first
possible solution. The remaining time is used to improve and
refine the solution.

V. CONCLUSION AND FUTURE DEVELOPMENT

The main purpose of this paper is to study the feasibility of
giving clearance to aircraft to directly cross the airspace while
maintaining a conflict-free situation. Considering a time frame
of 2 hours and 46 minutes in a network of 100x80 NM, the

50 100 150 200 210 225 250 300

40%

60%

80%

30%

48%

67%
72%

79% 80% 81% 82%

No of aircraft

Pe
rc

en
ta

ge
of

m
od

ifi
ed

fli
gh

ts

Fig. 13. Percentage of modified flights

50 100 150 200 210 225 250 300

30%

40%

50%

60%

70%

74%

58%

42%

35%
30%

28%
26% 26%

No of aircraft

Pe
rc

en
ta

ge
of

di
re

ct
ro

ut
es

Fig. 14. Percentage of direct routes

algorithm successfully reached a conflict-free scenario for up
to 210 aircraft. Up to 71 direct trajectories has been permitted
for a scenario with 200 aircraft, that corresponds to a 35% of
direct routes. For a low traffic situation it has been possible
to achieve up to a 74% of direct routes.

Thanks to these simulations, the algorithm has been tested
and verified. Positive results have been found and then the
algorithm is now ready to be used to solve the real case
presented in Section I-A(RESMI crossing point in Brest ACC
(France)). We want to highlight that if the proposed strategy
is applied to several airspace sectors along the entire route of
an aircraft, this could lead to a significant flight time reduction
and to a decrease on both fuel consumption and CO2 emission.

Further developments may focus on more complex networks
where multiple way-points are considered. New parameters
could be introduced to allow a new possibility of direct

route aiming at the exit point starting not only from the
entry point, but from any point along the path inside the
considered airspace. This would allow to apply our strategy to
bigger airspace. An example with two way-points and its new
parameters α and β is shown is Figure 15.

Fig. 15. Direct route proposal from any point of a trajectory overflying two
way-points. α and β are used to denote any position along the different
stretches of the trajectory

REFERENCES

[1] Marc Brochard, ERASMUS - En Route Air Traffic Soft Management
Ultimate System. Eurocontrol Experimental Centre, Bretigny, France.
2005.

[2] Ji Ma, D. Delahaye, M. Sbihi, M. Mongeau. Merging Flows in Terminal
Maneuvering Area using Time Decomposition Approach. 7th Interna-
tional Conference on Research in Air Transportation (ICRAT 2016), June
2016, Philadelphie, PA, United States.

[3] CANSO, Boeing. Accelerating Air Traffic Management Efficiency: A Call
to Industry. Pag 24-25. February 2012.

[4] Supatcha Chaimatanan. Strategic planning of aircraft trajectories. Opti-
mization and Control [math.OC]. Universite Paul Sabatier - Toulouse III,
2014. English. tel-01064452

[5] D. Delahaye and S. Puechmorel. Modeling and Optimization of Air
Traffic. Wiley-ISTE, 2013.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220:671–680, 1983.

[7] Supatcha Chaimatanan, Daniel Delahaye, Marcel Mongeau. A method-
ology for strategic planning of aircraft trajectories using simulated an-
nealing. ISIATM 2012, 1st International Conference on Interdisciplinary
Science for Air traffic Management, Jun 2012, Daytona Beach, United
States. 2012. hal-00912772

[8] EUROCONTROL. European Free Route Airspace Developments. Edition
1.0. March 2015. http://www.eurocontrol.int/articles/free-route-airspace

