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Learning Aircraft Operational Factors to Improve Aircraft
Climb Prediction: A Large Scale Multi-Airport Study

Richard Alligiera,∗, David Gianazzaa

aENAC Lab, Toulouse, France

Abstract

Ground-based aircraft trajectory prediction is a major concern in air traffic control and
management. A safe and efficient prediction is a prerequisite to the implementation of
new automated tools.

In current operations, trajectory prediction is computed using a physical model. It
models the forces acting on the aircraft to predict the successive points of the future
trajectory. Using such a model requires knowledge of the aircraft state (mass) and
aircraft intent (thrust law, speed intent). Most of this information is not available to
ground-based systems.

This paper focuses on the climb phase. We improve the trajectory prediction accu-
racy by predicting some of the unknown point-mass model parameters. These unknown
parameters are the mass and the speed intent. This study relies on ADS-B data com-
ing from The OpenSky Network. It contains the climbing segments of the year 2017
detected by this sensor network. The 11 most frequent aircraft types are studied. The
obtained data set contains millions of climbing segments from all over the world. The
climbing segments are not filtered according to their altitude. Predictive models return-
ing the missing parameters are learned from this data set, using a Machine Learning
method. The trained models are tested on the two last months of the year and compared
with a baseline method (BADA used with the mean parameters computed on the first
ten months). Compared with this baseline, the Machine Learning approach reduce the
RMSE on the altitude by 48 % on average on a 10 minutes horizon prediction. The
RMSE on the speed is reduced by 25 % on average. The trajectory prediction is also
improved for small climbing segments. Using only information available before the
considered aircraft take-off, the Machine Learning method can predict the unknown
parameters, reducing the RMSE on the altitude by 25 % on average.

The data set and the Machine Learning code are publicly available.
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Introduction

Most applications in Air Traffic Control and Management (ATC/ATM) rely on a
ground-based trajectory prediction. It will be even more true with new operational
concepts Consortium (2007); Swenson et al. (2006) envisioning trajectory-based oper-
ations. An accurate trajectory prediction is required for the new automated tools and
algorithms implementing these concepts. Some of the most recent algorithms designed
to solve ATM/ATC problems do require to test a large number of “what-if” alterna-
tive trajectories and it would be impractical to download them all from the aircraft.
As an example, in Prats et al. (2010) an iterative quasi-Newton method is used to find
trajectories for departing aircraft, minimizing the noise annoyance. Another example
is Chaloulos et al. (2010) where Monte Carlo simulations are used to estimate the risk
of conflict between trajectories, in a stochastic environment. Some of the automated
tools currently being developped for ATC/ATM can detect and solve conflicts between
trajectories, using Genetic Algorithms (Durand et al. (1996)1), or Differential Evolu-
tion or Particle Swarm Optimization (Vanaret et al. (2012)). In these conflict solving
algorithms, each considered maneuver is associated to the trajectory predicted if such
a maneuver was issued. If the trajectory prediction is bad, a large safety margin around
the predicted trajectories will be taken. As a result, the only remaining conflict free ma-
neuvers might be the one associated to a large cost. With a good trajectory prediction,
the safety margin around the predicted trajectories will be smaller. The set of conflict
free trajectories will be larger and might contain maneuvers of smaller cost.

Most trajectory predictors rely on a point-mass model to describe the aircraft dy-
namics. The aircraft is simply modeled as a point with a mass, and the second Newton’s
law is applied to relate the forces acting on the aircraft to the inertial acceleration of its
center of mass. Such a model is formulated as a set of differential algebraic equations
that must be integrated over a time interval in order to predict the successive aircraft
positions, knowing the aircraft initial state (mass, current thrust setting, position, veloc-
ity, bank angle, etc.), atmospheric conditions (wind, temperature), and aircraft intent
(thrust profile, speed profile, route). The Eurocontrol Base of Aircraft Data (BADA)
project (Mouillet (2017)) implements such a physical model and provides default val-
ues for the models parameters.

In current operations, the trajectory is predicted by using the reference mass mass ref
and the reference (cas1ref, cas2ref,Mref) values from BADA. The latter values describe
the speed profile of a climbing aircraft. The aircraft climbs at constant CAS (Calibrated
Airspeed) equals to cas1 till 10,000 ft, then it accelerates to reach cas2. It maintains a
constant CAS at cas2 till the transition altitude is reached, then it climbs at a constant
Mach M . Although BADA associates one (cas1, cas2,M) value to each aircraft type,
these values might be different among aircraft of the same type due to different cost-
indexes for instance. Figure 1 illustrates how these reference parameters are used to
compute the trajectory.

1These algorithms are at the root of the strategic deconfliction through speed adjustments developped in
the European ERASMUS project (Drogoul et al. (2009)). A more recent application is the SESAR 4.7.2
(Separation Task in En Route Trajectory-based Environment) project, where lateral and vertical maneuvers
are also used.
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Physical Model BADA

Aircraft Intent
Thrust setting law: max climb
Speed profile: (cas1ref, cas2ref,Mref)

Aircraft State at t0
mass: mass ref
position and speed: radar measurements

Future trajectory

Figure 1: How the reference parameters are used to compute the predicted trajectory

In this paper, we apply Machine Learning methods to predict a mass m and a tuple
(cas1, cas2,M) that will hopefully provide better trajectory prediction than the default
BADA values. The four predictive models hmass, hcas1 , hcas2 and hM are trained on
historical data containing a large number of past flights collected over the first ten of
the year 2017. Once built, these models provide a specific prediction for every con-
sidered aircraft. For each aircraft, all the information available about this aircraft is
embedded in a vector of features x, and the predictive models compute their prediction
with x as the input. Figure 2 illustrates how the predicted trajectory is computed using
the learned predictive models hmass, hcas1 , hcas2 and hM . These models are tested on
flights collected on the last two months of 2017. All these past flights were collected
on ADS-B data by The OpenSky Network. The 11 most frequent aircraft types are
studied. The obtained data set contains millions of climbing segments from all over
the world. They are tested on trajectory prediction problems with various starting alti-
tude, different climbing segments duration and different prediction time horizons. We
have also tested two different sets of variables for the input x: one set containing only
variables available before take-off and one set containing all the information available
when the aircraft flies.

Previous papers (Alligier et al. (2015b,a)) used a similar approach on Mode-C/Mode-
S radar data concerning only two airports. In this paper we use a large ADS-B data
set including 1,520 airports. In addition, we consider situations that were previously
untested. We also use a more rigorous methodology to determine what would be the
performance of our method if it was implemented in an actual operational context. We
removed all the identified possible optimistic biases of the performance evaluation.

The rest of the paper is organized as follows: Section 1 describes the context and the
approach of this study. Section 2 describes some useful Machine Learning notions that
help understanding the methodology applied in this study. Section 3 details the data
used in this study. The application of Machine Learning techniques to our operational
factors prediction problem is described in section 4, and the results are shown and
discussed in section 5, before the conclusion.
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Physical Model BADA

Aircraft Intent
Thrust setting law: max climb
Speed profile: (hcas1(x), hcas2(x), hM (x))

Aircraft State at t0
mass: hmass(x)
position and speed: radar measurements

Future trajectoryPredictive models h
all information
about the aircraft
embedded in vector x

Figure 2: How the predicted trajectory is computed using the learned predictive models hmass, hcas1 , hcas2
and hM .

1. Context

This section describes previous related works. In this existing context, it also de-
scribes the approach followed in this study.

1.1. Literature Review

Some studies (Martin and Mykoniatis (1998); ADA (2009); Coppenbarger (1999))
detail the potential benefits that would be provided by additional or more accurate input
data. In other works, the aircraft intent is formalized through the definition of an Air-
craft Intent Description Language (López-Leonés et al. (2007); Lopes-Leonés (2007))
that could be used in air-ground data links to transmit some useful data to ground-based
applications. All the necessary data required to predict aircraft trajectories might be-
come available to ground systems someday. In the meantime different methods have
been designed to obtain these input parameters from the data that is already available
today.

Many recent studies (Schultz et al. (2012); Thipphavong et al. (2012); Park and
Thipphavong (2013); Alligier et al. (2014); Sun et al. (2016); Uzun and Koyuncu
(2017)) used past trajectory points to estimate the aircraft mass using a total energy
model such as BADA. All these methods adjust the mass to fit observed values of en-
ergy variation. Sun et al. (2017a) proposes a bayesian approach to merge several mass
estimates into a refined posterior probability. In Bronsvoort et al. (2015), a mass esti-
mate is extracted from the down-linked Extended Projected Profile (EPP) with the aim
to facilitate air-ground trajectory synchronization.

Applying Machine Learning techniques on the trajectory prediction problem is not
a new idea. Almost two decades ago, Le Fablec (1999) has applied artificial neural
network on this problem. It has also been investigated more recently using different
Machine Learning techniques (Tastambekov et al. (2014); Ghasemi Hamed (2014);
Hrastovec and Solina (2014, 2016)). With these approaches, the obtained model di-
rectly predicts the trajectory or a related metric. It is a black-box hiding what comes
from the aircraft performances and what comes from the airline procedures.

Other, less black-box, data-driven approach have been applied to trajectory predic-
tion. Sun et al. (2017b) models a distribution for each aircraft performance parameters.
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Each aircraft performance parameter distribution is fitted independently. The predic-
tion provided is not tailored to the considered aircraft. Alligier et al. (2013) fits mean
thrust setting profiles using mass estimation methods described in Alligier et al. (2014)
and a set of flights. Using Flight Data Recorder (FDR) data and Machine Learning,
Chati and Balakrishnan (2017) builds a model that predicts the mass knowing the start-
ing and ending speeds of the takeoff ground roll.

In Alligier et al. (2015a), using Machine Learning, we proposed a model predicting
the mass built from Mode-C and Mode-S trajectory data. In Alligier et al. (2015b),
Machine Learning is used to predict the (cas2,M) values of the speed profile. In
the two latter publications, the parameters are predicted knowing the airline operator,
the departure and arrival airport, the past positions and past speeds. Likewise, these
methods were tested on a limited number of airports and for flights with an altitude
superior to 18,000 ft.

1.2. Approach Used in this Study
In this publication we apply an approach similar to the one developed in Alligier

et al. (2015b,a). However, this study extends the latter articles in many ways and some
possible biases are removed.

In this study, Machine Learning techniques are used to predict the operational fac-
tors required to compute the predicted trajectory. This study focuses on the climb phase
as these operational factors have a huge impact on the trajectory during this phase.
These operational factors are the mass m and the speed profile specified by the tuple
(cas1, cas2,M) as defined in Mouillet (2017). For each considered aircraft type, we
build one predictive model for each operational factors. Each predictive model is built
using Gradient Boosting Machine (GBM), a supervised Machine Learning technique.
As such, it requires a set of examples where the true operational factors are known.
We do not have such a data set. However, we can extract the operational factors from
the whole climbing trajectory and build a set of examples. The predictive models are
obtained by applying GBM to this set of examples. Once the model is trained, new
predicted trajectories can be computed using BADA with the predicted operational
factors.

Compared with the previous articles (Alligier et al. (2015b,a)), this study uses a
more complex methodology. We achieve two goals with this methodology: 1) obtain
a performance evaluation that is not optimistically biased; 2) use explanatory variables
as they would be obtained in a real-time application. Models are trained on past data
(January to October) and tested on future data (November to December) as it would
have to be done if such a method was implemented. All the processes involved to
compute the explanatory variables use only the past raw points to decide on the current
point. It is the case for the process discarding erroneous values and the Kalman filter
used to smooth the past trajectory. In the previous publications, we used a smoothing
cubic spline applied on the whole trajectory including the future points. One could
argue that some information on the future points might leak into the past smoothed
points.

Beside the methodology, compared with previous articles, this study tests more
airports and more situations. The previous studies using Mode-C/Mode-S data from
only two airports whereas this study proves that one model can handle hundreds of
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airports at a time and provide good results for each one. It uses a much larger ADS-
B data set covering the whole year 2017 and aircraft climbing from airports of all
the continents. The previous studies tested the trajectory prediction on a 10 minutes
horizon where the current point altitude was superior to 18,000 ft. In this study, there
is no requirements on the current altitude. This adds the cas1 parameter to the speed
profile. In addition, we assess the performance of our models – designed to make
10-minutes ahead predictions – on a shorter prediction horizon of 5 minutes. The
objective is to check that the quality of the prediction is consistently good for different
prediction horizons. We also check the performance of our models when applied to
shorter climb segments that were not seen in the training set. Finally, we propose a
model that predicts the aircraft operational factors before the aircraft actually takes off,
using only information available hours before take-off.

1.3. Data and Machine Learning Code are Publicly Available

Data is the basis of a lot of Air Traffic Management (ATM) research works. How-
ever, these data are not easy to obtain (Bourgois and Sfyroeras (2014)). Sharing data
could enable comparisons of different approaches on the same basis. Koelle (2017)
emphasizes on the benefits of making studies reproducible through the use of open
software and open data. We tried to make this study effortlessly reproducible. How-
ever, due to the BADA license, we are not able to share the BADA related code. In this
study, the data is shared. Except BADA related source code, all the written source code
is based on open source software and is also shared.

The data used in this study comes from The OpenSky Network (Schäfer et al.
(2014)). It is a participatory sensor network of ADS-B sensors that covers mainly
Europe and North-America. It makes the data available to the researchers. These data
have been filtered and augmented. The obtained data set, on which this study is based,
is available at https://opensky-network.org/datasets/publication-data. Sharing the data
set will help others to reproduce this study, design their own algorithm, and compare
their approach to ours on the exact same data set. In our opinion, making the data set
available will enable scientifically sound comparisons.

The source code is written in Python and OCaml. This code is available at the
author’s GitHub page https://github.com/richardalligier/trc2018. This code uses open
source libraries such as pandas, numpy, matplotlib and LightGBM. With the code
shared, everyone can easily reproduce some of the tables and figures in this article.
This code is the one used to compute the predicted operational factors. However, the
part of the code computing the trajectories is not shared.

The BADA license did not permit us to share the code that computed the predicted
trajectories from the predicted operational factors. As a consequence, we could not
provide all the code that would make this study effortlessly reproducible. This is quite
troublesome because, to the knowledge of the authors, there is no BADA reference
implementation that deals with a non standard atmosphere. Such an implementation is
not trivial as there are many different ways to benefit from a weather forecast. This is
the reason why the subsection 4.5 describes with many details how we have computed
the trajectory using the weather forecast.
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2. Machine Learning

This section describes some useful Machine Learning notions and techniques. For
a more detailed and comprehensive description of these techniques, one can refer to
Hastie et al. (2001); Bishop (2006).

As explained in the previous section, we want to predict a variable y, here the ad-
justed speed profile values cas1, cas2 and Mach and the mass value m. We want to
predict them from a vector of explanatory variables x, which in our case is the data
extracted from the past trajectory points, the weather forecast, and aircraft database
containing aircraft type variants, airline operators and routes. This is typically a re-
gression problem. Naively said, we want to learn a function h such that y = h(x) for
all (x, y) drawn from the distribution (X,Y ). Actually, such a function does not exist,
in general. For instance, if two ordered pairs (x, y1) and (x, y2) can be drawn with
y1 6= y2, h(x) cannot be equal to y1 and y2 at the same time. In this situation, it is hard
to decide which value to give to h(x).

A way to solve this issue is to use a real-valued loss function L. This function is
defined by the user of function h. The value L(h(x), y) models a cost for the specific
use of h when (x, y) is drawn. With this definition, the user wants a function h mini-
mizing the expected loss R (h) defined by equation (1). The value R (h) is also called
the risk.

R(h) = E(X,Y ) [L (h(X), Y )] (1)

However, the main issue when choosing a function h minimizing R (h) is that we
do not know the joint distribution (X,Y ). We only have a set of examples of this
distribution.

2.1. Learning from examples
Let us consider a set of n examples S = (xi, yi)16i6n coming from independent

draws of the same joint distribution (X,Y ). We can define the empirical risk Rempirical
by the equation below:

Rempirical(h, S) =
1

|S|
∑

(x,y)∈S

L (h(x), y) . (2)

Assuming that the values (L(h(x), y))(x,y)∈S are independent draws from the same
law with a finite mean and variance, we can apply the law of large numbers giving us
that Rempirical(h, S) converges to R(h) as |S| approaches +∞.

Thereby, the empirical risk is closely related to the risk. So, if we have to select
h among a set of functions H minimizing R(h), using a set of examples S, we select
h minimizing Rempirical(h, S). This principle is called the principle of empirical risk
minimization.

Unfortunately, choosing h minimizing Rempirical(h, S) will not always give us h
minimizingR(h). Actually, it depends on the “size”2 ofH and the number of examples

2The “size” of H refers here to the complexity of the candidate models contained in H , and hence to
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|S| (Vapnik and Chervonenkis (1991); Vapnik (1995)). The smaller H and the larger
|S| are, the more the principle of empirical risk minimization is relevant. When these
conditions are not satisfied, the selected h will probably have a high R(h) despite a
low Rempirical(h, S). In this case, the function h is over-fitting the examples S.

These general considerations above have practical consequences on the use of Ma-
chine Learning. Let us denote hS the function in H minimizing Rempirical(., S). The
risk using hS is given by R(hS). We use the principle of empirical risk minimization.
As stated above, some conditions are required for this principle to be relevant. Con-
cerning the size of the set of examples S: the larger, the better. Concerning the size of
H , there is a trade-off: the larger H is, the smaller min

h∈H
R(h) is. However, the larger

H is, the larger the gap between R(hS) and min
h∈H

R(h) becomes. This is often referred

to as the bias-variance trade-off.

2.2. Accuracy Estimation
In this subsection, we want to estimate the accuracy obtained using a Machine

Learning algorithm A. Let us denote A[S] the prediction model found by algorithm A
when minimizing Rempirical(., S)3, considering a set of examples S.

The empirical risk Rempirical(A[S], S) is not a suitable estimation of R(A[S]): the
law of large numbers does not apply here because the predictor A[S] is neither fixed
nor independent from the set of examples S.

One way to handle this is to split the set of examples S into two independent sub-
sets: a training set STrain and another set SOther that is used to estimate the risk of
A[STrain ], the model learned on the training set STrain . For that purpose, one can
compute the holdout error Errhold-out as defined by the equation below:

Errhold-out(A, STrain , SOther ) = Rempirical(A[STrain ], SOther ). (3)

The accuracy estimation has basically two purposes: first, model selection in which
we select the “best” model using accuracy measurements and second, model assess-
ment in which we estimate the accuracy of the selected model. For model selection,
the set SVal in Errhold-out(A, STrain , SVal) is called validation set. For model assess-
ment, the set Stest in Errhold-out(A, STrain , STest) is called this set is called test set.

2.2.1. Model Selection: Hyperparameter Tuning
Some learning algorithms have hyperparameters. These hyperparameters λ are the

parameters of the learning algorithm Aλ. These parameters cannot be adjusted using
the empirical risk because most of the hyperparameters are directly or indirectly related
to the size of H . Thus, if the empirical risk was used, the selected hyperparameters
would always be the ones associated to the largest H .

their capability to adjust to complex data. As an example, if H is a set of polynomial functions, we can
define the “size” of H as the highest degree of the functions contained in H . In classification problems, the
“size” of H can be formalized as the Vapnik-Chervonenkis dimension.

3Actually, depending on the nature of the minimization problem and chosen algorithm, this predictor
A[S] might not be the global optimum for Rempirical(., S), especially if the underlying optimization problem
is handled by local optimization methods.
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These hyperparameters allow us to control the size of H in order to deal with the
bias-variance trade-off. These hyperparameters can be tuned using the holdout method
on a validation set for accuracy estimation. In order to find λ minimizing the accuracy
estimation, we used a grid search which consists in an exhaustive search on a prede-
fined set of hyperparameters. The Algorithm 1 is a learning algorithm without any
hyperparameters. In this algorithm, a training set STrain and a validation set SVal are
considered. This algorithm computes the best hyperparameter λ∗.

Algorithm 1 Hyperparameters tuning for an algorithm Aλ and a training set STrain

and a validation set SVal .
function TUNEGRID(Aλ,grid)[STrain , SVal ]

λ∗ ← argmin
λ∈grid

Errhold-out(Aλ, STrain , SVal)

return λ∗
end function

2.2.2. Model Assessment: Accuracy When Used on Unseen Data
In the previous subsection, we have seen how to select the best hyperparameter λ∗

using STrain and SVal . Using λ∗, we can train our model on STrain ∪ SVal . We can
compute how well it will perform on unseen data by computingErrhold-out(Aλ∗ , STrain∪
SVal , STest). Please note that, the three sets used must be disjoint. Figure 3 summa-
rizes the whole process from model selection to model assessment. On this Figure, the
model selection is done on steps 1 and 2 whereas the model assessment is done on step
3.

STrain SV alid STest

Step 1: Apply Aλ on STrain Evaluate Aλ[STrain] on SV alid

Step 2: Select λ∗ as the λ with best evaluation on SV alid

Step 3: Apply Aλ∗ on STrain ∪ SV alid
Test Aλ∗ [STrain ∪ SV alid]

on STest

Figure 3: A typical Machine Learning workflow involving a training set, a validation set and a test set.

2.3. Gradient Boosting
The stochastic gradient boosting tree algorithm was introduced in Friedman (2002).

It applies functional gradient descent (Friedman (2000) to regression trees Breiman
et al. (1984).

The functional gradient descent is a boosting technique where the model h is
iteratively improved. At each iteration we consider the gradient of the loss gi =
∂L(ŷ,yi)

∂ŷ (h (xi) , yi). A Machine Learning algorithm is applied at each iteration to
a modified Machine Learning problem where the set of examples is (xi, gi)16i6n.
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Then the model g obtained is used to update the model h: the updated model is
h+1(x) = h(x) − ρg(x), where ρ is a constant minimizing the empirical risk. In
the next iteration we consider h+1 instead of h.

In the Gradient Tree Boosting, the Machine Learning algorithm used in the func-
tional gradient descent is a regression tree algorithm Breiman et al. (1984). The model
obtained by this algorithm is a binary tree representing a binary recursive partition of
the input space. At each node, the input space is split in two according to a condition
xj 6 s. The J leaves describe a partition (Rj)16j6J of the input space. Each region
Rj is associated to a constant γj which is returned by the model when x falls into Rj .

Regression trees have some advantages. They are insensitive to input monotonic
transformations. Using xj , log(xj) or exp (xj) leads to the same model. As a conse-
quence, this algorithm is robust to outliers. It can easily handle categorical variables
and missing values. However, regression trees, used alone, are known to have a poor
performance in prediction. Nonetheless, used in combination with a functional gradi-
ent descent like the one used in gradient boosting, this latter drawback is very limited.
This is the reason why we are using a stochastic gradient boosting tree algorithm.

3. Data Used in this Study

The trajectory data used in this study are from The OpenSky Network (Schäfer et al.
(2014)). The OpenSky Network is a participatory sensor network of ADS-B sensors
that covers mainly Europe and North-America. The data used in this study covers
the year 2017. The augmented and sampled climbing segments used in this study are
available at https://opensky-network.org/datasets/publication-data. For this study we
have considered the 10 most frequent aircraft types according to Centre (2017). These
10 aircraft types cover 63 % of the European air traffic according to Centre (2017).
Actually, in a recent ICAO 8643 document update, the E190 aircraft type designator
has been split into two types namely E190 and E195. This leads us to consider 11
aircraft types.

3.1. From Raw Trajectory Points to Clean Sampled Climbing Segments

From The OpenSky Network, we have downloaded all the raw trajectory points
of the year 2017 with a vertical rate superior or equal to 256 feet/min. These raw
points are processed to obtain clean sampled climbing segments. The process used is
summarized in Figure 4.

3.1.1. Discarding Erroneous Values
Some raw trajectory points contain values that are obviously erroneous4. In order

to discard erroneous values, we consider the time-ordered sequence of values. The first
value is assumed to be correct. Then, the next value is considered to be correct if it
is close enough to the previous correct value: it must be consistent with the minimum
and maximum rate of variation of the variable. We repeat this process till the last

4For instance, a ground velocity of 2,650 m/s for a B738 or an altitude of 38,130 m for a A320.
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value of the sequence is reached. This process is described with more details by the
Algorithm 2. The parameters of this algorithm are chosen to discard only erroneous
values5.

Algorithm 2 Discards the erroneous values.
Input:

vmin and vmax are the minimum and maximum acceptable values
dvmin and dvmax are the minimum and maximum rates of variation
(ti)i∈J1;nK and (vi)i∈J1;nK are vectors; the value vi was observed at the time ti

Output: Vector containing the indexes of the values kept
function DISCARDERRONEOUS(vmin ,vmax ,dvmin ,dvmax ,(ti)i∈J1;nK,(vi)i∈J1;nK)

icorrect ← 1
seqcorrect ← [icorrect]
for i = 2 to n do

∆t ← ti − ticorrect

if vmin 6 vi 6 vmax and dvmin ×∆t 6 vi − vicorrect 6 dvmax ×∆t then
icorrect ← i
seqcorrect ← concatenate(seqcorrect, [icorrect])

end if
end for
return seqcorrect

end function

3.1.2. Splitting Data into Climbing Segments
The points associated to the same aircraft are identified using the ICAO 24-bit val-

ues. As only positions with a positive vertical rate were downloaded, we only have
points in climb phase. However, the sequence of points associated to one aircraft
can contain several climbing segments. It may even contain different flights of the
considered aircraft. We have to split this sequence of points into climbing segments.
Moreover, we have decided that each climbing segment must contain at least one raw
point every 30 seconds. The purpose of this requirement is to ensure the quality of the
climbing segments we handle in this study.

Consequently, we have split the sequence of points into sub-sequences of points
with no time hole superior to 30 seconds. These sub-sequences will be our climbing
segments. Please note that two climbing segments can come from the same continuous
climb if somehow no position update has been received within 30 seconds during this
climb. Conversely, two different continuous climbs will give us two different climbing
segments as the two continuous climbs are most likely 30 seconds apart.

5For instance, for the altitude we have chose vmin = −500 m, vmax = 17,000 m, dvmin = −50 m/s
and dvmax = 50 m/s.
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3.1.3. Smoothing the Climbing Segments
The algorithm described in sub-section 4.2.1 uses a physical model and the deriva-

tives of the airspeed and altitude to estimate the mass. The computation of these deriva-
tives can be more reliable if a smoothing procedure is applied beforehand. In our study,
as described in section 4.1, the climbing segments are split in two parts, the past points
and the future points. The mass estimation algorithm is used in two different contexts
in our study.

In the first context, the mass estimation algorithm is used to compute the variable
to be learned by the Machine Learning algorithms. To do this, we apply the mass
estimation algorithm on the future points. In this context, we know all the points of
the climbing segments. As a consequence, we can use a smoothing cubic spline on all
the points. One advantage of a cubic spline is that the estimated derivatives are much
more reliable than a simple difference on the raw points. This technique was also used
in Alligier et al. (2015a,b).

A second context is the mass prediction. In this context, we apply the mass estima-
tion algorithm on the past points. The mass obtained can then be used to predict the
trajectory. With a smoothing cubic spline, if we consider all the points of the climbing
segment, the future points will have an impact on how the past points will be smoothed.
One could argue that some information on the future points might leak into the past
smoothed points. As a consequence we used a Kalman filter (Brown et al. (1992)) to
smooth the past trajectory points only. The derivatives are then estimated with a simple
difference on the smoothed points. As opposed to the smoothing cubic spline, with the
Kalman filter, the value of one point depends only on the points before the considered
point. Thus, the smoothed points used are the same we would obtain in a real-time ap-
plication implementing the same Kalman filter. Please note that the Algorithm 2 used
to discard the erroneous values also uses only previous points to decide on the current
point.

We also keep raw points in our data set, these raw points will be the reference
points. We will compare the predicted trajectories to these non-smoothed points.

Figure 4 describes the different smoothed trajectories obtained through these pro-
cesses.

3.1.4. Sampling the Climbing Segments
For each segment, we typically have one point every 2-3 seconds. It is more conve-

nient to have climbing segments with points evenly spaced through time. We chose to
have one point every 15 seconds. This value seemed to be a good compromise between
the number of points used to describe the climbing segment and the precision of this
description.

We consider a climbing segment containing n raw points where (ti)i∈J1;nK is the
date of the points and (vi)i∈J1;nK is the variable to interpolate. In order to sample the
trajectory, we consider the sampling dates tsi = t1 + i×∆t, with ∆t = 15 s. In order
to interpolate the variable at tsi, we search for j such that tj 6 tsi < tj+1. Then we
only have to linearly interpolate the values vj and vj+1.
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Figure 4: Summarizes the processes used to obtain the clean sampled climbing segments.

3.2. Adding Relevant Information to our Data

Adding information to our data is a mandatory step as the climbing segments do
not contain the aircraft type nor the weather for example. These two information are
very important in trajectory prediction.

3.2.1. Aircraft Type, Aircraft Variant and Airline Operator
The aircraft type was identified using the ICAO 24-bit address in our segments.

Using this address, the aircraft type was retrieved from several databases. For this pur-
pose, an aircraft database was built using VirtualRadarServer6 and its database writer
plugin. If this database did not contain the ICAO 24-bit we were looking for, then we
searched it in the World Aircraft Database Sun (2017). In addition to the aircraft type,
this database contains the aircraft variant and airline operator. When available, we have
also added this information to our segments.

In a recent ICAO 8643 document update, the E190 aircraft type designator has
been split into two types namely E190 and E195. Using the aircraft variant we have
corrected the aircraft type in our database. This is useful as BADA 3.14 provides a
different model for these two aircraft types.

3.2.2. Weather
The Global Forecast System (GFS) was used to add the weather to our segments.

More precisely, we have used the forecast files, not the analysis files, with a 1-degree
grid. We have one weather grid every 3 hours. A sequential linear interpolation was ap-
plied to retrieve the weather at a specific position and time. The temperature, the north

6http://www.virtualradarserver.co.uk/
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and east wind components were added to each aircraft positions. These temperature
and wind values are added because of their impact on the climbing phase.

3.2.3. Departure and Arrival airports
Using the callsign in our segments and the route database from FlightAirMap7, the

departure and arrival airports were identified. We have added the trip distance to our
segments by computing the distance between the two airports. This trip distance will
provide information on the fuel load and hence the mass of the aircraft which affects
the climb.

3.3. Keeping Climbing Segments with a Sufficient Length
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Figure 5: Cumulative distribution of the length of the climbing segments for November and December.

Figure 5 plots the cumulative distribution of the length of the climbing segments
for the months of November and December. We can see on this Figure that the segment
length distribution is different from one aircraft type to another. In this publication, we
build the models from the ten first months of the year, and we test the trained models
on the two remaining months.

From January to October, the segments with a duration superior to 750 seconds
are kept. By doing so, we discard 60 % to 90 % of the climbing segments according
to Figure 5. The mass and speed profile we learn are extracted from each climbing
segment. The more points we use to extract these values the more these estimated
values are reliable. However, if more points are required then more small climbing
segments will be discarded. It leads to smaller training/validation sets. There is a

7https://data.flightairmap.com/
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trade-off between the size of the training/validation sets and the reliability of the values
you use to learn your models. This trade-off is the reason not to include all length of
segments in the training set. In our study, we chose a 750 s threshold. This was the
obvious value as we were originally interested in predicting a 600 s horizon with a
150 s past. Maybe it is not the optimal value regarding the mentioned trade-off, we did
not perform tests on this matter.

For November and December, the climbing segment with a duration superior to 300
seconds are kept. This will allow us to test if models learned on longer climbing seg-
ments can be useful to predict trajectory for shorter climbing segments. Even with this
300 seconds threshold, we discard 35 % to 70 % of the climbing segments according
to Figure 5.

3.4. Statistics on the Climbing Segments Used in Machine Learning
The number of climbing segments obtained for each aircraft type for the last two

months are presented in Table 1. They are sorted from the more frequent to the less
frequent aircraft type according to Centre (2017). We can see that this order is not
consistent with the number of segments we found for each aircraft type. Actually,
one flight can be counted several times if it performs several continuous climbs. This
relative order can also be explained by the fact that our traffic contains also the North-
American traffic.

Table 1: This table summarizes the number of climbing segments with a duration superior to 300 seconds
from November to December. All these climbing segments will be used for testing the models.

model B738 A320 A319 A321 E195

count 238,198 220,432 87,688 102,745 12,031

model E190 DH8D B737 CRJ9 A332 B77W

count 5,695 5,501 26,628 6,168 19,349 23,933

The number of climbing segments obtained for each aircraft for the first ten months
are presented in the Table 2. The relative order is also not the one described in Centre
(2017). These ten months only includes segments that last more than 750 seconds,
as the others were discarded. Each flight is less likely to contain a large number of
such long climbing segments. However, the fact that we filtered the climbing segments
according to their length might bias the distribution as can be seen in Figure 5. As these
segments are sufficiently long, all these segments will be used to train our models.

Figure 6 plots the distribution of the segments’ points as a function of the altitude.
We can see that the turboprop DH8D has a distribution different from the jets. The jets
share a very similar distribution with a peak after 10,000 ft. This peak can be explained
by the fact that each points are separated by the same time interval and the fact that the
aircraft reduce temporarily their rate of climb after 10,000 ft in order to accelerate.

Figure 7 plots the climbing segments on a world map. In order to produce this
figure, 331 millions aircraft positions were aggregated. With this Figure, we can see
that the five continents contains climbing segments. However, most of them are located
in Europe and North-America. Africa contains the fewest climbing segments.

15



0 10000 20000 30000 40000
Hp [ft]

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Fr
eq

ue
nc

y 
[-]

B738
A320
A319
A321
E195
E190
DH8D
B737
CRJ9
A332
B77W

Figure 6: Distribution of the points’ altitude of the climbing segments.
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Figure 7: Climbing segments plotted on a world map. The mean altitude can be read from the color.
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Table 2: This table summarizes the number of climbing segments with a duration superior to 750 seconds
from January to October. All these climbing segments will be used for training our models.

model B738 A320 A319 A321 E195

count 1,100,156 1,115,773 474,213 492,381 56,642

model E190 DH8D B737 CRJ9 A332 B77W

count 33,664 21,896 121,390 20,892 89,881 99,043

Table 3 shows the 10 most frequent departure airports for our segments. We can see
that the departure airport is not known for 1.77 % of the climbing segments. Among
these airports, only KLAX is not an European airports. We have 1,522 different depar-
ture airports. However, the 37 most frequent departure airports account for 50.5 % of
the climbing segments.

Table 3: This table summarizes the distribution of the departure airports of the climbing segments for the
whole year 2017.

ICAO airport code airport name frequency

EDDF Frankfurt Airport 2.38
EGLL Heathrow Airport 2.27
EDDM Munich Airport 2.21
EHAM Amsterdam Airport Schiphol 2.19
LFPG Paris Charles de Gaulle Airport 1.93
KLAX Los Angeles International Airport 1.88
EGKK Gatwick Airport 1.87
- airport unavailable 1.77
LTBA Istanbul Atatürk Airport 1.68
LEMD Adolfo Suárez Madrid–Barajas Airport 1.56

4. Applying Machine Learning to Our Prediction Problem

This section describes how the climbing segments are processed to obtain sets of
examples that are suited for Machine Learning. As we want to predict the future tra-
jectory with a certain horizon, we do not use the entire climbing segment to obtain one
example. Actually, we can build several examples using different trajectory samples of
the same climbing segments.

This section also describes how gradient boosting is applied and how the predicted
trajectory is computed using the operational factors and a temperature profile.

4.1. Extracting Trajectory Samples from One Climbing Segment

In this study, knowing the current position and p = 9 consecutive past points, we
want to predict the future q points. In this context, a trajectory sample is defined by the
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current position, the p past points and the q future points. The trajectory samples will
be used to train and evaluate our predictive models. These trajectory samples are built
from the climbing segments. Actually, we build several trajectory samples from one
climbing segment.

Considering one climbing segment with n points, a trajectory sample is built from
p + q + 1 consecutive points chosen among the n segment points. Hence, from one
segment we build n − p − q trajectory samples. Figure 8 illustrates two different
trajectory samples (with q = 40) extracted from the same climbing segment.

The climbing segments in the first ten months are used to train our models. For
these months we have used q = 40. Concerning the last two months, we actually
produced three different sets: one with q = 40, one with q = 20 and the last one with
q = 10. These three different sets will be useful to test how our predictive models
perform on different prediction time horizons.
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Figure 8: With q = 40, two different trajectory samples extracted from the same climbing segments.

4.2. Building One Example from One Trajectory Sample

This subsection describes how the four operational factors have been added to the
trajectory samples, allowing us to build the training set. In this study, we have to predict
four operational factors: the mass m, and three variables (cas1, cas2,M) that describe
the speed profile used by the aircraft. These factors are predicted using supervised
Machine Learning. This technique requires a set of examples, a training set, where
each example contains the explanatory variables and the variable to be learned. The
explanatory variables contain knowledge from the current point and the 9 past points.
Hence, each example is derived from one trajectory sample. However, concerning the
variable to be learned, the trajectory sample does not contains a mass variable nor
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the (cas1, cas2,M) speed variables. This subsection describes how these required
variables have been extracted from the trajectory points.

4.2.1. Adding the Mass
For each trajectory sample, the mass is estimated using the q = 40 future points.

The method used to extract the mass from these future points is the one described in
Alligier et al. (2014). The mass is estimated by minimizing the difference between
the modeled power and the observed energy variation. These two quantities are equals
according to the Newton’s second law giving us Equation 4 where m is the mass, Va is
the True AirSpeed (TAS), Hp is the altitude, Thr is the thrust, D is the drag, T is the
temperature and TISA is the temperature in ISA standard atmosphere.

Thr−D
m

Va = g0
T

TISA

dHp

dt
+ Va

dVa
dt

(4)

We have to compute the derivatives dVa

dt and dHp

dt . Cubic splines are used to smooth
the future points, they were also used to compute these derivatives. Let us note Ev the
energy variation, t the date. At point i, we have:

Poweri
mi

=
Thri −Di

mi
Vai (5a)

Evi
mi
' g0

Ti
TISAi

(
dHp

dt

)
i

+ Vai

(
dVa
dt

)
i

(5b)

We can compute Evi

mi
using the past points and a weather model. Using a model of

forces such as BADA, Poweri can be computed as a function of Hpi, Vai, Ti and mi.
According to Newton’s laws, these two quantities are equal. The mass to be learned
will be the one minimizing the sum defined by equation (6) where i = 10 is the index
of the current point in the trajectory sample and ff is the BADA function modelling the
fuel consumption. As described in Alligier et al. (2014), minimizing such a sum can
be done efficiently by finding the roots of a fourth degree polynomial.

m10 =argmin
m10

10+q∑
i=10

(
Poweri(Hpi, Vai, Ti,mi)

mi
− Evi
mi

)2

(6a)

with mi+1 = mi − ff (Va, Hp, T ) (ti+1 − ti) (6b)

We have also applied this technique to estimate the mass on the past points. This
mass estimated on past the points is added to the explanatory variable.

4.2.2. Adding the Speed Profile
The speed profile is modeled in BADA with three parameters cas1, cas2 and M .

This speed profile specify the TAS for a given altitude Hp and a temperature T . The
aircraft climbs at a constant Calibrated AirSpeed (CAS) equal to cas1 from 3,000 ft to
10,000 ft. Then, it accelerates till it reaches cas2. It climbs at a constant CAS cas2 till
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it reaches the Mach number M . Then it climbs at a constant Mach number. The TAS
profile obtained in the end is given by the equation below where f is a function given
by Mouillet (2017), T is the temperature, R and κ are physical constants.

Va(cas1, cas2,M ;Hp, T ) =


f(cas1, Hp, T ) if 6,000 ft 6 Hp < 10,000 ft
f(cas2, Hp, T ) if 10,000 ft 6 Hp 6 Hptrans (cas2,M)

M
√
κRT if Hp > Hptrans (cas2,M)

(7)

We want to extract cas1, cas2 and M from the points in the trajectory sample.
Considering Equation (7), we can see that extracting a speed profile requires points
from low altitude to high altitude. As a consequence, to extract the speed profile, we
consider all the points in the climbing segment, not only the points in the trajectory
sample. Hence, all the trajectory samples coming from the same climbing segment
will have the same common (cas1, cas2,M) given by the equation (8).

(cas1, cas2,M) = argmin
(cas1,cas2,M)

n∑
i=1

(
Va(cas1, cas2,M ;Hpi, Ti)− Vai

)2
(8)

As Equation (7) omits the acceleration from cas1 to cas2, this optimization prob-
lem can be split in two independent parts:

cas1 =argmin
cas1

∑
3,000 ft6Hpi<10,000 ft

(
f(cas1, Hpi, Ti)− Vai

)2
(9a)

(cas2,M) =argmin
(cas2,M)

∑
10,000 ft6Hpi6Hp trans(cas2,M)

(
f(cas2, Hpi, Ti)− Vai

)2
+
∑

Hp trans(cas2,M)<Hpi

(
M
√
κRTi − Vai

)2
(9b)

These two problems can be solved separately using the efficient technique de-
scribed in Alligier et al. (2015b). Considering n points, this technique consists in
splitting the problem into 2n sub-problems and solve each sub-problem through a
dichotomic search or a weighted linear regression. Once the solutions of these sub-
problems are known, we can build the solution of the problem in linear time.

Equation (7) does not model the acceleration from cas1 to cas2. As a consequence,
when solving the optimization problem defined by Equation (9b), we have only con-
sidered the points with an altitude superior to 13,000 ft, not 10,000 ft. This threshold
choice is justified by Figure 6 where we can see the effect of the acceleration phase
starting from 10,000 ft till 13,000 ft approximately.

On Figure 9, a climbing segment and the fitted speed profile are plotted. This
climbing segment was selected among the climbing segments with at least 3 points
above the crossover altitude and 3 points below 10,000 ft. Among these segments, the
climbing segment selected is the one with the median error. This error is computed
with Equation (8). Thus, the speed profile accuracy in Figure 9 is quite representative
of what can be obtained through this fitting process.
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Figure 9: A climbing segment and the fitted (cas1, cas2,M) speed profile.

4.3. Explanatory Variables

The previous subsection describes how we obtained the target variables to be learned.
In this subsection the explanatory variables used and the feature engineering done on
these variables.

The explanatory variables contain information on the past positions and speeds.
The explanatory variables include the altitude Hp, the vertical rate with respect to the
ground dh

dt and the True AirSpeed Va of the current point and the 9 past points. Vari-
ables associated to the current point were added: the track angle, the ground speed, the
latitude and the longitude.

They also include information on the weather: the temperature and wind at the
current point, and the temperature every 1,000 m starting from the current altitude Hp

to the altitude Hp + 11,000 m. This is useful as the temperature does not follow a
temperature profile corresponding to an ISA atmosphere even when this temperature
profile is corrected with a temperature differential ∆T . The temperature at Hp = 0
was also added. The temperature can influence the engine performance. It also impacts
the geopotential altitude H between two given geopotential pressure altitude Hp (see
BADA user manual). It also impacts the speed profile. As a consequence, depending
on the temperature gradient, different energy share factor will be used, hence different
climbing rate.

For each example, we also have categorical variables like the airline operator, the
aircraft type variant, the departure and arrival airports and the day of the week. This
last variable was included to make use of a possible seasonality. The month can also
provide some insight on the seasonality however our data only covers one year so the
month was not included. All these categorical variables are handled by the gradient
boosting tree library with a one-vs-other split algorithm.
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When the departure and arrival airports were known we have computed the trip
distance between these two airports. This trip distance will provide information on the
fuel load and hence the mass of the aircraft which affects the climb. The departure
airport is used because the constraints that apply to the climbing aircraft might depend
on the airport considered.

We have also computed additional variables from the above variables. As these ad-
ditional variables are computed from already available variables, these new variables do
not add any information. However, they might be more relevant to the prediction prob-
lem we are dealing with. Thus, adding these new variables will help the learning algo-
rithm to build a simple and accurate model. This kind of process is called feature en-
gineering. As part of this feature engineering, we have added the mass estimated from
the past points. The difference between the computed power using the mass and the
observed energy variation was also added. This variable will give some hints on how re-
liable is the mass estimated on past points. We have also computed the energy variation
on the past points using the formula: g0 Ti

TISAi

(
Hpi+1 −Hpi

)
+ 1

2

(
Vai+1

2 − Vai2
)
.

All these variables are related to the mass prediction.
In the end, we obtained 66 explanatory variables described in the table 4. All

these variables are used as features by the BADApred setup defined at the beginning
of section 5. The 7 features available before take-off are used as features by the
BADApred-before-take-off setup defined at the beginning of section 5.

Table 4: A summary of the features used to predict the operational factors.

feature description number of features

be
fo

re
ta

ke
-o

ff departure and arrival airports 2
distance between airports 1
aircraft type variant 1
airline operator 1
day of the week 1
temperature at Hp = 0 1

w
ith

9
pa

st
po

in
ts

mass estimated on past points and error on past points 2
track angle at the current point 1
ground velocity at the current point 1
north and east wind components 2
longitude and latitude at the current point 2
vertical speed at the current and past points 10
Kalman filtered altitude Hp at the current and past points 10
Kalman filtered airspeed Va at the current and past points 10
Kalman filtered energy variation between the current and past points 9
temperature profile from current altitude to current altitude plus 11,000 m 12

4.4. Gradient Boosting Library
In this study we consider millions of climbing segments. We consider each aircraft

type separately. Even with a separate model for each aircraft type, the A320 and the

22



B738 still contain over one million climbing segments, each. We have seen that one
climbing segment generates several trajectory samples and hence several examples.
For instance, the A320 training and validation sets contain almost 27 millions examples
together. In a previous study (Alligier et al. (2015b)), the R package gbm was used. In
this study, due to the large size of the training sets, its usage is impractical.

In our experiments we used the LightGBM package (Ke et al. (2017)), an open
source Gradient Tree Boosting library developed by Microsoft. This implementation is
highly efficient. Each continuous variable xi is transformed into a discrete variable. To
do so, the range of each variable xi is split into bins. Each continuous value falls into
a bin. The id of this bin will replace the continuous value. This allows the algorithm to
reduce the memory usage. For instance, if each continuous range is split into 255 bins,
then each float64 value can be replaced by a uint8 value. During the training
process with our largest training set, LightGBM only used approximately 10 GB of
RAM. The training process is also faster. During the tree build process, when the
algorithm have to choose a splitting variable and a threshold, the algorithm only have
255 threshold values to consider for each variable.

As we consider a regression problem, we used the risk given by a quadratic loss
L(ŷ, y) = (ŷ − y)

2. Let us note GBM(m,J,ν) this algorithm, where m is the number
of boosting iterations, J is the number of leaves of the tree and ν is the shrinkage
parameter. The obtained model is a sum of regression trees. J allows us to control the
interaction between variables, as we have J−1 variables at most in each regression tree.
ν is the learning rate. The hyperparameters grid used for this algorithm is presented
in Table 5. The number of boosting iterations m is determined using early stopping.
With early stopping, the training process is stopped when the validation error does not
improve for 20 iterations. If the training process has stopped at the round n, then the
selected m is n− 20.

Table 5: Grid of hyperparameters used in our experiments.

method hyperparameter grid

GBM(m,J,ν)

m = determined by early stopping
J = {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190}
ν = {0.02, 0.05}

4.5. Computing the Predicted Trajectory

Once we have predicted the operational factors like the mass and the (cas1, cas2,M)
values, we have to compute the associated predicted trajectory. This is done by using
the physical model BADA 3.14. This model specifies different mathematical functions
used to compute the forces and the fuel consumption. Once these forces are computed,
Newton’s laws of motion can be used to compute the acceleration of the aircraft. The
BADA model is a total energy model. With this model, the vertical motion is computed
using the power of the forces and the energy share factor. This latter is used to specify
how the aircraft is operated by the pilot. It is not rooted in the physical motion’s laws.
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The energy share factor e is defined by the equation (10).

e
def.
=

g0
T

TISA

dHp

dt

g0
T

TISA

dHp

dt + Va
dVa

dt

=
1

1 + Va

g0
TISA

T
dVa

dHp

(10)

With the above equation, knowing the TAS Va, the temperature T and the altitude
Hp at the date t, we can compute the power Power at t, the position and speed of the
aircraft at t+ dt with the equation (11) below.

Hp(t+ dt) = Hp +
dHp

dt
dt = Hp + e

TISA
T

Power

mg0
dt (11a)

Va
2(t+ dt) = Va

2 +
1

2
(1− e)Power

m
dt (11b)

Starting with the predicted mass at the last observed altitude and speed, the pre-
dicted trajectory can be computed using the Euler method with dt = 1 s. The en-
ergy share factor e used is computed each dt considering the weather forecast and the
(cas1, cas2,M) speed profile.

In (11), the energy share factor is required and not known. This energy share fac-
tor can be derived from (10) and the speed profile definition (9). If we assume an
ISA atmosphere, one can derive an analytical formula (Mouillet (2017)) for the energy
share factor. However, in this study, we take advantage of a temperature profile (one
temperature measure every 1,000 m). Thus, the analytical formula cannot be used.
This temperature profile does not follow an ISA atmosphere even if it is corrected by a
∆T temperature differential. The temperature profile is a function of the altitude Hp.
Hence, if (cas1, cas2,M) is known, the speed profile is a function f of the altitude
Hp. Using the equation (11a), the equation (11b) can be rewritten as below.

f2
(
Hp + e

TISA
T

Power

mg0
dt

)
= Va

2 +
1

2
(1− e)Power

m
dt (12)

In order to solve Equation 12, it is more convenient to consider a function g as
defined by Equation (13) below.

g(e) = f2
(
Hp + e

TISA
T

Power

mg0
dt

)
−
(
Va

2 +
1

2
(1− e)Power

m
dt

)
(13)

The equation g(e) = 0 is the one used to find the energy share factor e. We search
for a value of e in the interval [0.3, 1.7] as 0.3 and 1.7 are considered in BADA (Mouil-
let (2017)) as energy share factor values for acceleration and deceleration respectively.

Solving this equation is not straightforward as this function have discontinuities
and might be not monotonic (see Figure 9). However, the discontinuities of g are
the discontinuities of f . If we consider a continuous temperature profile, then only
the discontinuity of the target speed remains. These discontinuity happens at known
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altitudes. It is easy to find the discontinuities of g by solving Hp + e TISA

T
Power
mg0

dt =

Hpdiscontinuity. Then if a discontinuity happens in [0.3, 1.7], we can split the interval in
order to have intervals where g is continuous.

Solving this equation on these continuous intervals is not easy as g might be not
monotonic, so if the sign of g is the same at the boundaries of the interval that does
not mean that the equation has no solution. To mitigate this issue, we split again each
interval into intervals of size inferior to 0.1 and test if the sign of g at the boundaries of
these smaller intervals are the same. By doing this, we increase the chance of detecting
a sign change of g.

If all the evaluations of g are negative, we consider that there is no solution and we
choose e = 1.7 as the aircraft needs to decelerate. Conversely, if all g are positive, we
choose e = 0.3.

If two evaluations of g have a different sign then we apply a dichotomic search.
This search stops when the search interval size is inferior to 0.001. This guarantees an
error on the dHp

dt inferior to 0.1 % (compared with the value obtained with the exact e).

5. Results

All the results presented in this section have been computed on data not used in the
model building process. These results have been computed from all the trajectories in
the months November and December of the year 2017. The ten first months of 2017
were used to build the predictive models. The training set uses trajectories recorded
from January to August, the validation set use trajectories recorded in September and
October and finally the test set use trajectories recorded in November and December.
It is a simple hold-out validation. The use of these three sets is described in subsec-
tion 2.2. One can refer to the Figure 3 of the subsection 2.2 for a schematic description
of the training, validation and test sets.

The k-fold cross-validation usually provides a better assessment of the generaliza-
tion error than a simple hold-out validation, nevertheless we chose the second approach
here, for very specific reasons. The trajectories in the same area at the same time share
the same local events: these trajectories are not independent. Using a cross-validation,
these trajectories might fall in different folds and the performance evaluation might be
optimistically biased. The distribution of the trajectories might change through time if
for instance new procedures are applied at a specific airport. Using a cross-validation
that randomly places the examples in the folds will produce folds with the same dis-
tribution. It will mask the non-stationarity of the problem we are studying and the
performance evaluation obtained will be too optimistic. For these reasons, we chose
a more practical approach, and decided that the model should be trained on a given
period of time, and then tested on a later period of time, as would actually happen if
the method was used in operations. If this performance evaluation is biased, it will be
pessimistically biased.

We compute the trajectories using BADA 3.14. In this study, we compare four
setups:

• BADAmean that uses BADA with the mean mass and mean values of cas1, cas2
and M ;
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• BADAmass that uses BADA with the mass estimated through the method pre-
sented in Alligier et al. (2014) and mean values of cas1, cas2 and M . It uses
only the BADA physical model and the 9 past points of the considered aircraft;

• BADApred-before-take-off that uses BADA with the mass, cas1, cas2 and M pre-
dicted by GBM. It uses only features that are available before the take-off of the
considered aircraft;

• BADApred that uses BADA with the mass, cas1, cas2 andM predicted by GBM.
It uses all the available features available, including the 9 past points of the con-
sidered aircraft.

The mean parameters were computed using the ten first months. We do not use
the BADA reference parameters as they were under-performing in several publications
(Alligier et al. (2014, 2013)). Instead, we use the mean values. The mean values are
the best we can do without any specific information. Machine Learning, if applied
correctly, should perform better than the mean because the predictive models use spe-
cific information about the considered flight. We added the mass estimation method
developed in Alligier et al. (2014) as it was demonstrated to perform well in several
publications (Alligier et al. (2014, 2013); Uzun and Koyuncu (2017)). This estimation
method uses the physical model and information about the motion of the considered
aircraft. As opposed to the predictive models based on Machine Learning, it does not
use past flights nor variables like the departure airport and the distance between the
two airports. As a consequence the estimation method should perform better than the
mean, but worse than the predictive models built through Machine Learning.

We study these setups in two different contexts:

• Past points are available: the aircraft is flying and we have at least 9 past points.
In this context, the four setups can be used. Several situations are considered.
The section 5.1 present the results obtained when predicting the operational fac-
tors. In the section 5.2, we consider the exact situation depicted by our training
and validation sets. In section 5.3, we consider a 5 minutes prediction horizon.
This situation differs from the one in our training set because the learned mass,
cas1, cas2 and M were adjusted on a 10 minutes horizon, not a 5 minutes hori-
zon. The section 5.4 studies also a 5 minutes horizon but on climbing segments
smaller than the one used in our training set. These last three sections are here
to be sure that our method can be successfully applied on any prediction horizon
and any climbing trajectory.

• Past points are not available: the aircraft has not took-off yet, its past points are
not available. Still, we want to predict the mass, cas1, cas2 and M . The results
obtained in this context are discussed in 5.5. The setups that can be used in this
context are compared: BADAmean and BADApred-before-take-off.

5.1. Prediction of the Operational Factors

The Table 6 presents statistics on the predicted mass for BADAmean, BADAmass
and BADApred. When compared with BADAmean, BADApred reduces the RMSE on the
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mass by at least 42 % for all the aircraft types. The mean RMSE reduction among the
aircraft type is 56 %. When compared with BADAmean, the RMSE reduction provided
by BADAmass is less obvious. Actually, with this method, the RMSE is higher than
BADAmean at low altitude and lower at high altitude.

The estimated mass used in BADAmass is obtained from the method described in Al-
ligier et al. (2014). It relies on the physical model and the aircraft motion on a few past
points. These points are used to compute the energy variation. These estimated energy
variation might be noisy. As a consequence the estimated mass is also noisy. For this
reason, the mass actually used with BADAmass ismax(massmin,min(massestimated,massmax)).
In the Table 6, we computed the error made when we use the estimated mass without
limiting the mass inside the [massmin; massmax] interval. This setup is noted BADAmass-unlimited
in this Table. Without limiting the mass, we have a higher RMSE for all the aircraft
except the A332.

We have decided that the mass used with BADApred is the predicted value, even
if this value is outside [massmin; massmax]. The predicted mass is obtained from a
predictive model. This model is built using a set of examples. This set of examples
is built by targeting the mass estimated on the future points. This estimation is less
noisy than the estimated mass because it uses more points of the sets of examples.
Furthermore, this mass estimated on future points is directly related to the mean energy
variation observed in the future points and is consequently suitable for predicting the
future trajectory. These masses are used to train predictive models using Machine
Learning. The GBM Machine Learning method computes tree regression models that
basically just computes mean values of the learned mass. Thus, if a predicted mass
is outside [massmin; massmax] that means that several examples with a similar x were
associated with a mass outside [massmin; massmax].

Table 6: These statistics, in kg, are computed on the difference between the predicted mass and the mass
extracted from the future trajectory. It is computed on the test set consisting in trajectory samples from
months November and December.

method BADAmean BADAmass BADApred BADAmass-unlimited
statistic mean rmse mean rmse mean rmse mean rmse

B738 132 5,212 3,464 5,774 −70 2,508 4,145 7,555
A320 92 5,065 1,360 3,504 −91 1,929 1,698 4,732
A319 110 4,810 2,360 5,048 −131 2,362 2,901 7,108
A321 207 6,699 1,236 4,222 −105 2,212 3,105 5,181
E195 187 4,393 1,274 3,343 −235 2,126 2,433 4,383
E190 −569 4,418 1,798 3,620 −702 2,539 2,727 5,147
DH8D 425 1,811 −937 2,172 −48 738 −881 2,281
B737 96 4,842 4,126 6,148 −75 2,511 5,304 8,386
CRJ9 −192 2,818 60 1,943 −110 1,294 345 2,239
A332 920 26,910 −6,506 16,339 −627 8,014 −783 12,764
B77W −917 30,105 15,937 28,456 −1,913 10,742 17,951 32,341

The Table 7 presents statistics on the predicted cas1 for BADAmean and BADApred.
The RMSE reduction for these parameters is smaller than the one observed for the
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mass. The mean RMSE reduction is 49 %. We have also computed the statistics on the
predicted cas2 on the Table 8. On this operational factor, the mean RMSE reduction is
39 %.

Table 7: These statistics, in kt, are computed on the difference between the predicted cas1 and the value
extracted from the future trajectory. It is computed on the test set consisting in trajectory samples from
months November and December.

method BADAmean BADApred
statistic mean rmse mean rmse

B738 −1.13 18.34 0.08 8.44
A320 −1.62 18.97 0.07 10.10
A319 0.05 16.49 0.26 8.31
A321 −0.31 14.56 0.07 8.42
E195 0.85 11.87 0.19 7.59
E190 0.44 14.15 0.56 8.22
DH8D −1.49 19.08 0.13 6.95
B737 0.13 15.77 0.04 6.47
CRJ9 0.73 16.19 −0.20 9.10
A332 −0.12 15.60 0.25 9.66
B77W 0.94 19.54 −0.31 7.11

Table 8: These statistics, in kt, are computed on the difference between the predicted cas2 and the value
extracted from the future trajectory. It is computed on the test set consisting in trajectory samples from
months November and December.

method BADAmean BADApred
statistic mean rmse mean rmse

B738 −0.21 13.54 −0.31 7.84
A320 0.04 14.89 −0.24 8.85
A319 −0.08 15.89 −0.37 9.50
A321 −0.51 15.83 −0.57 9.48
E195 −0.71 11.00 −0.68 7.45
E190 0.65 11.72 0.02 7.09
DH8D −5.00 18.40 −0.19 11.53
B737 0.37 13.85 −0.20 8.20
CRJ9 −2.04 14.59 −0.25 7.44
A332 0.73 13.10 −0.20 7.35
B77W −0.16 7.07 −0.09 5.47

The Table 9 presents statistics on the predicted Mach number M for BADAmean
and BADApred. The RMSE reduction on this parameter is very small, the mean RMSE
reduction is only 15 %. For the DH8D, BADAmean has a lower RMSE than BADApred.
According to the BADA model, the Mach number parameter impacts the trajectory
only at high altitude. As a consequence, the past points of the trajectory (with an al-
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titude typically inferior to 30,000 ft as can be seen on Figures 10 and 11) might not
contain useful information to predict the Mach number. As opposed to the Mach num-
ber, in the BADA model, the mass parameter has an impact on the whole trajectory not
just a part of it. This might explain the performance gap between the model predicting
the mass and the one predicting the Mach number.

Table 9: These statistics are computed on the difference between the predicted Mach number M and the
value extracted from the future trajectory. It is computed on the test set consisting in trajectory samples from
months November and December.

method BADAmean BADApred
statistic mean rmse mean rmse

B738 1.584e-05 0.01761 -0.0004014 0.01476
A320 0.0004234 0.02375 -0.0001622 0.0197
A319 0.0002773 0.02058 -0.0001642 0.0174
A321 0.000483 0.02059 -0.0005212 0.01804
E195 -0.001265 0.0301 -0.001155 0.02495
E190 0.0007452 0.0228 0.0003135 0.01993
DH8D -0.01177 0.0349 -0.002219 0.02357
B737 0.0005285 0.01472 -0.0002208 0.01305
CRJ9 -0.0003177 0.02254 7.63e-05 0.0202
A332 0.001277 0.02594 -0.0004583 0.0229
B77W -0.001055 0.01692 -0.0005447 0.01532

5.2. Trajectory Prediction at t0+10 minutes

We compare three different setups for the operational factors as explained at the
beginning of the section 5. The predicted trajectories are computed using the predicted
operational factors and the the method described in section 4.5.

5.2.1. Altitude
Table 10 presents statistics on the error made on the altitude at a 10 minutes horizon.

We can see that BADAmean does not provide a prediction with a mean error close to
zero, especially for the DH8D. This can be explained by the fact that we do not have
E[f(X)] = f(E[X]) for every function f . If f is the BADA process computing the
altitude at t0 + 10 min and X is the input parameter, it is easy to understand that even
with the mean mass and the mean (cas1, cas2,M) we do not obtain a zero mean error
on the altitude. When compared with the baseline BADAmean, the use of the predicted
mass and speed profile reduce the Root Mean Squared error (RMSE) on the altitude by
at least 38 % for all the considered aircraft types. The mean error reduction among the
aircraft type is 48 %. The largest reduction is obtained with the A332 for which we
have a 64 % reduction on the RMSE.

The relative reduction obtained in this study is similar to the one obtained in Al-
ligier et al. (2015b). However, the RMSE values obtained in this study with BADApred
are larger than the one obtained in Alligier et al. (2015b). This can be explained by
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Table 10: These statistics, in feet, are computed on the differences between the predicted altitude and the
observed altitude

(
Hp

(pred) −Hp
(obs)

)
at the time t = 600 s for the test set consisting in trajectory

samples from months November and December.

method BADAmean BADAmass BADApred
statistic mean rmse mean rmse mean rmse

B738 −227 1,758 −1,114 1,929 −115 930
A320 −138 1,779 −409 1,355 −59 886
A319 −160 1,719 −577 1,616 −43 975
A321 −169 1,936 −339 1,359 −27 846
E190 −75 1,854 −940 1,789 42 1,149
E195 −260 1,742 −603 1,485 −109 1,008
DH8D 503 1,756 1,691 2,883 334 1,044
B737 −328 1,786 −1,716 2,505 −246 1,078
CRJ9 13 1,731 −43 1,329 −30 911
A332 −196 2,440 559 1,499 62 871
B77W −237 2,541 −1,328 2,402 −21 948

the fact that this study considers every trajectory samples, not just the one departing
from Paris Charles de Gaulle (LFPG) with Hp(t = 0) > 18,000 ft like in Alligier et al.
(2015b). The altitude at t = 0 has a great impact on the uncertainty of the altitude at
t = 600 s. The higher the starting altitude is, the lower is the uncertainty on the final al-
titude. It might also be explained by the variety of the airports and airspace considered.
Actually, if we consider only aircraft departing from LFPG withHp(t = 0) > 18,000 ft
then we obtain results comparable with the one obtained in Alligier et al. (2015b).

Figures 10 and 11 plot the error on the altitude as a function of the starting alti-
tude for different aircraft types. On Figure 10, we have some aircraft types for which
BADAmass provides poor results. This is especially true for the DH8D and B737. No
explanation was found for this behavior, yet. Alligier et al. (2015a) have also demon-
strated that the mass estimation method used in BADAmass performed poorly on the
B737. The other aircraft types were plotted in Figure 11. For the B738 and the B77W,
the mass estimation performs way better at high altitude than at low altitude.

We can see that BADApred performs consistently better than all the other methods,
for all the altitude and aircraft types considered.

5.2.2. Results for All the Airports Considered
Figure 12 presents the RMSE percentage reduction for all the airports. In this

figure, we have one boxplot for each aircraft type. Considering a given aircraft type,
for each airport with more than 100 climbing segments we have computed the RMSE of(
Hp

(pred) −Hp
(obs)

)
(t = 600 s) for the baseline method BADAmean and our method

BADApred. The percentage reduction computed for the considered airport gives one
point on the figure. A boxplot is associated to the points of each considered aircraft
type. To summarize, for each aircraft type, one airport correspond to one point, and the
position of this point is the RMSE reduction on the altitude on a 10 minutes prediction
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Figure 10: RMSE of
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(t = 600 s) as a function of the starting altitude. The aircraft

types plotted are the one for which BADAmass provides poor results.
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horizon.
With this figure, we can see that we have at least a 15 % RMSE reduction for all

the airports and aircraft types considered. For the aircraft types with a lot of airports,
using the boxplots, we can see that half of the airports have a RMSE reduction within
± 7 % around the median.
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Figure 12: For each aircraft type, one airport correspond to one point, and the position of this point is the
RMSE reduction on the altitude on a 10 minutes prediction horizon. Only the airports with more than 100
climbing segments in the test set has been plotted.

5.2.3. Speed
Table 11 presents statistics on the error made on the speed within the ten minutes

time window. This error is computed at corresponding time.
When compared with the baseline BADAmean, the use of the predicted mass and

speed profile in BADApred reduces the RMSE on the speed by at least 15 % for all the
considered aircraft types. The largest reduction is obtained with the DH8D for which
we have a 35 % reduction on the RMSE. The relative reduction obtained in this study
is worse than the one obtained in Alligier et al. (2015b). However, the RMSE values
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obtained in this study with BADApred are similar to the one obtained in Alligier et al.
(2015b).

Despite having the same (cas1, cas2,M) values, the RMSE computed using BADAmean
and BADAmass are not the same. This comes from two facts: the (cas1, cas2,M) de-
scribes the speed profile as a function of the altitude Hp; the RMSE is computed be-
tween speed at corresponding time not corresponding altitude. Hence, if the mass used
is different, the rate of climb will be different and the altitude at a given time will be
also different. However, as can be seen in Table 11, BADAmass does not provide any
improvement on the speed prediction.

Table 11: These statistics, in kt, are computed on the differences between the predicted TAS and the observed
TAS on

(
Va

(pred) − Va
(obs)

)
at the time 0 6 t 6 600 s for the test set consisting in trajectory samples

from months November and December.

method BADAmean BADAmass BADApred
statistic mean rmse mean rmse mean rmse

B738 1.28 16.12 −2.37 16.26 0.56 12.16
A320 1.16 17.00 0.07 16.92 0.69 13.15
A319 0.93 17.58 −0.75 17.36 0.53 13.55
A321 1.26 17.86 0.17 17.69 0.75 13.95
E190 2.93 15.98 −0.20 14.85 2.01 11.72
E195 0.39 15.17 −1.03 14.56 0.78 11.22
DH8D −5.77 21.07 −5.54 21.29 0.04 13.81
B737 2.39 15.96 −1.68 15.94 1.07 12.10
CRJ9 −0.26 15.73 −0.31 16.11 0.74 11.62
A332 0.63 16.17 2.41 16.62 0.35 12.49
B77W 1.20 15.63 −3.70 15.60 1.72 13.03

5.3. Trajectory Prediction at t0+5 minutes

The masses in our set of examples were adjusted on a 10 minutes climb portion.
The adjusted mass basically fits the mean energy variation for the 10 minutes climb
portion. If the physical model is not well designed, the model used with the adjusted
mass might overestimate the energy variation for the first 5 minutes and understimate
it for the last 5 minutes. This subsection investigates how our models perform on a 5
minutes prediction horizon.

With Table 12, we can see that, when compared with BADAmean, BADApred reduces
the RMSE on the predicted altitude at a 5 minutes horizon by at least 30 %, except for
the DH8D. For the DH8D, almost no reduction was observed. For the A321, it is even
reduced by 50 %.

5.4. Trajectory Prediction on Smaller Climbing Segments

In this subsection we test if the Machine Learning predictive models are efficient
when we consider small climb segments. This is not trivial as the Machine Learning
predictive models were trained on examples built from climbing segments longer than
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Table 12: These statistics, in feet, are computed on the differences between the predicted altitude and the
observed altitude

(
Hp

(pred) −Hp
(obs)

)
at the time t = 300 s for the test set consisting in trajectory

samples from months November and December. Only climbing segments with a duration superior to 750 s
were considered.

method BADAmean BADAmass BADApred
statistic mean rmse mean rmse mean rmse

B738 −227 1,276 −384 1,065 −92 718
A320 −178 1,279 −159 957 −4 681
A319 −208 1,280 −190 1,114 −214 883
A321 −177 1,381 −73 935 35 660
E190 −124 1,376 −310 1,067 137 848
E195 −255 1,321 −175 978 114 720
DH8D −26 1,200 753 1,571 −889 1,177
B737 −351 1,378 −587 1,246 −162 871
CRJ9 −127 1,223 −11 906 −50 667
A332 −293 1,657 213 968 −5 622
B77W −338 1,707 −505 1,132 −210 1,008

750 s. Hence, if we use it on smaller climbing segments, we have no guarantee that it
will perform well. Intuitively, the pilot might operate his aircraft in a completely differ-
ent way depending on the planned climb duration. With our models, we have learned
how the pilot operates when the duration of the climb is superior to 750 s. Strictly
speaking, it does not tell us how he or she operates the climb for smaller segment.
Actually, these smaller segments were not part of our training set.

In a more formal way, we could have two distributions psmall(x, y) and plong(x, y)
that might be very different where x are the explanatory variables (i.e. the past points)
and y the future trajectory. psmall(x, y) models the distribution for small climbing seg-
ments and plong(x, y) the distribution for long climbing segments. Given similar past
points x, the pilot could operates differently depending on the planed duration, that
would lead us to have psmall(y|x) 6= plong(y|x). Even if the conditional distribution
were the same, we could have psmall(x) 6= plong(x). In this case, we might have a
covariate shift (Shimodaira (2000)) between a training set containing long climbing
segments and a test set containing short climbing segments. This will lead the model
to perform differently when used on smaller climbing segments. As we can see, testing
our models on smaller climbing segments will give information that are not available
in the previous subsection.

Table 13 presents the results obtained when we consider climbing segments with
a duration strictly inferior to 750 s. On these segments, we have tried to predict the
altitude at t0 + 5 min. On these short climbing segments, we can see that BADApred
performs better than the other methods except for the DH8D. However, the values of
RMSE obtained are larger than the one obtained on longer segments as presented in
the Table 12.

Table 14 presents the results obtained when we consider climbing segments with
a duration strictly inferior to 450 s. On these segments, we have tried to predict the
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altitude at t0 + 2.5 min. We can see that BADApred performs better than the other
methods except for the DH8D and the B77W for which BADAmass performs better.
However, the gap between BADApred and BADAmass is small. For the DH8D, the
RMSE is even reduced by 25 % when BADAmass is used over BADApred.

Table 13: These statistics, in feet, are computed on the differences between the predicted altitude and the
observed altitude

(
Hp

(pred) −Hp
(obs)

)
at the time t = 300 s for the test set consisting in trajectory

samples from months November and December. Only climbing segments with a duration strictly inferior to
750 s were considered.

method BADAmean BADAmass BADApred
statistic mean rmse mean rmse mean rmse

B738 −646 1,617 −683 1,378 −209 927
A320 −407 1,477 −130 1,098 −78 848
A319 −600 1,580 −318 1,306 −398 1,124
A321 −450 1,525 −151 998 −14 789
E190 −385 1,591 −140 1,255 91 1,016
E195 −866 1,686 −266 1,141 −45 890
DH8D −1,136 1,708 256 1,447 −1,404 1,736
B737 −860 1,722 −921 1,620 −296 1,023
CRJ9 −439 1,279 −69 995 −160 800
A332 −887 1,954 61 985 −73 753
B77W −1,172 2,361 −801 1,494 −255 1,295

Table 14: These statistics, in feet, are computed on the differences between the predicted altitude and the
observed altitude

(
Hp

(pred) −Hp
(obs)

)
at the time t = 150 s for the test set consisting in trajectory

samples from months November and December. Only climbing segments with a duration strictly inferior to
450 s were considered.

method BADAmean BADAmass BADApred
statistic mean rmse mean rmse mean rmse

B738 −268 1,089 −275 898 −116 760
A320 −223 1,008 −49 836 −108 705
A319 −228 1,155 −73 1,034 −324 998
A321 −312 1,021 −115 780 −85 640
E190 −183 1,008 −54 885 80 764
E195 −431 1,048 −38 849 −20 694
DH8D −711 1,222 75 913 −1,071 1,302
B737 −443 1,171 −374 1,015 −197 862
CRJ9 −323 881 −82 794 −207 662
A332 −436 1,173 1 730 −96 620
B77W −492 1,384 −290 939 −67 991
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5.5. Trajectory Prediction Before Take-Off

In all the above subsection, we used past points of the trajectory to predict the oper-
ational factors like the mass and the (cas1, cas2,M) values. The methods BADAmass
and BADApred both required to observe some trajectory points. As a consequence the
considered aircraft has already took-off.

In this subsection, we test predictive models that predict the operational factors, like
the mass and the (cas1, cas2,M) values, using only information available long before
the aircraft ever took-off. To do this, instead of using the 66 explanatory variables used
in the previous sections, we will use only 7 variables containing information available
before the aircraft take-off: the departure and arrival airports, the distance between
these airports, the type variant, the airline operator, the day of week and the temperature
at Hp = 0. Using these 7 explanatory variables also described in Table 4 and gradient
tree boosting, we learn models to predict the operational factors.

In order to test the validity of the predicted operational factors, they will be tested
on the trajectory samples used in 5.2. Of course, the temperature profile, the starting
altitude and speed were used to compute the predicted trajectory. But none of these
information were used to predict the operational factors. In the following, the method
is noted BADApred-before-take-off. With Table 15, we can see that BADApred-before-take-off
performs better than BADAmean except for the DH8D. It also performs better than
BADAmass except for the A321 and CRJ9. This is a good result as these methods
do not require the same amount of information. BADAmass requires to have informa-
tion on the aircraft past points whereas BADApred-before-take-off requires only information
available before the aircraft takes off.

Table 15: These statistics, in feet, are computed on the differences between the predicted altitude and the
observed altitude

(
Hp

(pred) −Hp
(obs)

)
at the time t = 600 s for the test set consisting in trajectory

samples from months November and December. The used mass and (cas1, cas2,M) values were derived
from information available before take-off.

method BADAmean BADApred-take-off BADAmass BADApred
statistic mean rmse mean rmse mean rmse mean rmse

B738 −227 1,758 −70 1,278 −1,114 1,929 −115 930
A320 −138 1,779 26 1,352 −409 1,355 −59 886
A319 −160 1,719 27 1,362 −577 1,616 −43 975
A321 −169 1,936 59 1,393 −339 1,359 −27 846
E190 −75 1,854 272 1,566 −940 1,789 42 1,149
E195 −260 1,742 133 1,468 −603 1,485 −109 1,008
DH8D 503 1,756 564 1,762 1,691 2,883 334 1,044
B737 −328 1,786 −143 1,427 −1,716 2,505 −246 1,078
CRJ9 13 1,731 69 1,364 −43 1,329 −30 911
A332 −196 2,440 178 1,379 559 1,499 62 871
B77W −237 2,541 41 1,261 −1,328 2,402 −21 948
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Conclusion

To conclude, let us summarize our approach and findings, before giving a few per-
spectives on future works.

In this study we have tested Machine Learning methods using millions of climbing
segments coming from The OpenSky Network. These climbing segments were com-
pleted with weather forecasts, aircraft types and variants, departure and arrival airports,
estimated masses and speed profiles. The filtered and augmented data set is available
at https://opensky-network.org/datasets/publication-data. The Machine Learning code
is also available at the author’s GitHub page https://github.com/richardalligier/trc2018.
Inside the ATM trajectory prediction community, we hope that sharing the data set and
the Machine Learning code will enable scientifically sound comparisons based on the
exact same data set.

Using this data set, we applied a Machine Learning technique namely Gradient
Boosting Machines, to learn predictive models. These models predict the mass and the
(cas1, cas2,M) speed profiles values. The techniques used are similar to the one used
in previous publications (Alligier et al. (2015b,a)). However, this study extends the
latter in many ways. Several possible biases were removed. The climbing segments
were not filtered according to their altitude. This resulted in the addition of the cas1
parameter. The previous studies considered a limited number of climbing segments
with one to two departure airports, a limited time period and altitude filtered segments.
In this study, we consider trajectories from the whole year 2017 and from all over the
world. This study worked with the ten most frequent aircraft types according to Centre
(2017). These aircraft types cover 63 % of the European air traffic in 2016. The algo-
rithms were applied to millions of climbing segments demonstrating that the Machine
Learning techniques that we used can scale to this amount of data. In addition, this
study demonstrated that the obtained predictive models can be used on small climbing
segments and shorter prediction time horizons. It has also demonstrated that we can
improve trajectory prediction using only information available before the aircraft even
took-off.

Considering a 10 minutes prediction horizon, compared with mean values, the Ma-
chine Learning methods reduced the RMSE on the altitude by at least 35 % for all the
considered aircraft. The largest reduction is obtained with the A332 for which we have
a 64 % reduction on the RMSE. We have demonstrated that, unlike mass estimation,
our predictive models provide a consistent reduction of the RMSE for all the starting
altitudes and aircraft types considered. Our predictive models also improved the speed
prediction, with an RMSE reduced by at least 15 % for all the aircraft considered.
On a 5 minutes prediction horizon, for the altitude prediction, RMSE is reduced by at
least 30 % for all aircraft types except DH8D. It also provides an improvement, albeit
smaller, on even shorter climbing segments with a 2.5 minutes prediction horizon. This
is not a trivial result as no short climbing segments were in the set of examples used
to train the models. We have also demonstrated that our predictive models can predict
accurate operational factors using only information available before the aircraft even
took-off. Using only this information, the predicted parameters reduced the RMSE on
the altitude by at least 15 % except for the DH8D. The largest reduction is obtained
with the B77W for which we have a 50 % reduction of the RMSE.
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From an operational point of view, the resulting improvement in the climb pre-
diction accuracy would certainly benefit air traffic controllers, especially in the vertical
separation task as shown in Thipphavong et al. (2012). Furthermore, being able to have
accurate operational factors before the aircraft even took-off might help to reduce the
along track error and the Top Of Climb prediction error.

For future work, it could be interesting to have a deeper look at the DH8D or at the
airports for which the error is higher than the average. It could help us to identify the
current model limitations and guide us towards helpful model modifications.
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