
HAL Id: hal-01859904
https://enac.hal.science/hal-01859904

Submitted on 22 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Conflict Detection for Conflict Resolution
Richard Alligier, Nicolas Durand, Gregory Alligier

To cite this version:
Richard Alligier, Nicolas Durand, Gregory Alligier. Efficient Conflict Detection for Conflict Resolution.
ICRAT 2018, 8th International Conference on Research in Air Transportation, Jun 2018, Castelldefels,
Spain. �hal-01859904�

https://enac.hal.science/hal-01859904
https://hal.archives-ouvertes.fr

Efficient Conflict Detection for Conflict Resolution
Richard Alligier, Nicolas Durand

ENAC Lab
7 av. Édouard Belin

31 055 Toulouse, France
firstname.surname@enac.fr

Gregory Alligier
DSNA/DTI

1 av. du Dr Maurice Grynfogel
31 035 Toulouse, France

firstname.surname@aviation-civile.gouv.fr

Abstract—Accurate tools to detect and solve conflicts are
becoming necessary to assist air traffic controllers in their task.
Air traffic controllers will eventually rely on tools to test and
choose alternative trajectories. Enabling such tools demands a
near real-time conflict detection algorithm.

A previous publication ([1]) proposed optimization methods
to perform conflict resolution in real time on moderate size
problems. However, this previous publication only considered the
time to solve the associated combinatorial optimization problem.
It did not take into account the time to compute the conflicts
between the alternative trajectories. This time can be high in
the scenarios envisioned in [1]. For each aircraft, 161 alternative
trajectories were considered. Detecting all the conflicts required
to compare 2,721,705 pairs of trajectories for a 15 aircraft
scenario and 128,308,950 pairs for a 100 aircraft scenario.

The conflict detection procedure uses predicted trajectories
which are inherently entangled with uncertainties. A seamlessly
way to handle these uncertainties is to bound the future positions
in a sequence of volume. This is how the uncertainties are
modeled in the scenarios. However, this uncertainty model makes
the conflict computation more time consuming.

In this paper we propose a Graphics Processing Unit (GPU)
implementation of a conflict detection algorithm. Compared with
a CPU implementation, the proposed algorithm reduces the
computation time by two orders of magnitude. The 15 aircraft
scenarios, as described in [1], are computed in 30 ms and the 100
aircraft scenarios are computed in 1 s.

Keywords: conflict detection, conflict resolution, GPU

I. INTRODUCTION

To sustain air traffic growth, accurate tools to detect conflicts
are becoming necessary to assist air traffic controllers in their
task. Many uncertainty models have been proposed in the
literature to make future tools realistic and trustable for their
users. We can for example cite Erzberger conflict probe model
as one of the pioneer approaches [2], [3] in the USA. In Europe
the HIPS project [4], [5], representation of the conflicting
zones were taking into account uncertainties and they had
to compute in real time complex detection. This is also the
case in approaches proposed by French CENA1 [6], [7] where
aircraft are not modeled with points, instead trajectories are
discretized in time and aircraft are represented by convex hulls
that expand with time.

In 2017, Allignol et al. [1] proposed a framework to
compare conflict resolution algorithms that precalculated the
conflicting alternative trajectories. The model used discretized

1Centre d’Études de la Navigation Aérienne

maneuver options for 161 alternative trajectories taking into
account an uncertainty model able to handle various uncer-
tainties. The number of alternative maneuvers seems high but
it is quite small in comparison to all the possible combinations
of parameters: different times for maneuver start and maneuver
end, different types of maneuvers using speed change, altitude
change, direct route, or heading changes.

The optimization methods proposed in [1] are able to
efficiently solve moderate size conflict resolutions problems
in real time. However, it did not take into account the time
to compute the conflict between the alternative trajectories.
This time can be high in the scenarios envisioned in [1].
For each aircraft, 161 alternative trajectories were considered.
Detecting all the conflicts requires comparing 2,721,705 pairs
of trajectories for a 15 aircraft scenario and 128,308,950 pairs
for a 100 aircraft scenario.

In the context of calculating many alternative options in real
time for applications such as conflict resolution, it seems very
useful to focus on minimizing the time spent to detect potential
conflicts between diverse options. This article proposes a
method to reduce drastically the time spent to determine the
conflicting alternative trajectories.

A. Related work

In this article, we implement a conflict detection algorithm
on Graphics Processing Unit (GPU). Several articles report
a GPU implementation to accelerate computation in the Air
Traffic Management (ATM) domain. Tandale et al. [8] used a
GPU to accelerate the computation of trajectory predictions. A
two orders of magnitude speedup was obtained. The detection
of aircraft entering in a restricted airspace has been imple-
mented in a GPU by Thompson et al. [9]. In [10], a GPU is
used to compute the conflict between two trajectories that are
hours long but described with few points. The two trajectories
are interpolated using a GPU and the distances are computed
between the points in order to detect if the two trajectories are
in conflict.

For a conflict detection problem involving n trajectories
discretized in T time steps, n(n−1)

2 T distance computations
are required to detect all the possible conflict between the
trajectories. However the number of distance computation can
be drastically reduced. Many articles rely on spatial partition
to avoid testing all the possible pairs of positions. Isaacson et
al. [11] discarded pairs according with their altitude. A spatial

grid was used to reduce the number of pairs in [12], [13]. In
[14], [15], this idea was improved by using a spatiotemporal
partition to reduce even more the number of pairs to be tested.
Ruiz et al. [15] uses a uniform grid, and Kuenz et al. [14] uses
a 4D partitioning tree.

These articles all model the future aircraft positions as
points. Hence, uncertainties on the future positions are not
modeled. Some articles [16], [17] model the position as
a bivariate Gaussian random variable. Hence, the position
is associated with a probability distribution with a specific
Gaussian shape.

In this paper, we consider the scenarios described in [1]. We
consider a conflict detection problem involving n aircraft. For
each aircraft, we consider m = 161 alternative trajectories
discretized in T time steps. Each position is modeled as
a volume. We assume that this volume surely contains the
actual future position of the aircraft. This volume is a convex
polygon in the horizontal plane, and a minimum and maximum
altitude in the vertical plane. This model is flexible and can
take into account a large spectrum of uncertainty sources.
However computing conflicts with such a model is very
computationally demanding as we have to compute distances
between convex polygons. We propose an almost brute-force
GPU implemented algorithm to detect conflicts between a
large number of alternative trajectories.

B. Outline

In part II, we describe the models involved in the conflict
detection problem. Part III details the conflict detection al-
gorithm used and part IV explains how it was parallelized.
Part V details the experimentation made and part VI analyses
the results. We conclude and bring some insight of further
work to be done.

II. DESCRIPTION OF THE PROBLEM

In this section, we describe the models involved in the
conflict detection problem addressed in this paper. We detail
the trajectory prediction model used and we explain why an
efficient conflict detection algorithm is required for conflict
resolution.

A. Trajectory prediction model

In order to detect a conflict, we need to predict the future
trajectories and check if there is a loss of separation between
these predicted trajectories. Due to the erroneous nature of
the predictions, the trajectory prediction model should handle
uncertainties.

In our model, the time horizon is divided into steps of
duration τ . The predicted trajectory is modeled as a sequence
of positions, one position for one time step. However, in
order to take into account the uncertainty on the predicted
position, each position is actually modeled as a volume. This
volume supposedly always contains the actual future position.
In our model this volume is defined by a minimum altitude,
a maximum altitude and a 2D convex in the horizontal plane.
The Figure 1 illustrates such a volume.

Fig. 1. In our trajectory prediction model, each position is a volume. This
volume supposedly always contains the actual future position.

No assumptions are made on how these volumes are built.
The trajectory prediction module only has to generate the
sequence of volumes. The volume can take into account a
full spectrum of uncertainties.

For instance, the size of the volume can be the result
of the latency of a pilot to follow an ATC instruction, the
uncertainty on the speed and the aircraft performance if a
climb maneuver is involved. We can compute the predicted
point-wise trajectory for different combination of values for
these three uncertainty sources. Then, for each time step,
we build a volume by computing the convex of the points
of the different predicted point-wise trajectories. Using this
procedure, we obtain the desired sequence of volumes.

Figure 2 illustrates the sequence one can obtain by applying
such a procedure. In this example, we have an uncertainty on
the speed, the heading change angle and the time at which this
heading change is performed.

-100

-80

-60

-40

-20

0

20

40

-100 -50 0 50 100

Fig. 2. The predicted trajectory is modeled as a sequence of positions. This
figure shows such a sequence in the horizontal plane.

B. Conflict detection

ATC must ensure a vertical and a horizontal separation norm
between the aircraft. Two predicted trajectories are said in con-

flict if there is a time at which the predicted aircraft position
are neither vertically separated by NORM vertical = 1000 ft
nor horizontally separated by NORM horizontal = 5NM.

1) Conflict between two trajectories: We want to decide if
two trajectories are in conflict. With our trajectory prediction
model, two trajectories p and q are in conflict if there is a time
step t at which the two volumes p(t) and q(t) are not vertically
nor horizontally separated. Two volumes p(t) and q(t) are not
separated if and only if there exist (xp, yp, zp) ∈ p(t) and
(xq, yq, zq) ∈ q(t) such that |zp − zq| < NORM vertical and
(xp − xq)2 + (yp − yq)2 < NORM 2

horizontal .
We have assumed that the actual future trajectories will

be always in the predicted volumes. Thus, if the predicted
trajectories are separated then the actual future trajectories will
be also separated.

However, one must be aware that depending on the aircraft
speed, the step duration τ must be small enough to not miss
any conflict.

2) Conflict between two aircraft: For a conflict between
two aircraft, we have to consider alternative trajectories for
these two aircraft. Assuming that we consider m alternative
trajectories for each aircraft, we have to determine which
ordered pair (k, l) of alternative trajectories are in conflict.
These results can be stored in a conflict matrix (Ck,l)1≤k,l≤m.
If we consider trajectories with T timesteps, this matrix can
be built by testing the separation of at most m2T pairs of
volumes.

3) Conflict between n aircraft: Even if being in conflict is a
binary relationship, one aircraft can be in conflict with several
aircraft. One way to solve this complex situation is to group
the aircraft in conflict in a cluster. A cluster is a transitive
closing on conflicting pairs of aircraft.

Because one maneuver of one aircraft might create conflicts
with the other aircraft involved in the cluster, we need to know
all the conflict matrices of all the pairs of aircraft in the cluster.
Thus, with n aircraft, we have to compute n(n−1)

2 conflict
matrices. In the end, it leads to compare n(n−1)

2 m2T volumes
at most. This number can be huge even with a limited number
of aircraft involved. For the smallest scenario in this paper with
n = 15 aircraft, m = 161 alternatives trajectories and T =
150 time steps, we have 408,255,750 volumes comparisons.
Because conflict detection and resolution problems have to be
solved quickly, there is a need to build these conflict matrices
as fast as possible.

III. CONFLICT DETECTION ALGORITHM

The conflict detection problem can be seen as a collision
detection problem where the moving objects are the aircraft
positions increased by half the separation norm. Detecting if
moving objects will collide is a problem occurring in video
games, physical simulations and robotics. This problem can be
decomposed in three phases [18]. The broad-phase is a phase
eliminating pairs of objects that are too far away too collide.
Then, for the remaining pairs we can apply a cheap collision
test on bounding volumes, this is called the mid-phase. Finally,
when the mid-phase failed to discard the pair, a fine-grained

and costly colliding test between the two objects is done during
the narrow-phase.

1) Broad-Phase: When n objects are moving, n(n − 1)/2
pairs of potential collision need to be tested. However
using a spatial partitioning or temporal coherence, one
can cull away some of these pairs. One example of spa-
tial partitioning is the uniform grid [19]. The 3D space is
split in cells. Objects that are not in adjacent cells are not
colliding. An example of algorithm exploiting temporal
coherence is the sweep and prune algorithm [20]. In this
type of algorithm, a structure is incrementally updated at
each time step. In this algorithm, the objects are sorted
along the x-axis, the y-axis and the z-axis. These sorted
axes are used to discard non colliding pairs. If the objects
are moving slowly from one frame to another, then the
sorted axes do not change between two time steps. In
this case, sorts are performed in O(n) using an insertion
sort for instance.

2) Mid-Phase: In order to avoid time-consuming colliding
tests, objects are usually bounded by simpler bounding
volumes. The idea is that deciding if two simple volumes
will collide can be done with a cheap test. In general, the
simpler the bounding volume is the cheaper the collision
test is. However, if the bounding volume is too simple
compared to the object then the bounding volume will
be unnecessary large. In this case the bounding volumes
might not discard a non-colliding object pair. Thus, there
is a trade-off between the cost of the colliding test
and how the bounding volume fits the object. Common
bounding volumes are Axis-Aligned Bounding Boxes
(AABBs), oriented bounding boxes and spheres.

3) Narrow-Phase: Colliding test between two objects can
be done by different algorithms depending on the shape
of the objects (convex or not) and if the objects can
be preprocessed (rigid or not). The choice of the algo-
rithm depends also on the envisioned application. When
required by the application, some algorithm can also
provide a penetration depth and contact points if the
two objects are colliding.

A uniform grid algorithm was successfully applied for
conflict detection in [15] but the objects in this publication are
typically 5 NM large. However, a uniform grid does not suit
our problem. In order to not miss any collision, the grid’s cells
must be larger than the largest object2. However, some objects
in our problem are quite large making the cell quite large too3.
This drastically reduces the filtering power of the uniform grid.
In the end, the conflict detection algorithm presented in this
paper does not use a broad-phase algorithm. All the object
pairs are considered.

2More specifically, a missed collision is possible if, along one axis, the sum
of the size of the two largest object is longer than two times the size of the
cell.

3Some objects are 40 NM large and the objects are all in a 200 NM-side
square.

A. Mid-Phase: Axis-Aligned Bounding Boxes

In our algorithm we chose Axis-Aligned Bounding Boxes
(AABBs) as bounding volumes. Building an AABB of a
volume can be efficiently computed, we only have to compute
the minimum and maximum coordinates of the volume. As
two position volumes must be separated by a norm, half the
norm is added to each side of the AABB. Figures 3 and 4
illustrate how the final AABB is built. First we compute the
AABB (in blue) of the position volume and then the AABB
is increased by half the norm.

The collision test between AABBs is cheap as it requires
six floating point comparisons at most.

Fig. 3. The aircraft position volume is in green, its bounding box in blue,
and the bounding box actually used in black.

B. Narrow-Phase

If the test between the AABBs has failed to discard a
collision then we perform a fine test between the increased
position volume. A position volume is defined by a convex
polygon on the horizontal plane and two values on the z-
axis, a zmin and a zmax. If the mid-phase failed to discard
the conflict, then we only have to test if the convexes on the
horizontal plane are separated by NORM horizontal .

1) ISA-GJK: The ISA-GJK algorithm [21] can be used to
decide if two arbitrary convex shapes intersects. It is a variant
of the GJK algorithm [22] which is widely used in robotics and
computational geometric to determine the distance between
two convex shapes. This is one of the algorithm implemented
on GPU in the physics library Bullet [23].

The GJK algorithm relies on the Minkowski sum. The
Minkowski sum, denoted by the operator ⊕, of two sets of

Fig. 4. The aircraft position volume is in green, its bounding box in blue,
and the bounding box actually used in black.

points A and B is defined by the following equation:

A⊕B = {a+ b | a ∈ A, b ∈ B}

Considering that −B = {−b | b ∈ B}, A and B intersect if
and only if the origin point O is in A ⊕ (−B).4 The goal
of the ISA-GJK algorithm is to determine if the point O is
in this sum. Actually, GJK uses support functions in order to
avoid computing this sum.

In GJK, each shape is solely described by its support
function. The input of a support function is a direction and its
output is the farthest point in this direction. For any shape S,
the farthest point in the direction

−→
d is simply argmax

P∈S

−→
d ·−−→OP ,

where O is the origin. With this definition, one can notice that
any shape has the same support function as its convex hull.
Actually, with the support functions, computing explicitly the
convex hull is not required although it might speed up the
computation of the farthest point. If the considered shapes
are not convex, the ISA-GJK algorithm will compute the
intersection between the two shapes’ convex hull. For any
shapes A, B and any direction

−→
d , we have:

supportA⊕B(
−→
d) = supportA(

−→
d) + supportB(

−→
d)

support−B(
−→
d) = −supportB(−

−→
d)

supportA⊕(−B)(
−→
d) = supportA(

−→
d)− supportB(−

−→
d)

With this last equation, we are able to compute the support
function of the set A ⊕ (−B) by only using the support

4This happens if and only if O ∈ {a− b|a ∈ A, b ∈ B}.

O

~d

P

Fig. 5. The black shape is A⊕(−B) and the axis (P, ~d) in red is a separating
axis. In such a case, A and B are not colliding.

functions of A and B without computing the actual Minkowski
sum. The next step consists in deciding if a shape described
by its support function contains the origin O.

For the ISA-GJK algorithm, there are only two termination
cases:

1) An axis separating the shape A⊕ (−B) from the origin
point O is found. In that case, the shapes A and B are
not colliding. This case is illustrated by the Figure 5;

2) A simplex, a triangle in 2D, included in the shape
A⊕ (−B) contains the origin. In that case, the shapes
A and B are colliding.

The idea of ISA-GJK is moving a simplex towards O. This
simplex is moved by replacing one of its point. Then we check
if the newly introduced point defines a separating axis or if
the new simplex contains the origin O.

We have described ISA-GJK, an algorithm used
to determine if two convexes intersects. However,
we want to decide if two convexes are closer than
NORM horizontal . This can be easily done by using
A⊕ Circle(NORM horizontal)⊕ (−B) instead of A⊕ (−B)
in ISA-GJK. The result of A⊕ Circle(NORM horizontal) is
illustrated by the Figure 6.

One advantage of ISA-GJK is its capability to work with
non-convex shapes without explicitly computing convex hulls.
Using ISA-GJK, we might skip the convex hull computation
phase. This advantage was not used in our experiment because
the shapes provided by the trajectory prediction module were
convexes.

IV. PARALLELIZATION

In this paper we compare a CPU based implementation and
a GPU based parallel implementation of a conflict detection
algorithm. In these two implementations, the position volumes
are bounded by bounding volumes, the AABBs described in
subsection III-A. This helps to avoid a time consuming test as
the one described in subsection III-B.

O
O

A Circle(NORM)

O

A⊕ Circle(NORM)

Fig. 6. The result of A⊕ Circle(NORM horizontal) is the red shape.

A. CPU based implementation

We need to compute n(n−1)
2 conflict matrices. Each conflict

matrix is computed using Algorithm 1. The method used
to decide if two position volumes intersect is the ISA-GJK
method described in subsection III-B1.

Algorithm 1 Computation on CPU of the conflict matrix
between aircraft i and j

1: Initialize the matrix C with false (no conflicts)
2: for each alternative trajectory k for aircraft i do
3: for each alternative trajectory l for aircraft j do
4: Initialize the time step t at 0
5: while t < T and not Ck,l do
6: if AABBk,t and AABBl,t are not separated then
7: if k(t) and l(t) are not separated then
8: Ck,l = true
9: end if

10: end if
11: Increment t
12: end while
13: end for
14: end for
15: return Conflict matrix C

B. GPU based parallel implementation

The implementation was completed using the NVIDIA
Compute Unified Device Architecture (CUDA) [24], a general-
purpose parallel computing platform and programming model.
This platform provides a “CUDA C/C++” compiler nvcc and
tools to fully take advantage of the GPU.

In CUDA, a kernel is a function that is executed N times
by N different CUDA threads. The threads might be executed
in parallel depending how they are scheduled. Each thread is
given a unique ThreadId. The programmer can access this
value inside the kernel. Using this ThreadId, each CUDA
thread can perform a specific computation on a specific data.
The threads are grouped in blocks. Each block has a unique
BlockId. Each thread has its own local memory and the
block threads share a shared memory. All threads of all the
blocks have access to a global memory.

Algorithm 2 is the algorithm dispatching the computation
on the GPU. This algorithm transfers the predicted trajectories
to the global memory. This data is not directly available, we
need to wait the transfer to be completed, hence the line 2. At
line 3, the kernel computes the AABBs The resulting AABBs
are stored in the global memory. Then, a loop computes all
the conflict matrices using one kernel call per conflict matrix.
These matrices are first stored in the global memory. After
all the computation are completed, the conflict matrices are
transferred back to the host memory.

Algorithm 2 Dispatching the computation on the GPU
1: Transfer predicted trajectories to GPU device
2: Wait until end of all GPU tasks
3: Launch kernel computing AABBs
4: for i = 0 to n− 1 do
5: for j = i+ 1 to n− 1 do
6: Launch kernel computing conflict matrix for aircraft

i and j
7: end for
8: end for
9: Wait until end of all GPU tasks

10: Transfer conflict matrices from GPU device to host
11: Wait until end of all GPU tasks
12: return Conflict matrices

The kernel used to compute the matrix is described in the
Algorithm 3. It computes one conflict matrix. At line 6, the
method used to decide if two position volumes intersect is the
ISA-GJK method described in subsection III-B1.

A running thread uses registers, however thread registers
are allocated from a global register pool on the GPU. The
global register pool has a limited size. Using the NVIDIA
Visual Profiler, a tool used to profile CUDA applications, it
was found that the number of register used by this kernel
was limiting the number of threads running simultaneously on
the GPU. To solve this issue, we used the compilation option
--maxrregcount=32 which limits the number of registers
used to 32 by thread. This limitation of the register number
might slow down the thread execution but more threads are

Algorithm 3 Kernel computing conflict between k(t) and l(t)
1: k = “trajectory (blockIdx × blockDimx + threadIdx)”
2: l = “trajectory (blockIdy × blockDimy + threadIdy)”
3: t = blockIdz × blockDimz + threadIdz

4: if AABBk,t and AABBl,t are not separated then
5: if Ck,l is false then
6: if k(t) and l(t) are not separated then
7: Ck,l = true
8: end if
9: end if

10: end if

running simultaneously. In the end, this option has reduced
the computation time by 25 %.

V. EXPERIMENTS

In order to compare the GPU and CPU implementations,
we consider different conflict detection scenarios. We also
describe the hardware used for the experiments.

We consider 11 sizes of scenarios, involving 15, 20, 25, 30,
40, 50, 60, 70, 80, 90 and 100 aircraft, with three levels of un-
certainties (ε ∈ {1, 2, 3}). For each combination, 10 scenarios
of aircraft converging to the center of the considered airspace
volume were randomly built. For each scenario, speeds are
chosen from 384 kn to 576 kn (i.e. 20% variation around
a typical speed of 480 kn). The nominal vertical speed for
maneuvers is set to 600 ft min−1. The aircraft initial positions
are chosen on a 100 NM radius circle and are noised within
a 20 NM-side square. The initial heading is also noised with
a value chosen in [−1, 1] radians (≈ ±60◦). In the vertical
plane, aircraft are equally dispatched on 5 different levels from
FL280 to FL320. A total of 11 × 10 scenarios are built.
Figure 7 illustrates these dimensions.

For the each aircraft, m = 161 alternatives trajectories are
considered. Each trajectory is a sequence of T = 150 position
volumes with one position each τ = 10 s. These trajectories
are the result of a heading change angle or a Flight Level
change. A comprehensive description of how these trajectories
are built can be found in [1].

For each scenario, three levels of uncertainties are defined.
The size of the convex hulls approximating the possible posi-
tions of aircraft increases with the uncertainty level, creating
more conflicts for the same scenario. A total of 11×3×10 =
330 scenarios were thus built and tested with two different
approaches in the next section. These scenarios are available
online at http://clusters.recherche.enac.fr. The available files
might be useful for other researchers to compare their conflict
detection method with ours.

The experiments were completed on a personal computer
consisting of a quad-core Intel R© i7-6700K equipped with
16 GB of memory and a Palit R© GTX 1080 GameRock GPU.
Both the GPU and the CPU are not overclocked.

VI. RESULTS

In this section we have tested our two algorithms on the
scenarios described in the previous section.

http://clusters.recherche.enac.fr

O4

Aircraft 1

Aircraft 2

Aircraft 4

D4

D1

D3

Aircraft 3

20NM
O1

D2

100NM

O2

O3

120◦

Fig. 7. Geometry of conflict scenario generation.

A. Results for the CPU version

The conflict computation time is plotted on the Figure 8.
The computation time ranges from 3 s for 15 aircraft to 149 s
for 100 aircraft. The increase is consistent with the fact that
n(n−1)

2 m2 pairs of trajectories are compared. The computation
time increases with the uncertainty level. When the uncertainty
level increase, the position volumes increases and more pairs
of trajectories are in conflict. As a consequence, more fine-
grained collision tests are executed. For example, using a 100
aircraft problem, when the uncertainty levels are 1, 2, 3, the
numbers of conflicting pairs are respectively 4.6× 106, 7.7×
106 and 8.8× 106.

B. Results for the GPU parallel version

For this version, we have measured two durations on Algo-
rithm 2: the time to transfer the trajectory data to the GPU (first
line to line 2) and the time to actually compute the conflicts
(line 3 to last line). The duration of the complete algorithm is
the sum of these two durations.

The transfer time is plotted on Figure 9. The duration of
the trajectory data transfer to GPU is almost linear with the
amount of data to transfer which is proportional to nmT .

The conflict computation time is plotted on Figure 10. As
with the CPU version, the time increases proportionaly to
n(n−1)

2 m2. However, the 100 aircraft problem that requires
the comparison of 128,308,950 pairs of trajectories is handled
in 1090 ms. For the 15 aircraft problem, the 2,721,705 pairs
are processed in 27 ms. On average, the trajectory pairs are
processed at a rate of 117,000 pairs per millisecond.

If we consider the transfer time and the conflict computation
time, the GPU implementation is two order of magnitude
faster. It is 90 times faster for the 15 aircraft problem and
140 times faster for the 100 aircraft problem. This difference
in speed-up between the small and large problem is mainly
due to the transfer time.

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0

50000

100000

150000

25 50 75 100

number of aircraft [−]
co

nf
lic

t c
om

pu
ta

tio
n

tim
e

[m
s]

uncertainty level ● ● ●1 2 3

Fig. 8. Conflict computation time using the CPU implementation.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

25 50 75 100

number of aircraft [−]

tr
an

sf
er

 to
 G

P
U

 ti
m

e
[m

s]

uncertainty level ● ● ●1 2 3

Fig. 9. Transfer time from host to the device, the GTX1080 GPU.

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0

300

600

900

25 50 75 100

number of aircraft [−]

co
nf

lic
t c

om
pu

ta
tio

n
tim

e
[m

s]
uncertainty level ● ● ●1 2 3

Fig. 10. Conflict computation time using the GPU implementation.

VII. CONCLUSION AND FURTHER WORK

We have shown in this article that the time spent to detect
conflicts could be reduced by two order of magnitude when
we use a GPU parallel implementation. A previous paper
([1]) demonstrated that the optimization problem associated to
conflict resolution can be solved in real time for medium size
problems. This paper demonstrates that the detection phase
required by the algorithms in [1] can also be done in real
time. This might enable the use of conflict resolution tools in
real time.

This algorithm could be very useful to improve different
levels of Air Traffic Management. At a short term level (30
min or less), it can accelerate the necessary detection phase to
find alternative trajectories for conflicting situations involving
many aircraft. It could also be useful in order to make
tools representing dynamically conflicting zones. Air Traffic
Controllers will eventually rely on tools to test alternative
trajectories and it seems reasonable that these tools instantly
show the effect of a chosen option. A fast detection tool able
to handle complex uncertainty models can be very useful.

The next step of our research will be to focus on the
trajectory prediction time which can also be parallelized and
reduced. We also plan to integrate our algorithm in a ATC
assistant tool. This integration should help building a reliable
efficient tool able to handle realistic uncertainty models and
offer real time answers to the controllers.

REFERENCES

[1] C. Allignol, N. Barnier, N. Durand, A. Gondran, and R. Wang,
“Comparing conflict resolution algorithms on large-size opensource 3d-
problems,” in 12th USA/Europe Air Traffic Management Research and
Developpment Seminar, 2017.

[2] H. Erzberger, “Conflict probing and resolution in the presence of errors,”
in Procceedings of the 1st USA/Europe Seminar, 1997.

[3] W. C. Arthur and M. P. McLaughlin, “User request evaluation tool (uret).
interfacility conflict probe performance assessment,” in Procceedings of
the 2nd USA/Europe Seminar, 1998.

[4] D. C. Meckiff and D. P. Gibbs, “PHARE : Highly interactive problem
solver,” tech. rep., Eurocontrol, 1994.

[5] A. Price and C. Meckiff, “Hips and its application to oceanic control,”
in 1st ATM R&D Seminar, 1997.

[6] N. Durand, J.-M. Alliot, and J. Noailles, “Automatic aircraft conflict
resolution using genetic algorithms,” in Proceedings of the Symposium
on Applied Computing, Philadelphia, ACM, 1996.

[7] G. Granger, N. Durand, and J. Alliot, “Optimal resolution of en-route
conflicts,” in 4th ATM R&D Seminar, 2001.

[8] M. Tandale, S. Wiraatmadja, P. Menon, and J. Rios, “High-speed pre-
diction of air traffic for real-time decision support,” in AIAA Guidance,
Navigation, and Control Conference, p. 6660, 2011.

[9] E. Thompson, N. Clem, D. A. Peter, J. Bryan, B. I. Peterson, and
D. Holbrook, “Parallel cuda implementation of conflict detection for
application to airspace deconfliction,” The Journal of Supercomputing,
vol. 71, no. 10, pp. 3787–3810, 2015.

[10] E. de la Iglesia, G. Botella, C. Garcia, and M. Prieto, “Parallel trajectory
synchronization for aircraft conflicts resolution,” in Proceedings of the
30th Annual ACM Symposium on Applied Computing, SAC ’15, (New
York, NY, USA), pp. 1339–1341, ACM, 2015.

[11] D. R. Isaacson and H. Erzberger, “Design of a conflict detection
algorithm for the center/tracon automation system,” in Digital Avionics
Systems Conference, 1997. 16th DASC., AIAA/IEEE, vol. 2, pp. 9–3,
IEEE, 1997.

[12] B. Sridhar and G. B. Chatterji, “Computationally efficient conflict de-
tection methods for air traffic management,” in Proceedings of the 1997
American Control Conference (Cat. No.97CH36041), vol. 2, pp. 1126–
1130 vol.2, Jun 1997.

[13] F. Wieland, D. Carnes, and G. Schultz, “Using quad trees for paralleliz-
ing conflict detection in a sequential simulation,” in Proceedings of the
Fifteenth Workshop on Parallel and Distributed Simulation, PADS ’01,
(Washington, DC, USA), pp. 117–123, IEEE Computer Society, 2001.

[14] A. Kuenz and N. Peinecke, “Tiling the world—efficient 4d conflict
detection for large scale scenarios,” in Digital Avionics Systems Con-
ference, 2009. DASC’09. IEEE/AIAA 28th, pp. 3–B, IEEE, 2009.

[15] S. Ruiz, M. Piera, and C. Zúñiga, “Relational time-space data structure
to speed up conflict detection under heavy traffic conditions,” SESAR
Innovation Days (SID), 2011.

[16] M. Prandini, J. Lygeros, A. Nilim, and S. Sastry, “A probabilistic
framework for aircraft conflict detection,” in Guidance, Navigation, and
Control Conference and Exhibit, p. 4144, 1999.

[17] M. Prandini, J. Hu, J. Lygeros, and S. Sastry, “A probabilistic approach
to aircraft conflict detection,” IEEE Transactions on intelligent trans-
portation systems, vol. 1, no. 4, pp. 199–220, 2000.

[18] C. Ericson, Real-time collision detection. CRC Press, 2004.
[19] J. L. Bentley and J. H. Friedman, “Data structures for range searching,”

ACM Computing Surveys (CSUR), vol. 11, no. 4, pp. 397–409, 1979.
[20] D. Bara and A. Witkin, “Dynamic simulation of non-penetrating rigid

bodies,” Computer Graphics (SIGGRAPH’92), pp. 303–308, 1992.
[21] G. V. d. Bergen, “A fast and robust gjk implementation for collision

detection of convex objects,” Journal of graphics tools, vol. 4, no. 2,
pp. 7–25, 1999.

[22] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Journal on Robotics and Automation, vol. 4, pp. 193–203,
Apr 1988.

[23] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH 2015
Courses, p. 7, ACM, 2015.

[24] Nvidia, “Compute unified device architecture programming guide,”
2016.

	Introduction
	Related work
	Outline

	Description of the problem
	Trajectory prediction model
	Conflict detection
	Conflict between two trajectories
	Conflict between two aircraft
	Conflict between n aircraft

	Conflict detection algorithm
	Mid-Phase: Axis-Aligned Bounding Boxes
	Narrow-Phase
	ISA-GJK

	Parallelization
	CPU based implementation
	GPU based parallel implementation

	Experiments
	Results
	Results for the CPU version
	Results for the GPU parallel version

	Conclusion and further work
	References

