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Abstract—We present a new global constraint to propagate
idle times costs for the Fixed Job Scheduling (FJS) problem,
in particular to minimize their variance so as to optimize the
robustness of solutions w.r.t. schedule deviations. The propagation
of this constraint is based on the computation of the shortest path
in the compatibility directed acyclic graph of each resource to
obtain an exact lower bound. It ensures Bound Consistency on
the resource cost in polynomial time, as well as the filtering of
the resource variables associated with compatible tasks.

We show on tailored FJS problems and real instances of the
airport Gate Allocation Problem (a variant of the FJS problem)
that this new constraint provides significant improvements in
terms of number of backtracks and computation time, up to
orders of magnitude in some cases.

Index Terms—fixed job scheduling, robustness, optimization
constraint

INTRODUCTION

Fixed Job Scheduling (FJS) [1] is a well-known resource
allocation problem with many applications where jobs (or
tasks) with fixed start and end times are to be processed
on different machines (or resources). Overlapping tasks must
execute on different resources and the set of possible resources
for a given task may be restricted. Standard objectives for
the FJS problem include the maximization of the number of
(possibly weighted) processed tasks or the minimization of the
cost associated with assigned resources.

Normally, a task can only be executed according to a pre-
defined schedule, but for applications like the Gate Allocation
Problem (GAP) [2] which aims at assigning airport stands to
aircraft, the robustness of the plan should be optimized to
absorb potential delays and avoid costly disruption. Despite
its practical importance, the research on the robustness of
solutions to the FJS problem or the GAP is very limited.

Following the robustness objective defined by [2] that
minimizes the variance of idle times to balance and spread
them over time and resources, we show that this kind of model
can be efficiently solved with Constraint Programming (CP).
Our main contribution is a new optimization constraint on
each resource that achieves Bound Consistency (BC) over its
idle times costs in polynomial time, as well as the filtering of
the allocation variables associated with possible tasks of the
resource.

More standard objectives for the GAP includes the opti-
mization of passengers walking distance [3], the allocation

of terminal gates over apron stands and minimization of
the number of towing movements [4]. CP was also used to
implement a solver that minimizes the allocation costs defined
by airlines and the airport manager [5]. Other search methods
like Genetic Algorithms have been used as well in [6] to
improve the MIP approach presented in [2].

The rest of the paper is organized as follows. We first
present a mathematical formulation of the problem in section I,
then describe a corresponding CP model in section II and the
propagation of our new optimization constraint for idle times
costs in section III. Section IV presents the results of our
experiments on the FJS problem and the GAP with tailored
and real data to assess the performances of our approach. The
conclusion and further works are discussed in the last section.

I. FIXED JOB SCHEDULING

The scheduling of tasks with fixed start and end times
on non-identical1 resources is a versatile NP-complete prob-
lem [8] which occurs in many applications beside the GAP,
like processors scheduling or staff rostering. Though various
objectives can be associated with this problem, our approach
is dedicated to optimize resource costs based on the idle times
to ensure the robustness of solutions w.r.t. delays.

We present in the following sections the integer model used
in our study (whereas more classical OR approaches rather
consider boolean variables [2]).

A. Instance

An instance of the FJS problem is defined by:
• T = {t1, . . . , tn} a set of n tasks, with ∀ti ∈ T :

– tsi and tei the start and end times of task ti;
– Ri ⊆ R a set of compatible resources on which the

task can be executed.
• R = {r1, . . . , rm} the set of m resources, with ∀rj ∈ R:

– rsj and rej the opening and closing times of resource
rj . However, except when mentioned otherwise, all
resources are considered available during the same
period in the following, therefore ∀j, rsj = rs and
rej = re.

1Note that with identical resources (i.e. all tasks can be assigned to any
resource), this problem becomes equivalent to the coloring of an interval
graph, which is polynomial [7].



– Tj = {ti ∈ T s.t. rj ∈ Ri} the set2 of compatible
tasks that can be executed on resource rj .

For conciseness, we also define the duration function d,
“overloaded” on the following sets:
• T 7→ N the duration of a task: d(ti) = tei − tsi ;
• 2T 7→ N the total sum of the durations of a subset of

(possibly overlapping) tasks: d(T ′) =
∑

ti∈T ′ d(ti);
• R 7→ N the availability of a resource: d(rj) = rej − rsj ;
• 2R 7→ N the total sum of the availability of a set of

resources: d(R′) =
∑

rj∈R′ d(rj).

B. Decision Variables

A solution to the fixed tasks scheduling problem consists
in assigning a resource to each task while satisfying the
constraints described in the next section. We define the set
of decision variables associated to the tasks of T :

X = {xi ∈ {j s.t. rj ∈ Ri},∀ti ∈ T }

C. Constraints

The only constraints of this essential version of the problem
are the non-overlapping of the tasks scheduled on the same
resource. As tasks execution times are fixed, we require that
overlapping tasks are assigned to different resources:

∀i 6= i′, [tsi , t
e
i [∩[tsi′ , t

e
i′ [ 6= ∅⇒ xi 6= xi′ (1)

However, specific applications of the fixed tasks schedul-
ing problem like the GAP are often described with many
additional hard and soft constraints to account for operational
requirements (e.g. a large aircraft might occupy two adjacent
stands) or user preferences (e.g. use of terminal gates rather
than remote apron stands).

D. Cost

Many different kind of costs can be taken into account
to optimize the allocation of fixed tasks on non-identical
resources. For our target application, the GAP, one of the
most crucial objectives is the robustness of the schedule as
air traffic operations can be burdened by many uncertainties
such as late arrival or departure. To be able to absorb those
possible delays, [2] proposes to minimize the variance of idle
times, which tends to balance them over resources and time
while allowing necessary short or large pauses required by
some instances.

Since their mean is constant for our problem (as the overall
duration of tasks and availability of resources are constant,
and all tasks must be scheduled), minimizing the variance of
idle times amounts to minimizing the sum of their squares:

cost =
∑
rj∈R

cj

where cj is the cost of a single resource rj :

cj = (tsfirst(rj) − rsj )2 +
∑

ti∈Tj s.t. xi=j

(next(ti)− tei )
2

2Redundantly defined from Ri to simplify notations in the next sections.

with:
• next(ti) = rej if ti is the last task assigned on resource

rj or the start time of the task immediately following ti
on rj otherwise;

• first(rj) is the index of the first task scheduled on
resource rj .

However, our approach could be generalized to any ob-
jective that aggregates resource costs defined as a positive
additively separable function of its idle times (or even the
start and end times of its tasks).

II. CONSTRAINT PROGRAMMING MODEL

We present in this section how the previous formulation
of the FJS problem translates in a CP context, similarly
to the approach described in [5]. We first describe how all
maximal cliques of the interval graph can be easily computed
to efficiently model the mutual exclusion of overlapping tasks,
then how symmetry on resources and tasks can be broken,
eventually focusing on idle times costs with the definition of
a new global constraint named idlecost, the propagation rules
of which are detailed in section III.

A. Constraints on Maximal Cliques

To specify the mutual exclusion constraints 1 on unitary
resources, it would be sufficient to model each of them
directly with a binary difference constraint. However, stronger
propagations can be obtained with the well-known all-different
global constraint on cliques of the associated interval graph,
as noted in [5]. Only constraints corresponding to all distinct
maximal cliques need to be added, as any other clique would
be subsumed by a maximal one.

In the general case, computing the maximum clique of an
arbitrary graph is NP-Hard. However, [7] mentions how all
maximal cliques (including the maximum one) of an interval
graph of n vertices can be generated by a sweep algorithm in
Θ(n log n), or even linear time Θ(n) if the endpoints of the
intervals are already sorted.

Indeed, once the 2n endpoints of the tasks are sorted by
ascending order, all maximal cliques of the corresponding
intersection graph can be easily detected by maintaining the
list of overlapping tasks at each endpoints. While scanning
the sorted list of endpoints, the corresponding task is added
whenever its left endpoint is encountered and removed upon
reaching its right endpoint.

For each minimal size of the maintained list (except when
it is empty), a new clique can be started with all currently
overlapping intervals, collecting all subsequently opened new
intervals until a local maximum is reached, which corresponds
to a new maximal clique. All-different constraints can then be
posted in linear time on all maximal cliques to improve prop-
agation and allow global reasoning over multiple resources.

However, a collection of all-different constraints that share
subsets of variables and propagate independently may keep in-
consistent values w.r.t. their conjunction. [5] mentions the use
of the non-overlap global constraint diffn introduced by [9],



which was generalized to multiple dimensions and new prop-
agation rules in [10]. Nevertheless, it has been proved in [11]
that the corresponding decision problem is NP-complete and it
was deemed efficient enough to use a simple collection of all-
different constraints in our model because the instances of our
target application, the GAP, are relatively easy to solve w.r.t.
the allocation problem, and because the objective, which is
hard to optimize (see IV-B), does not depend on the makespan
but on the even and balanced distribution of idle times.

B. Symmetry

Depending on the instance at hand, allocation problems
may exhibit symmetries on equivalent resources and equivalent
tasks. For the GAP, the former is much more frequent on
real instances: many adjacent stands in a terminal share the
same set of characteristics, whereas equivalent flights with the
same aircraft type, company and dates are seldom. Breaking
such symmetries often lead to drastic speed-up while proving
optimality (see section IV).

1) Resources: Resources that have exactly the same set
of possible tasks can be exchanged while preserving the
admissibility and optimality of solutions. Therefore, whenever
a (yet) unused resource is assigned to a task, all other unused
equivalent resources should be removed from its domain upon
backtracking.

To this end, all the equivalence classes Ck of resources (with
at least two elements) are computed before search. Before each
assignment of a task i to an unused resource rj , we check if
other unused resources remain in the corresponding class C to
add the following goal:

(xi = rj) ∨ (xi /∈ {j′ s.t. rj′ ∈ C ∧ unused(rj′)})

with predicate unused : T 7→ B indicating whether a resource
is still free of task or not.

2) Tasks: Two tasks i and i′ that have the same compatible
resource set and arrival and departure dates can also be ex-
changed while preserving solutions. So they can be arbitrarily
ordered with the following constraint:

∀i 6= i′, (Ri = Ri′ ∧ tsi = tsi′ ∧ tei = tei′) ⇒ (xi < xi′)

However, there is no occurrence of equivalent flights in the
GAP data set used to assess the performance of our approach
(see section IV-B).

C. Idle Times Cost

Modeling idle times costs with standard CP reification
constraints would be cumbersome and inefficient. Therefore,
we introduce a new global optimization constraint idlecost
to tighten the bounds of the cost of a single resource and
the domains of its possible tasks. In the following sections,
we define the semantic of this constraint and static bounding
schemes for the overall sum of all idle costs. Propagation rules
for the idlecost constraint are then discussed in section III.

1) Optimization Constraint for a Single Resource: We
introduce the idlecost optimization constraint on a single
resource rj ∈ R to tighten its idle times cost and filter the
resource variables of its set of possible tasks Tj :

Definition 1 (The idlecost Constraint): Let XTj ⊆ X be the
set of resource variables associated to Tj and f : N 7→ N
a non-decreasing elementary cost function that represents the
contribution of a single idle time interval. The optimization
constraint idlecost(rj , Tj ,XTj , f, cj) is satisfied iff:
• cj = f(tsfirst(rj) − rsj ) +

∑
ti∈Tj s.t. xi=j f(next(ti)− tei )

with the first and next functions defined as in section I-D;
• the set of mutual exclusion constraints 1 of section I-C

restricted to variables of XTj is satisfied.
2) Static Lower Bound: A static lower bound for the overall

sum of the squares of idle times can be easily computed as it is
minimal when all idle times have the same size and are evenly
distributed among all resources. For n tasks to be executed on
m resources, there are exactly n+m idle time periods (taking
the first and last idle times of every resource into account).
Therefore, we can compute the following global lower bound
for the objective:

cost ≥ (n + m)

⌊
d(R)− d(T )

n + m

⌋2

(2)

In many instances, the availability is identical for all re-
sources, i.e. rsj = rs and rej = re, ∀j ∈ [1,m]. We can then
benefit from the computation of the first and last maximal
cliques Ks and Ke mentioned in section II-A to take into
account necessary idle times before the execution of the tasks
of the first clique and after the end of the tasks of the last one:

costK =
∑

ti∈Ks

(tsi − rs)2 +
∑

ti∈Ke

(re − tei )
2

As in 2, we can compute the duration of idle times corre-
sponding to the lower bound of the objective for the tasks that
does not belong to the first or last cliques, i.e. the total amount
of idle times divided by the number of pauses n+m−k with
k = |Ks ∪ Ke| (as the cliques might intersect if some tasks
span from the first one to the last one):

idleLB =

⌊
d(R)− d(T )− idleK

n + m− k

⌋
with idleK =

∑
ti∈Ks(tsi − rs) +

∑
ti∈Ke(re− tei ). Therefore,

we obtain the following tighter lower bound:

cost ≥ costK + (n + m− k)idle2
LB (3)

which can help reduce the optimality gap and prove solutions.
3) Static Upper Bound: For instances with identical avail-

ability for all resources, a simple upper bound could also be
obtained by saturating the first resources except the last non-
empty one (where tasks are stacked at the beginning). The
corresponding bound would then be:

cost ≤ m′d(r)2 + (d(r)− k)2 (4)

with d(r) = re − rs, m′ = m −
⌈
d(R)−d(T )

d(r)

⌉
the number of

empty resources and k = (d(R)− d(T )) mod d(r) the time



taken by the tasks scheduled on the last non-empty resource.
But this bound is very loose and not really significant to help
close the optimality gap.

III. PROPAGATION OF IDLE TIMES COSTS

We present in this section a new polynomial algorithm
to achieve Bound Consistency (BC) on the cost of a single
resource for the idlecost constraint: after its execution, a
partial assignment can be extended to the possible tasks of the
resource such that the cost can be assigned either its lower or
upper bound.

After describing a tight upper bound and a naive relaxed
lower bound in section III-A, we introduce in more details our
algorithm to achieve BC on the lower bound in section III-B.
We define the following notations, used in these sections, w.r.t.
a resource rj :

• Tj = {ti ∈ Tj s.t. j ∈ dom(xi)} its possible tasks;
• Tj = {ti ∈ Tj s.t. xi = j} its necessary tasks;
• ubj the upper bound induced by Tj ;
• lbj the lower bound induced by Tj and Tj ;

with dom(xi) the set of currently possible values for xi.

A. Bounds Based on the Union of Tasks

In the next sections, we present simple algorithms to com-
pute the upper bound and an approximation of the lower one.

1) Assignment and Upper Bound: The upper bound of a
single resource can be computed thanks to the set of necessary
tasks Tj already assigned to rj . If the cost was linear, it would
be enough to maintain the sum of the durations of the tasks
of Tj and subtract it from the availability of the resource to
obtain a tight upper bound on the cost: d(rj)−

∑
ti∈Tj d(ti).

Upon assignment of a task ti, we would just have to subtract
its duration to incrementally maintain the bound in constant
time: ubj ← ubj − d(ti).

Though for a positive non-linear cost like the sum of the
squares of idle times, we have to thoroughly maintain the
set of idle intervals to be able to determine which one will
be impacted by the new assigned task ti, and compute the
new upper bound incrementally. Once the idle interval [a, b[
is identified, the upper bound is updated accordingly:

ubj ← ubj − (b− a)2 + (tsi − a)2 + (b− tei )
2 (5)

As Tj only contains disjoint tasks, a simple binary search
tree could be used to maintain the set of intervals and
update the upper bound in logarithmic time upon assignment,
provided that the data structure be easily “backtrackable”.
However, considering the low number of tasks associated with
each resource in the instances of our target application (the
GAP, cf. section IV-B), we only implemented a simple linear
algorithm in the solver presented in section IV to avoid the
likely overhead costs of a more sophisticated data structure.

g g1 11

Fig. 1. The resource and tasks of example 1 with unbounded lower bound
approximation ratio.

2) Removal and Lower Bound: The removal is not as
straightforward as the assignment because tasks are not dis-
joint within Tj , so the removal of one task from a resource rj
does not entail that a new necessary idle time appears on rj .
However, by maintaining the union of intervals corresponding
to the tasks of Tj , necessary idle times can be detected
whenever Tj does not span the entire availability. The lower
bound can then be updated as follows upon a task removal:

lbj ←
l∑

k=1

(he
k − hs

k)2 (6)

with Hj = [rsj , r
e
j [ \
⋃
∀ti∈Tj [tsi , t

e
i [=

⋃l
k=1[hs

k, h
e
k[ the neces-

sary “holes” (possibly ∅, in which case lbj ← 0).
A segment tree data structure [12] can be used to maintain

the tasks intervals, and augmented to also aggregate the upper
bound of each subtree, including the root node which holds
the bound for the whole resource, in Θ(k log n) with n the
number of intervals and k the number of newly discovered
necessary idle times. However, for reasons already mentioned
in the previous section, our solver only use a naive (but simple)
quadratic algorithm.

B. Tight Lower Bound

Among the bounds presented in the previous section, only
the upper one is tight, because the assignment of a new
possible task on a resource necessarily decreases the cost.
In contrast, the lower bound is not, as the union of tasks
doesn’t take into account temporal conflicts. Therefore, the
actual lower bound could be arbitrarily larger as, for example,
with the following set of n possible tasks on a given resource
depicted in figure 1:

Example 1 (Overlapping tasks with unbounded lower bound
approximation ratio): ∀i ∈ [0..n2 − 1]:
• ts2i+1 = 2i(g + 1) and te2i+1 = 2i(g + 1) + g + 2
• ts2i+2 = (2i+1)(g+1) and te2i+2 = (2i+1)(g+1)+g+2

with rs = 0, re = n(g + 1) + 1 and some constant g ∈ N>0.
The lower bound of section III-A applied to example 1 would
be 0 whereas the actual lower bound is n

2 g
2. Therefore, the

ratio of the actual lower bound over the one defined by
equation 6 can be arbitrarily large.

To achieve BC on the cost lower bound, the best admissible
solution for the single resource should be taken into account.
This best solution must be a maximal independent set of the
conflict graph, as adding another task can only decrease the
cost of a resource, but it is not necessarily either the maximum
independent set (as the number of tasks is not relevant on
instances with different durations) or even the largest (duration
wise) maximal one as it would be the case with a linear cost.



More precisely, a solution corresponding to the lower bound
must be a shortest path between fictive vertices v0 and vn+1

corresponding to the opening and closing of the resource in the
weighted compatibility Directed Acyclic Graph (DAG) G =
(V,E) of the n possible tasks of resource rj :
• V = {vi,∀ti ∈ Tj} ∪ {v0, vn+1}
• E = {(vi, vi′) s.t. tei ≤ tsi′}
• w : E 7→ N with w((vi, vi′)) = (tsi′ − tei )

2

with te0 = rs and tsn+1 = re. Note that any positive function
could be used to weigh the idle times instead of their square.

In a DAG, the shortest path between two vertices can
be computed in linear time Θ(|V | + |E|) [13], provided a
topological ordering of the vertices (corresponding to the tasks
sorted by increasing start time). Therefore, the lower bound of
an idlecost optimization constraint can be computed in linear
time with respect to G (i.e. possibly quadratic time w.r.t. the
number of tasks n):

lbj ← dist(v0, vn+1) (7)

with dist : V 2 7→ N the length of the shortest path from v0 to
vn+1 in G.

After the initialization steps where Tj and G are built and
the bounds computed, the idlecost constraint must propagate
whenever:
• A task ti is assigned to rj :

– the upper bound must be updated (cf. section III-A);
– the arcs of the predecessors of vi pointing to vertices

vi′ s.t. i′ > i (i.e. that “skip” vi) must be deleted;
– if vi does not belong to the previous shortest path,

a new one must be computed and the lower bound
updated accordingly.

• A task ti is removed from rj :
– the arcs of the predecessors of vi pointing to vi must

be deleted;
– if vi belongs to the previous shortest path, a new

one must be computed and the lower bound updated
accordingly.

Moreover, thanks to the previous tightening algorithms, we
are also able to filter the domains of the decision variables
corresponding to tasks of Tj whenever the bounds of the
resource cost variable cj are updated:
• If the upper bound cj of cj is modified:

– if cj < lbj , a failure is triggered;
– if cj < ubj , we try to determine if some tasks of
Tj \Tj (i.e. the set of possible tasks not yet assigned)
must be added: for each task ti of this set, if its
removal entails a new lower bound lb′j s.t. lb′j > cj ,
then the task must be assigned to rj , i.e. xi = j.

• Conversely, if the lower bound cj of cj is modified:
– if cj > ubj , a failure is triggered;
– if cj > lbj , we try do determine if some unassigned

tasks must excluded from rj : if the addition of a task
entails a new upper bound ub′j s.t. ub′j < cj , then
the task must be excluded from rj , i.e. xi 6= j.

Note that all the modifications of the maintained data struc-
tures induced by these tests must systematically be undone.

To sum up, the idlecost optimization constraint achieves the
BC on the cost of a single resource and the filtering of the
resource variables of its possible tasks in:
• O(n2) when a task is assigned: O(log n) to update the

upper bound, O(n2) to delete the bypassing edges of the
DAG and O(n2) to find a shortest path;

• O(n2) when a task is removed: O(n) to delete edges and
O(n2) to compute the shortest path;

• O(n3) when the upper bound of cj is modified: O(n)
shortest path to compute;

• O(n2 log n) when the lower bound of cj is modified:
there might be O(n) uncovered idle times at most for
the O(n) tasks.

The overall propagation algorithm has then a worst-case
time complexity in O(n3). However, most of the time, the
propagation events and the structure of the compatibility DAG
of the resource at a given node will not trigger the necessary
conditions to meet this worst case.

Nonetheless, the computation of shortest paths, involved in
the most costly rules, can also be implemented incrementally.
Each time a task ti is assigned on the resource, let ti′ and
ti′′ be the preceding and succeeding assigned tasks (possibly
t0 and tn+1) w.r.t. ti, then only the shortest path between vi′

and vi′′ needs to be recomputed (therefore the lower bound
can be updated incrementally), and the shortest path problem
is divided into two independent subproblems between vi′ and
vi, and vi and vi′′ . The results presented in section IV were
obtained with this incremental algorithm, not detailed here for
the sake of brevity.

IV. RESULTS

We report in this section the performances of the various
techniques described in sections II and III to solve the FJS
problem, especially the BC version of the idlecost constraint,
implemented with the FaCiLe CP OCaml library [14].

We first show how the incremental BC version of the
idlecost constraint (named BC-IC) described in section III-B
largely outperforms the approximate one (named AP-IC) pre-
sented in section III-A2 on a specific class of instances.
Then we compare the two versions on instances of the GAP
extracted from real data, as well as the effect of symmetry
breaking (cf. section II-B) and incremental maintenance of
the shortest path mentioned at the end of section III-B. An ad
hoc search strategy that balances the workload over resources
and selects the best task w.r.t. the idle times cost was used
throughout the tests.

All the experiments were carried out on an AMD Ryzen
1920X at 3.5GHz with 32GB of RAM, running GNU/Linux
kernel 4.15 and OCaml 4.05.0 compiler. Note that all execution
time and backtracks amount graphs are plotted with a base 10
logarithmic scale, with the AP-IC version in red and the BC-
IC one in green, dashed lines corresponding to the discovery
of the optimal solution and plain ones to its proof.



Fig. 2. Structured problem with m resources and n = km tasks.
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A. Structured Problem

To assess the benefit of the BC version of the idlecost
constraint over the approximate one, we have tailored instances
that generalize the class presented in example 1 for several
resources. As shown in figure 2, the tasks of the instances
are structured like successive “stairs” with m resources and
n = km tasks, which leads to an obvious optimal solution
with one resource per level. As in example 1, the exact lower
bound k−1 computed by BC-IC, can be arbitrarily better than
the null value of its AP-IC counterpart.

Figures 3 and 4 respectively compare the resolution time
and amount of backtracks to prove optimality for AP-IC and
BC-IC with an increasing number of resources and k = 4
(i.e. 4 tasks per resource). The BC-IC version systematically
outperforms the AP-IC one, up to 8 times better for the number
of backtracks and 3 times better for the optimality proof,
showing that the extra effort to compute an exact lower bound
pays off on this class of instances.

B. Application to the Gate Allocation Problem

The GAP mainly focus on finding an allocation of a given
set of aircraft with fixed occupancy periods to a number of
gates. If there was no compatibility restriction, this decision
problem could be modeled as the coloring of an interval graph,
which is polynomial [7]. But gates can only accept a restricted
set of aircraft types, so the set of compatible gates for an
aircraft is limited and the decision problem of the allocation
is rather a list-coloring problem, which is NP-Complete [15].
Moreover, an aircraft with scheduled arrival and departure
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Fig. 4. Execution time (in seconds) corresponding to the number of backtracks
of figure 3.

times can be considered as a task with fixed start and end
times, and a gate as a specific resource. The GAP can therefore
be considered as a FJS problem as defined in section I.

However, gates are endowed with many other secondary
features (e.g. compatible airlines, domestic/international, ter-
minal/remote etc.) which should match the characteristics of
the flight and the preferences of airlines as much as possible.
These preferences can be modeled as costs (or soft constraints)
associated with each possible assignment, and standard GAP
objectives usually aim at minimizing their sum, which is
NP-Hard [16]. Other classic objectives include the walking
distance of passengers or other connection means (e.g. buses),
and there can be many side constraints like the simultaneous
occupancy of adjacent gates for large aircraft.

As proposed by [2], we focus here on optimizing the
robustness of the overall schedule, in order to absorb possible
deviations from the original schedule due to traffic delays,
severe weather conditions or equipment failures. Hence, the
GAP version presented here is a FJS problem with an addi-
tively separable objective on the idle times (as mentioned in
section I-D). Nevertheless, as our model is a CP one, many
of the aforementioned side-constraints or objectives could be
added easily.

In the following, we compare the performances of the AP-
IC and BC-IC versions of the idlecost constraint on instances
extracted from real traffic on a busy airport from 09:00 to
18:00. The instances are randomly built from small subsets
of all the airport gates in order to obtain optimality proofs
in reasonable time. An example of the Gantt diagram of an
optimal solution is shown on figure 5 for an instance with
7 gates and 35 aircraft. We show as well the benefits of
symmetry breaking on gates and incremental maintenance of
the shortest path used by BC-IC.

1) AP-IC vs BC-IC: Figures 6 and 7 shows the number of
backtracks and execution time to find and prove an optimal
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Fig. 5. Gantt diagram (in hours) of an optimal solution for an instance of
the GAP with 7 gates and 35 aircraft extracted from real traffic.
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Fig. 6. Number of backtracks to find and prove an optimal solution with
AP-IC and BC-IC for an instance of the GAP with 7 gates w.r.t. the number
of aircraft (or tasks).

solution when using AP-IC and BC-IC for instances of the
GAP with 7 gates (as in figure 5) w.r.t. the number of aircraft.
BC-IC systematically outperforms AP-IC, especially in terms
of backtracks which can differ by orders of magnitude.

2) Symmetry Breaking: As mentioned in section II-B,
instances of the FJS problem (and the GAP) may present
symmetry on equivalent resources or tasks (rarely for the
GAP). Figures 8 and 9 present the number of backtracks and
execution time to find and prove an optimal solution for the in-
stances described in section IV-B1, with and without symmetry
breaking on gates. As expected, the proof of optimality can be
obtained orders of magnitude faster with symmetry breaking
for the instances considered, and the optimal solution may
be reached sooner for particularly hard instances with enough
symmetry.

3) Incremental Maintenance of the Shortest Path: As men-
tioned in section III, the shortest path of the compatibility DAG
used by IC-BC when the idlecost constraint propagates can be
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Fig. 7. Execution time (in seconds) corresponding to the number of backtracks
of figure 6.
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Fig. 8. Number of backtracks for BC-IC with (green) and without (orange)
symmetry breaking on equivalent gates for the instances of figure 6.

computed incrementally, by restricting the shortest path to sub-
problems between fixed tasks. Figure 10 shows the execution
time for the instances described in section IV-B1, with and
without the incremental maintenance of the shortest path.
The more sophisticated incremental algorithm consistently
outperforms the simpler version based on the recomputation
of the shortest path by approximately 10%.

CONCLUSION AND FURTHER WORKS

In this article, we present a new global constraint to improve
the efficiency of CP solvers to find and prove robust solutions
to the FJS problem that minimize the variance of idle times
as proposed by [2]. This new optimization constraint, named
idlecost, ensures the Bound Consistency of the idle times cost
associated with each resource and the filtering of the resource
variables associated with each possible task.
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Fig. 9. Execution time (in seconds) corresponding to the number of backtracks
of figure 8.
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Fig. 10. Execution time (in seconds) for BC-IC with (green) and without
(orange) incremental maintenance of the shortest path for the instances of
figure 7.

In particular, we use a O(|V |+ |E|) shortest path algorithm
on the compatibility DAG of the possible tasks to compute
an exact lower bound for the cost of each resource and to
include tasks when their removal would be incompatible with
the current upper bound of the cost. We show that our approach
consistently outperforms more naive approximations, some-
times by several orders of magnitude, for tailored structured
problems and instances of the GAP extracted from real traffic.

We describe as well several useful techniques that improve
resolution time like the computation of all maximal cliques of
the interval graph to ensure mutual exclusion of overlapping
tasks, the computation of global lower and upper bounds, the
symmetry breaking on equivalent gates which helps to prove
optimal solutions and sometimes to find them, and the incre-

mental maintenance of the shortest path of the compatibility
DAG at the core of our new optimization constraint.

Furthermore, our solver could benefit from additional re-
finements like the global processing of several all-different
constraints [17] or the computation of a better, possibly
dynamic, global lower bound to refine the one presented in this
article. Our CP approach could also be hybridized with a MIP
solver to improve its efficiency, or meta-heuristics to handle
larger instances. Eventually, other standard objectives for the
GAP, including the gate occupancy rate or allocation costs
(corresponding to airlines and airport manager preferences),
and side constraints (e.g. large aircraft may occupy two
adjacent stands) could easily be added within our model.
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