
HAL Id: hal-01856687
https://enac.hal.science/hal-01856687v1

Submitted on 26 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Branch-and-Bound Procedure for the Robust Cyclic
Job Shop Problem

Idir Hamaz, Laurent Houssin, Sonia Cafieri

To cite this version:
Idir Hamaz, Laurent Houssin, Sonia Cafieri. A Branch-and-Bound Procedure for the Robust Cyclic
Job Shop Problem. ISCO 2018, 5th International Symposium on Combinatorial Optimization, Apr
2018, Marrakech, Morocco. pp.228-240, �10.1007/978-3-319-96151-4_20�. �hal-01856687�

https://enac.hal.science/hal-01856687v1
https://hal.archives-ouvertes.fr

A Branch-and-Bound procedure for the robust
cyclic job shop problem

Idir Hamaz1, Laurent Houssin1 and Sonia Cafieri2

1 LAAS-CNRS, Universite de Toulouse, CNRS, UPS, Toulouse, France
{ihamaz, lhoussin}@laas.fr

2 ENAC, Universite de Toulouse, F-31055 Toulouse, France
sonia.cafieri@enac.fr

Abstract. This paper deals with the cyclic job shop problem where
the task durations are uncertain and belong to a polyhedral uncertainty
set. We formulate the cyclic job shop problem as a two-stage robust
optimization model. The cycle time and the execution order of tasks
executed on the same machines correspond to the here-and-now decisions
and have to be decided before the realization of the uncertainty. The
starting times of tasks corresponding to the wait-and-see decisions are
delayed and can be adjusted after the uncertain parameters are known.
In the last decades, different solution approaches have been developed
for two-stage robust optimization problems. Among them, the use of
affine policies, column generation algorithms, row and row-and-column
generation algorithms. In this paper, we propose a Branch-and-Bound
algorithm to tackle the robust cyclic job shop problem with cycle time
minimization. The algorithm uses, at each node of the search tree, a
robust version of the Howard’s algorithm to derive a lower bound on the
optimal cycle time. We also develop a heuristic method that permits to
compute an initial upper bound for the cycle time. Finally, encouraging
preliminary results on numerical experiments performed on randomly
generated instances are presented.

Keywords: Cyclic job shop problem, robust optimization, Branch-and-Bound
algorithm.

1 Introduction

Most models for scheduling problems assume deterministic parameters. In con-
trast, real world scheduling problems are often subject to many sources of un-
certainty. For instance, activity durations can decrease or increase, machines can
break down, new activities can be incorporated, etc. In this paper, we focus on
scheduling problems that are cyclic and where activity durations are affected by
uncertainty. Indeed, the best solution for a deterministic problem can quickly
become the worst one in the presence of uncertainties.

In this work, we focus on the Cyclic Job Shop Problem (CJSP) where process-
ing times are affected by uncertainty. Several studies have been conducted on the

II

CJSP in its deterministic setting. The CJSP with identical jobs is studied in [1]
and the author shows that the problem is NP-hard and proposes a Branch-and-
Bound algorithm to solve the problem. The more general CJSP is investigated in
[2], where the author proposes a mixed linear integer programming formulation
and presents a Branch-and-Bound procedure to tackle the problem. A general
framework for modeling and solving cyclic scheduling problems is presented in
[3]. The authors present different models for cyclic versions of CJSP. However,
a few works consider cyclic scheduling problems under uncertainty. The cyclic
hoist scheduling problem with processing time window constraints where the
hoist transportation times are uncertain has been investigated by Che et al. [4].
The authors define a robustness measure for cyclic hoist schedule and present a
bi-objective mixed integer linear programming model to optimize both the cycle
time and the robustness.

Two general frameworks have been introduced to tackle optimization prob-
lems under uncertainty. These frameworks are Stochastic Programming (SP) and
Robust Optimization (RO). The main difference between the two approaches
is that the Stochastic Programming requires the probability description of the
uncertain parameters while RO does not. In this paper, we focus on the RO
paradigm. More precisely, we model the robust CJSP as a two-stage RO problem.
The cycle time and the execution order of tasks on the machines correspond-
ing to the here-and-now decisions have to be decided before the realization of
the uncertainty, while the starting times of tasks corresponding to the wait-and
see decisions are delayed and can be adjusted after the uncertain parameters
are known. In recent years there has been a growing interest in the two-stage
RO and in the multi-stage RO in general. The two-stage RO is introduced in
[5], referred to as adjustable optimization, to address the over-conservatism of
single stage RO models. Unfortunately, the two-stage RO problems tend to be
intractable [5]. In order to deal with this issue, the use of affine policies ([5]) and
decomposition algorithms ([6], [7],[8]) have been proposed.

This paper deals with the CJSP where the task durations are uncertain and
belong to a polyhedral uncertainty set. The objective is to find a minimum cycle
time and an execution order of tasks executed on the same machines such that
a schedule exists for each possible scenario in the uncertainty set. To tackle the
problem we design a Branch-and-Bound algorithm. More precisely, at each node
of the search tree, we solve a robust Basic Cyclic Scheduling Problem (BCSP),
which corresponds to the CJSP without resource constraints, using a robust
version of Howard’s algorithm to get a lower bound. We also propose a heuristic
algorithm to find an initial upper bound on the cycle time. Finally, we provide
results on numerical experiments performed on randomly generated instances.

This paper is structured as follows. In Section 2, we present both the Basic
Cyclic Scheduling Problem and the Cyclic Job Shop Problem in their determin-
istic case and introduce the polyhedral uncertainty set considered in this study.
Section 3 describes a Branch-and-Bound (B&B) procedure to solve the robust
CJSP. Numerical experiments performed on randomly generated instances are

III

reported and discussed in Section 4. Finally, some concluding remarks and per-
spectives are drawn in Section 5.

2 The cyclic scheduling problems

In this section, we first introduce the Basic Cyclic Scheduling Problem which
corresponds to the CJSP without resource constraints. This problem will rep-
resent a basis for the Branch-and-Bound method designed for the robust CJSP
solving. Next, we present the CJSP in its deterministic case. Finally, we present
the uncertainty set that we consider in this paper and we formulate the CJSP
with uncertain processing times as a two-stage robust optimization problem.

2.1 Basic Cyclic Scheduling Problem (BCSP)

Let T = {1, ..., n} be a set of n generic operations. Each operation i ∈ T has a
processing time pi and must be performed infinitely often. We denote by < i, k >
The kth occurrence of the operation i and by t(i, k) the starting time of < i, k >.

The operations are linked by a set P of precedence constraints (uniform con-
straints) given by

t(i, k) + pi 6 t(j, k +Hij), ∀(i, j) ∈ P, ∀k ≥ 1, (1)

where i and j are two generic tasks and Hij is an integer representing the depth
of recurrence, usually referred to as height.

Furthermore, two successive occurrences of the same task i are not allowed
to overlap. This constraint corresponds to the non-reentrance constraint and can
be modeled as a uniform constraint with a height Hii = 1.

A schedule S is an assignment of starting time t(i, k) for each occurrence
< i, k > of tasks i ∈ T such that the precedence constraints are met. A schedule
S is called periodic with cycle time α if it satisfies

t(i, k) = t(i, 0) + αk, ∀i ∈ T , ∀k ≥ 1. (2)

For the sake of simplicity, we denote by ti the starting time of the occurrence
< i, 0 >. Since the schedule is periodic, a schedule can be completely defined by
the vector of the starting times (ti)i∈T and the cycle time α.

The objective of the BCSP is to find a schedule that minimizes the cycle time
α while satisfying precedence constraints. Note that other objective functions can
be considered, such as work-in-process minimization [2].

A directed graph G = (T ,P), called uniform graph, can be associated with a
BCSP such that each node v ∈ T (resp. arc (i, j) ∈ P) corresponds to a generic
task (resp. uniform constraint) in the BCSP. Each arc (i, j) ∈ P is labeled with
two values, a length Lij = pi and a height Hij .

We denote by L(c) (resp. H(c)) the length (resp. height) of a circuit c in
graph G, representing the sum of lengths (resp. heights) of the arcs composing
the circuit c.

Let us recall the necessary and sufficient condition for the existence of a
feasible schedule.

IV

Theorem 1 (Hanen C. [2]). There exists a feasible schedule if and only if any
circuit of G has a positive height.

A graph that satisfies the condition of Theorem 1 is called consistent. In the
following, we assume that the graph G is always consistent. In other words, a
feasible schedule always exists.

The minimum cycle time is given by the maximum circuit ratio of the graph
G that is defined by

α = max
c∈C

L(c)

H(c)

where C is the set of all circuits in G. The circuit c with the maximum circuit
ratio is called a critical circuit. Thus, the identification of the critical circuit in
graph G allows one to compute the minimum cycle time.

Many algorithms for the computation of the cycle time and the critical circuit
can be found in the literature. A binary search algorithm with time complexity
O(nm

(
log(n) + log(max(i,j)∈E(Lij , Hij))

)
) has been proposed in[9]. Experimen-

tal study about maximum circuit ratio algorithms has been presented in [10].
This study shows that the Howard’s algorithm is the most efficient among the
tested algorithms.

Once the optimal cycle time α is determined by one of the algorithms cited
above, the optimal periodic schedule can obtained by computing the longest
path in the graph G = (T ,P) where each arc (i, j) ∈ P is weighted by pi−αHij .

The BCSP can also be solved by using the following linear program:

min α (3)

s.t. tj − ti + αHij ≥ pi ∀(i, j) ∈ P (4)

where ti represents t(i, 0), i.e., the starting time of the first occurrence of the
task i. Note that the precedence constraints (4) are obtained by replacing in (1)
the expression of t(i, k) given in (2).

2.2 Cyclic Job Shop Problem (CJSP)

In the present work, we focus on the cyclic job shop problem (CJSP). Contrary
to the BCSP, in the CJSP, the number of machines is lower than the number
of tasks. As a result, an execution order of the operations executed on the same
machine have to be determined.

Each occurrence of an operation i ∈ T = {1, ..., n} has to be executed,
without preemption, on the machine M(i) ∈ M = {1, ...,m}. Operations are
grouped on a set of jobs J , where a job j ∈ J represents a sequence of generic
operations that must be executed in a given order. To avoid overlapping between
the tasks executed on the same machine, for each pair of operations i and j where
M(i) = M(j), the following disjunctive constraint holds

∀ i, j s.t. M(i) = M(j), ∀k, l ∈ N : t(i, k) ≤ t(j, l)⇒ t(i, k) + pi ≤ t(j, l) (5)

V

To summarize, the CJSP is defined by

• a set T = {1, ..., n} of n generic tasks,
• a set M = {1, ...,m} of m machines,
• each task i ∈ T has a processing time pi and has to be executed on the

machine M(i) ∈M,
• a set P of precedence constraints,
• a set D of disjunctive constraints that occur when two tasks are mapped on

the same machine,
• a set J of jobs corresponding to a sequence of elementary tasks. More pre-

cisely, a job Jj defines a sequence Jj = Oj,1 . . . Oj,k of operations that have
to be executed in that order.

The CJSP can be represented by directed graph G = (T ,P ∪ D), called
disjunctive graph. The sequence of operations that belong to the same job are
linked by uniform arcs in P where the heights are equal to 0. Additionally, for
each pair of operations i and j executed on the same machine, a disjunctive pair
of arcs (i, j) and (j, i) occurs. These arcs are labeled respectively with Lij = pi
and Hij = Kij , and Lji = pj and Hji = Kji where Kij is an occurrence shift
variable to determine that satisfy Kij+Kji = 1 (see [2] for further details). Note
that the Kij variables are integer variables and not binary variables as is the
case for the non-cyclic job shop problem. Two dummy nodes s and e representing
respectively the start and the end of the execution are added to the graph. An
additional arc (e,s) with Les = 0 and Hij = WIP is considered. The WIP
parameter is an integer, called a work-in-process, and represents the number of
occurrences of a job concurrently executed in the system.

A lower bound on each occurrence shift value Kij that makes the graph G
consistent can be obtained as follows (see [2],[11]):

K−ij = 1−min{H(µ) |µ is a path from j to i in G = (T ,P ∪ ∅)}. (6)

Since Kij +Kji = 1, one can deduce an upper bound:

K−ij ≤ Kij ≤ 1−K−ji . (7)

The objective of the problem is to find an assignment of all the occurrence
shifts, in other words, determining an order on the execution of operations
mapped to the same machine such that the cycle time is minimum. Note that,
once the occurrence shifts are determined, the minimum cycle time can be ob-
tained by computing the critical circuit of the associated graph G.

2.3 CJSP problem with uncertain processing times (UΓ -CJSP)

We define the uncertainty set through the budget of uncertainty concept intro-
duced in [12]. The processing times (pi)i∈T are uncertain and each processing
time pi belongs to the interval [p̄i, p̄i + p̂i], where p̄i is the nominal value and p̂i
the deviation of the processing time pi from its nominal value. We associate a

VI

binary variable ξi to each operation i ∈ T . The variable ξi is equal to 1 if the
processing time of the operation i takes its worst-case value, 0 otherwise. For a
given budget of uncertainty Γ , that is a positive integer representing the max-
imum number of tasks allowed to take their worst-case values, the processing
time deviations can be modeled trough the following uncertainty set:

UΓ =

{
(pi)i∈T ∈ Rn : pi = p̄i + p̂iξi, ∀ i ∈ T ; ξi ∈ {0, 1};

∑
i∈T

ξi ≤ Γ

}
.

The BCSP problem under the uncertainty set UΓ is studied in [13]. Three
exact algorithms are proposed to solve the problem. Two of them use a nega-
tive circuit detection algorithm as a subroutine and the last one is a Howard’s
algorithm adaptation. Results of numerical experiments show that the Howard
algorithm adaptation yields efficient results.

The problem we want to solve in this study can be casted as follows:

min α (8)

s.t. ∀ p ∈ UΓ : ∃ t ≥ 0

{
tj − ti + αHij ≥ pi ∀ (i, j) ∈ P
tj − ti + αKij ≥ pi ∀ (i, j) ∈ D

(9)

Kij +Kji = 1 ∀ (i, j) ∈ D (10)

K−ij ≤ Kij ≤ 1−K−ji ∀ (i, j) ∈ D (11)

Kij ∈ Z ∀ (i, j) ∈ D (12)

α ≥ 0 (13)

In other words, we aim to find a cycle α and occurrence shifts (Kij)(i,j)∈D such
that, for each possible value of the processing times p ∈ UΓ , there always exists
a feasible vector of starting time (ti)i∈T .

Note that, once the occurrence shifts are fixed, the problem can be solved as
a robust BCSP by using the algorithms described in [13]. The following theorem
characterizes the value of the optimal cycle time for UΓ -CJSP:

Theorem 2 ([13]). The optimal cycle time α of the UΓ -CJSP is characterized
by

α = max
c∈C

∑

(i,j)∈c
L̄ij∑

(i,j)∈c
Hij

+ max
ξ:
∑
i∈T ξi≤Γ

∑

(i,j)∈c
L̂ijξi∑

(i,j)∈c
Hij

 ,

where L̄ij = p̄i, L̂ij = p̂i and C is the set of all circuits in G.

3 Branch-and-Bound method

We develop a Branch-and-Bound algorithm for solving UΓ -CJSP. Each node of
the Branch-and-Bound corresponds to a subproblem defined by the subgraph

VII

Gs = (T ,P ∪ Ds), where Ds ⊆ D is a subset of occurrence shifts already fixed.
The algorithm starts with a root node Groot where Droot = ∅, in other words,
no occurrence shifts are fixed. The branching is performed by fixing an undeter-
mined occurrence shift Kij and creates a child node for each possible value of Kij

in [K−ij , 1−K
−
ji]. Each of these nodes is evaluated by computing the associated

cycle time, such that a schedule exists for each p ∈ UΓ . This evaluation is made
by means of the robust version of Howard’s algorithm. Our method explores the
search tree in best-first search (BeFS) manner, and, in order to branch, it chooses
the node having the smallest lower bound. This search strategy can lead to a
good feasible solution. A feasible solution is reached when all occurrence shifts
are determined. Note that the nominal starting times (i.e. the starting times
when no deviation occurs) can be determined by computing the longest path in
the graph G where each arc (i, j) is valued by pi − αHij , and the adjustment is
accomplished by shifting the starting of the following tasks by the value of the
deviation. More details are provided in the next subsections.

3.1 Computation of an initial upper bound of the cycle time

In order to compute an initial upper bound, we design a heuristic that combines
a greedy algorithm with a local search. The greedy algorithm assigns randomly
a value to a given occurrence shift Kij in the interval [K−ij , 1−K

−
ji], and updates

the bounds on the rest of the occurrences shifts such that the graph remains
consistent. These two operations are repeated until all occurrence shifts are
determined. Once all occurrence shifts are determined, a feasible schedule is
obtained, consequently the associated optimal cycle time represents an upper
bound of the global optimal cycle time. The local search algorithm consists in
improving the cycle time by adjusting the values of the occurrence shifts that
belong to the critical circuit. The idea behind these improvements is justified by
the following proposition:

Proposition 1. Let (Kij)(i,j)∈D be a vector of feasible occurrence shifts and
ᾱ the associated cycle time given by the critical circuit c. Let (u, v) ∈ D be a
disjunctive arc such that (u, v) ∈ c. If the following relation holds:

max
l∈Puv

max
p∈UΓ

∑
(i,j)∈l

pi − ᾱHij + pv − ᾱ(Kvu − 1) ≤ 0, (14)

where Puv is the set of paths from u to v, then the solution (K
′

ij)(i,j)∈D where
K ′uv = Kuv + 1 and K ′vu = Kvu − 1 has a cycle time less or equal to ᾱ.

Proof. Let (Kij)(i,j)∈D be a vector of feasible occurrence shifts, ᾱ the associated
cycle time given by the critical circuit c and (u, v) ∈ D a disjunctive arc that
belongs to c. Let us assume that relation (14) is verified. It is easily seen that
putting K ′uv = Kuv + 1 makes the height of the circuit c increase by one and
consequently makes decrease the value of its circuit ratio. In order to maintain
the condition K ′uv +K ′vu = 1 verified, increasing the value of Kuv by one involve

VIII

decreasing the value of Kvu by one. Now, it follows that decreasing the value
of Kvu by one must ensure that the values of the circuits passing through the
disjunctive arc (u, v) do not exceed ᾱ. This condition is verified, because by (14)
we have:

max
l∈Puv

max
p∈UΓ

∑
(i,j)∈l pi + pv∑

(i,j)∈lHij + (Kvu − 1)
≤ ᾱ

In other words, the maximum circuit ratio passing by the disjunctive arc
(j, i) has a value less or equal to ᾱ. Moreover, since the value of ᾱ and the values
of the processing times are positives, then

∑
(i,j)∈lHij + (Kvu − 1) > 1. This

ensure that the associated graph to the robust CJSP is still consistent and the
solution (K

′

ij)(i,j)∈D is feasible. ut

The pseudo-code of the proposed heuristic is given in Algorithm 1.

Algorithm 1 Initial upper bound computation

1: Compute a lower bounds on the occurrences shifts Kij ;
2: for all (i, j) ∈ D do
3: Update bounds on the occurrence shifts;
4: Affect randomly value to Kij on the interval [K−ij , 1−K

−
ji];

5: end for
6: Compute the associated cycle time ᾱ and the critical circuit c.
7: while it < itmax do
8: Let (u, v) ∈ {(u, v) ∈ D such that (u, v) ∈ c};
9: luv ← max

l∈Puv
max
p∈UΓ

∑
(i,j)∈l pi − ᾱHij ;

10: if luv + pv − ᾱ(Kvu − 1) ≤ 0 then
11: Kuv ← Kuv + 1;
12: Kvu ← Kvu − 1;
13: end if
14: Compute the associated cycle time ᾱ and the critical circuit c;
15: it← it+1;
16: end while

3.2 Lower bound

In the Branch-and-Bound algorithm, an initial lower bound is derived and com-
pared to the incumbent. If the value of the initial lower bound and the value of
the incumbent are equal, then an optimal solution is obtained and the Branch-
and-Bound is stopped. It is easily seen that the problem where the disjunctive
arcs are ignored is a relaxation of the initial problem. Consequently, the associ-
ated cycle time, αbasic, is a lower bound on the optimal cycle time. Furthermore,
an other lower bound can be computed by reasoning on the machine charges.
Let M(i) ∈ M be a given machine and S ⊆ T the set of operations mapped on
the machine M(i), then the optimal cycle time αopt ≥

∑
i∈S pi, for each p ∈ UΓ .

IX

Since this relation is verified for each machine, one can deduce the following
lower bound:

αmachine = max
m∈M,p∈UΓ

 ∑
i∈T :M(i)=m

pi

 .

In the Branch-and-Bound procedure, we set the initial lower bound LB to the
maximum value between αmachine and αbasic.

3.3 Node evaluation

In the Branch-and-Bound algorithm, we aim to find a feasible vector (Kij)(i,j)∈D
of occurrence shifts such that the value of the associated cycle time that ensure,
for each p ∈ UΓ , the existence of schedule is minimum. In order to fathom nodes
with partial solution in the search tree, it has to be evaluated by computing an
associated lower bound. Let us consider a given node of the search tree defined
by the subgraph Gs = (T ,P ∪Ds), where Ds ⊆ D is the set of fixed occurrence
shifts. This subgraph represents a relaxation of the initial problem since only a
subset a disjunctive arcs is considered. Consequently, the associate cycle time is
a lower bound on the optimal cycle time.

3.4 Branching scheme and branching rule

To our knowledge, two branching schemes have been proposed for the cyclic job
shop problem. In both of the branching schemes, the branching is performed
on the unfixed occurrence shifts. The first one is introduced in [2]. Based on
the interval of possibles values [K−ij , 1 −K

−
ji] for the occurrence shift Kij such

that (i, j) ∈ D, the author uses a dichotomic branching. In the first generated
node, the interval of possible values of the occurrence shifts Kij is restricted to
[K−ij , cij] and in the second one it is restricted to [cij + 1, 1 − K−ji], where cij
is the middle of the initial interval. The second branching scheme is introduced
in [11]. The branching consists in selecting an unfixed disjunction and generate
a child node for each possible value of the occurrence shift Kij in the interval
[K−ij , 1 − K

−
ji]. In each node, the algorithm assigns the corresponding possible

value to the occurrence shift Kij . In this paper, we follow the same branching
scheme introduced in [11]. This branching scheme allows us to have, at each
node, a subproblem which corresponds to a robust BCSP. Consequently, we can
use the existing robust version of the Howard’s algorithm to find the cycle time
ensuring, for each p ∈ UΓ , the existence of a schedule. Different branching rules
have been tested and numerical tests show that branching on occurrence shifts
Kij where K−ij + K−ji is maximum yields best running times. This performance
can be explained by the fact that this branching rule generates a small number
of child nodes, which limits the size of the search tree.

X

4 Numerical experiments

We implemented the Branch-and-Bound algorithm in C++ and conducted the
numerical experiments on an Intel Xeon E5-2695 processor running at 2.30GHz
CPU. The time limit for each instance is set up to 900 seconds.

Since there are no existing benchmarks for the CJSP, even in its deterministic
setting, we generate randomly 20 instances for each configuration as follows. We
consider instances where the number of tasks n varies {10, 20, 30, 40, 50, 60, 80, 100},
the number of jobs j in {2, 3, 4, 5, 6, 10, 16} and the number of machines m in
{5, 6, 8, 10}. Each nominal duration p̄i of task i is generated with uniform dis-
tribution in [1, 10] and its deviation value p̂i in [0, 0.5p̄i].

Table 1 reports average solution times for the instances having from 10 to
40 tasks and with a budget of uncertainty varying from 0% to 100%. All these
instances are solved before reaching the time limit. The average running times
show that the Branch-and-Bound algorithm is not very sensitive to the variation
of the budget of the uncertainty, but there is still a small difference. This can be
explained by the number of the nodes explored in the Branch-and-Bound tree
which can differ from an instance with a given value of Γ to another one. Table
1 also displays the percentage of deviation, for a given budget of uncertainty Γ ,
of the optimal cycle time αΓ from the nominal optimal cycle time αnom, where
all tasks take their nominal values. This percentage of deviation is computed as
Devα = αΓ−αnom

αnom
. The table shows that the percentage of deviations varies from

25.41% to 56.43%. In other words, these deviations represent the percentage of
the nominal cycle time that has to be increased in order to protect a schedule
against the uncertainty. We remark that the deviations stabilize when the budget
of the uncertainty is greater than 20 or 30 percent. This situation occurs probably
when the number of arcs of the circuit having the maximum number of arcs is less
than Γ . In this case, increasing Γ does not influence the optimal cycle time. The
second situation occurs when heights of other circuits than the actual critical
circuit c have greater value than the height of c. In this case, increasing the
budget of the uncertainty does not make the value of c lower than the others.

Table 2 shows the number of the instances that are solved before reaching
the time limit. These results concern instances having from 50 to 100 tasks. The
table shows that the Branch-and-Bound is not able to solve all these instances
in less then 900 seconds. For example, among instances with 80 tasks, 16 jobs
and 5 machines, only three instances have been solved.

5 Concluding remarks and perspectives

In this paper, we consider the cyclic job shop problem where the task dura-
tions are subject to uncertainty and belong to a polyhedral uncertainty set. We
model the problem as two-stage robust optimization problem where the cycle
time and the execution order of tasks mapped on the same machine have to be
decided before knowing the uncertainty, and the starting times of tasks have
to be determined after the uncertainty is revealed. We propose a Branch-and-
Bound method that solves instances with at most 40 tasks but starts to have

XI

Tasks # Jobs # Machines Γ (%) Devα(%) Time (s)

10 2 5

0 0 0.012
10 25.41 0.0123
20 41.89 0.0137
30 48.95 0.0157
40 51.67 0.0171
50 53.18 0.0185
70 53.49 0.0214
90 53.49 0.0251
100 53.49 0.0256

20 3 6

0 0 0.2980
10 33.61 0.2136
20 49.49 0.2432
30 55.44 0.5685
40 56.43 0.2994
50 56.43 0.3258
70 56.43 0.3783
90 56.43 0.3996
100 56.43 0.4695

30 5 8

0 0 22.6434
10 38.25 12.0085
20 49.03 15.4099
30 50.91 66.2474
40 50.91 16.3096
50 50.91 17.1160
70 50.91 13.8331
90 50.91 15.7524
100 50.91 15.8249

40 4 8

0 0 138.9174
10 37.92 55.9220
20 54.46 92.1455
30 54.91 96.7587
40 54.91 134.4442
50 54.91 155.2327
70 54.91 187.2088
90 54.91 204.4813
100 54.91 177.2455

Table 1. Average solution times in seconds for the Branch-and-Bound algorithm and
percentage value of the deviation of the cycle time from the nominal cycle.

XII

tasks # jobs # machines
Γ (%)

0 10 20 30 40 50 70 90 100

50 5 10 11 10 11 14 13 13 12 12 12

60 6 10 7 5 4 4 4 3 3 1 1

80 16 5 3 0 0 0 0 0 0 0 0

100 10 10 3 1 3 1 0 0 0 0 0

Table 2. Number of solved instances in less than 900 seconds among 20 instances.

difficulties with bigger instances. The next step is to investigate other techniques
such as decomposition algorithms.

References

1. Roundy, R.: Cyclic schedules for job shops with identical jobs. Mathematics of
operations research 17(4) (1992) 842–865

2. Hanen, C.: Study of a np-hard cyclic scheduling problem: The recurrent job-shop.
European journal of operational research 72(1) (1994) 82–101

3. Brucker, P., Kampmeyer, T.: A general model for cyclic machine scheduling prob-
lems. Discrete Applied Mathematics 156(13) (2008) 2561–2572

4. Che, A., Feng, J., Chen, H., Chu, C.: Robust optimization for the cyclic hoist
scheduling problem. European Journal of Operational Research 240(3) (2015)
627–636

5. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust so-
lutions of uncertain linear programs. Mathematical Programming 99(2) (2004)
351–376

6. Thiele, A., Terry, T., Epelman, M.: Robust linear optimization with recourse.
Rapport technique (2009) 4–37

7. Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-
and-constraint generation method. Operations Research Letters 41(5) (2013) 457–
461

8. Ayoub, J., Poss, M.: Decomposition for adjustable robust linear optimization
subject to uncertainty polytope. Computational Management Science 13(2) (2016)
219–239

9. Gondran, M., Minoux, M., Vajda, S.: Graphs and Algorithms. John Wiley & Sons,
Inc., New York, NY, USA (1984)

10. Dasdan, A.: Experimental analysis of the fastest optimum cycle ratio and mean
algorithms. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES) 9(4) (2004) 385–418

11. Fink, M., Rahhou, T.B., Houssin, L.: A new procedure for the cyclic job shop
problem. IFAC Proceedings Volumes 45(6) (2012) 69–74

12. Bertsimas, D., Sim, M.: The price of robustness. Operations research 52(1) (2004)
35–53

13. Hamaz, I., Houssin, L., Cafieri, S.: Robust Basic Cyclic Scheduling Problem. Tech-
nical report (2017)

