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Arrival Prediction in Terminal Manoeuvring Area
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7, Avenue Edouard Belin, 31055 Toulouse, France

Abstract

4D trajectory prediction is the core element of future air transportation system, which is intended to improve

the operational ability and the predictability of air traffic. In this paper, we introduce a novel hybrid

model to address the short-term trajectory prediction problem in Terminal Manoeuvring Area (TMA) by

application of machine learning methods. The proposed model consists of two parts: clustering-based

preprocessing and Multi-Cells Neural Network (MCNN)-based prediction. Firstly, in the preprocessing

part, after data cleaning, filtering and data re-sampling, we applied principal Component Analysis (PCA)

to reduce the dimension of trajectory vector variable. Then, the trajectories are clustered into several

patterns by clustering algorithm. Using nested cross validation, MCNN model is trained to find out the

appropriate prediction model of Estimated Time of Arrival (ETA) for each individual cluster cell. Finally,

the predicted ETA for each new flight is generated in different cluster cells classified by decision trees. To

assess the performance of MCNN model, the Multiple Linear Regression (MLR) model is proposed as the

comparison learning model, and K-means++ and DBSCAN are proposed as two comparison clustering models

in preprocessing part. With real 4D trajectory data in Beijing TMA, experimental results demonstrate that

our proposed model MCNN with DBSCAN in preprocessing is the most effective and robust hybrid machine

learning model, both in trajectory clustering and short-term 4D trajectory prediction. In addition, it can

make an accurate trajectory prediction in terms of Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE) with regards to comparison models.
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1. Introduction

4D trajectory prediction is the core element of future air transportation system (FAA, 2010). Dur-
ing the development of Trajectory Based Operation (TBO) concepts of Single European Sky ATM Re-
search (SESAR) and Next Generation Air Transportation System (NextGen) programs, to improve the
predictability of air traffic is a crucial and fundamental research topic. 4D trajectory prediction refers to the5

calculation and prediction of longitude, latitude, altitude and time on the future waypoint sequence based
on the historical flight data. According to the time scale, 4D trajectory prediction can be divided into two
categories (Guan et al., 2014):

1. Tactical (short-term) trajectory prediction: A prediction in a short period within several minutes or
even shorter. Since the prediction scale is relatively small, minor change may have significant impact on10

prediction results. Therefore, tactical trajectory prediction requires as much information as possible.
Flight-related information contained in radar or ADS-B data is usually taken;

2. Strategical (long-term) trajectory prediction: A kind of prediction before departure based on the flight
plan, which provides the prediction from a macroscopic view. It is mostly applied to fuel consumption
and airspace flow evaluation.15

4D trajectory prediction can be influenced by numerous factors, such as aircraft weight, pilot actions,
wind and temperature. These uncertainties will not only make it difficult to improve the prediction accuracy,
but also will decrease the prediction process efficiency as the prediction time becomes longer (Tastambekov
et al., 2014). In this paper, we propose a novel short-term trajectory prediction model, which combines
different machine learning techniques, to address the problem of 4D trajectory prediction in Terminal Ma-20

noeuvring Area (TMA). The model is mainly divided into 2 parts: preprocessing model and prediction
model. The preprocessing model extends and improves the trajectory clustering method proposed by Gariel
et al. (2011), plays a role of preparing data with high quality for the prediction part. In addition, it sup-
ports an efficient and accurate prediction process. It contains the following steps: data cleaning, filtering,
re-sampling, Principal Component Analysis (PCA), clustering and model training. In the prediction model,25

a novel technique named Multi-Cells Neural Networks (MCNN) is proposed. It can make parallel trajectory
prediction for various shapes of traffic patterns. With Neural Network (NN) for each prediction cell, an
accurate prediction for the whole complex trajectories in TMA is realised. Thus, the main contributions of
this paper are threefold:

1. A novel hybrid 4D trajectory prediction model combining clustering-based preprocessing and MCNN30

is developed. A general guideline for selecting the model structures is presented in detail.

2. The proposed model is robust with regards to the data source. The 4D trajectory in a specified
airspace containing noise and abnormal trajectories can be effectively and efficiently processed by the
preprocessing model, providing high-quality inputs to the prediction model.

3. The preprocessing step leads to a substantial increase in the accuracy of the prediction model. The35

prediction model based on NN has a much higher accuracy than the widely-used classical linear re-
gression model in our 4D trajectory prediction task. A comparison study is conducted to demonstrate
the effectiveness of the hybrid machine learning models. Comparisons are made on K-means++ and
DBSCAN algorithms in the preprocessing part, Multiple Linear Regression (MLR) and NN model in
the prediction part, as well as the combination of two parts.40

2. Literature review

4D trajectory prediction has attracted numerous attention from worldwide researchers in the past
decades. Considerable research efforts have been taken to enrich the 4D trajectory prediction approaches.
From the view of methodology, the trajectory prediction models can be mainly classified into aircraft per-
formance models and machine learning models (Hrastovec and Solina, 2016).45

Aircraft performance models belong to physics-based approaches. The model structure is based on
kinematic assumptions. The model parameters are determined based on a model of the aircraft performance,
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the planned flight routes, the predicted atmospheric condition, and the expected command and control
strategies given by pilots or Flight Management System (FMS) (known as Aircraft Intent). The most
precise aircraft performance model is Base of Aircraft Data (BADA), which provides increased levels of50

precision in aircraft performance parameters for modelling and simulation Nuic et al. (2010). A variety of
researches based on BADA and Aircraft Intent has been conducted. For example, Xi et al. (2008) presented
a classified ADS-B-based trajectory prediction algorithm. Based on the state estimation by Kalman filter
and intent information captured by a pretreatment and probability method, the aircraft trajectory can be
predicted with computation efficiency and fewer errors. Porretta et al. (2008) presented a novel aircraft55

performance model in consideration of the effect of wind, for aircraft lateral guidance and a new procedure
for speed estimation. The model input includes navigation data and aircraft intent information, based on
BADA set. Simulation results show that the model is suitable for reliable trajectory prediction. Kaneshige
et al. (2014) described the implementation and evaluation of a motion-based trajectory prediction function,
which can increase the resiliency and robustness of TBO. Based on the performance index, such as the60

fuel consumption, flight time, the algorithm computes the difference between with trajectory prediction and
without trajectory prediction. Clearly, these aircraft performance models have made significant contributions
to trajectory prediction, however, most of these models made ideal assumptions, rarely considering the
actual constraints and human behaviour factors. The prediction in this method is conducted one by one,
which cannot reflect the interaction between trajectories. In addition, once the data resources are limited65

or poorly supported, the prediction models will be ineffective for short-term trajectory prediction, not to
mention large-scale trajectory prediction problems.

As a branch of Artificial Intelligence (AI), machine learning has been developed over 30 years. One
of the major function of AI is learning from experience and make predictions. The trend of recent years
shows that machine learning is commonly used in trajectory prediction domain. Compared with those70

aircraft performance models, machine learning models were built with weak assumptions or even without
assumptions. In most cases, it shows better prediction performance. For example, Le Fablec and Alliot
(1999) used Neural Networks (NN) to predict an aircraft trajectory in the vertical profile. Trained by real
historical trajectory dataset, 2 different model structures were presented. In the first method, the inputs
include current altitude, the remaining altitude to reach Request Flight Level (RFL) and n past vertical75

speeds. The output is the next speed. The inputs of the second structure consist of starting altitude and
remaining altitude to reach the RFL. n first initial speeds is the output. Simulation result showed that
NN model gives better results than classical prediction functions based on the model of aircraft. Leege
et al. (2013) introduced Generalized Linear Model (GLM) for trajectory prediction at prediction horizons
of 15NM to 45NM on fixed arrival route. The inputs of this model are aircraft type, ground speed at Initial80

Approach Fix (IAF), altitude over IAF, surface wind and altitude wind. All inputs come from surveillance
data and meteorological data. Alligier et al. (2015) also applied GLM to predict the airspeed during climb.
The simulation is conducted on actual Mode-C radar data of 9 different aircraft types. The prediction error
is quite small, compared with BADA reference speed profiles.

In view of improving the accuracy in prediction tasks, Trivedi et al. (2015) carried out a study on the85

feasibility of utilizing clustering as a preprocessing approach. Their research demonstrates that the improve-
ment on prediction accuracy is significant on large-scale clusterable datasets by combining the clustering
with even some simple machine learning predictors. Under routine traffic situation in the TMA, the aircraft
follows the standard arrival/departure procedure and regular ATC instructions, which makes trajectories
clusterable. Thus, the application of machine learning together with clustering for 4D trajectory prediction90

is a valuable and interesting research topic. Numerous clustering models have been proposed for airspace
monitoring, traffic patterns identification, automated traffic analysis, trajectory efficiency analysis (Eckstein,
2009; Gariel et al., 2011; Chen et al., 2011; Tang et al., 2015; Ayhan and Samet, 2015; Nicol and Puechmorel,
2016).

Based on these studies, models combining clustering with simple predictors have been investigated in95

the latest years. Tastambekov et al. (2014) considered the short to mid-term aircraft prediction problem,
namely, the prediction with a time horizon from 10 min to 30 min. The model firstly searches similar
trajectories in terms of shape and time, then uses wavelet decomposition to solve the linear regression model
of the relationship between time and trajectory projection onto one of the three axis X, Y and Z. This
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method gets good prediction results with high robustness and efficiency. Hong and Lee (2015) introduced a100

new framework for predicting Estimated Time of Arrival (ETA) of aircraft from a specified entry fix. The
model contains two steps: trajectory pattern identification by Dynamic Time Warping (DTW) and MLR
models training for each pattern. The prediction of arrival time can be achieved by applying different MLR
model for each trajectory pattern of target aircraft. However, most of the existed clustering-based prediction
model are unable to conduct a comprehensive preprocessing step. Some models neglect the prediction steps,105

directly considering clustering results as prediction results. A majority of trajectory pattern identification
approaches are not robust, requiring carefully selected flight data that follow the same departure/arrival
procedure or pass the specified entry fix rather than in a specified airspace. If there exists some noise and
overflights in the data, the predicted results will be far less effective. In addition, in the existed prediction
model, the regression models that have been used are relatively simple and have a shallow structure. What’s110

more, for different traffic patterns, the prediction processes have to be executed successively, without parallel
computing ability.

3. Methodology

In order to improve the prediction accuracy and efficiency, we propose a novel hybrid trajectory pre-
diction approach, see Fig. 1. There are two parts in this model: clustering-based preprocessing model and115

MCNN-based prediction model. The preprocessing step is mainly composed of re-sampling, data augmen-
tation, PCA and DBSCAN algorithm. In this part, the model firstly cleans and reshapes the data, then
identifies the 4D trajectories into different clusters and removes noise in an efficient way. Each cluster sym-
bolizes that the corresponding trajectories have the similar pattern. Noise contains trajectories with holding
patterns, trajectories with large vectoring, trajectories in special cases and overflight trajectories. Finally,120

the trajectory data quality will be highly increased. In the prediction step, we apply the MCNN model
for 4D trajectory prediction. For each partition of trajectories, there is a predictor, in which there is an
individual NN-based learning cell. Each individual learning cell will be trained with the associated cluster of
trajectories. Consequently, each cluster of trajectories will have its corresponding prediction model. For the
new input trajectory, we will classify them into different corresponding clusters by decision trees according125

to the entry point, then with already trained multi-cells predicting model, trajectory prediction of the input
data will be generated.

3.1. Data preparation

We choose Automatic Dependent Surveillance-Broadcast (ADS-B) as the data source of the 4D trajectory
prediction model. Each record of ADS-B data contains:130

1. Type of operation (departure/arrival),

2. Coordinated Universal Time (UTC) time stamp t,

3. Aircraft number,

4. Position (X,Y, Z),

5. Heading Ψ,135

6. Horizontal ground velocity Vh,

7. Vertical ground velocity Vv, etc.

Each record with the same aircraft number belongs to an aircraft i, and the collection of all records for
that aircraft forms the trajectory Ti, i = 1, ..., n, where n is the total number of trajectories in the dataset.

3.2. Clustering-based preprocessing140

3.2.1. Data Cleaning and Formatting

To start with, the dataset is filtered on recording time scale, recording length and so on, making sure the
data validity. Due to the instability of ADS-B receiver, the collected ADS-B data may not be continuous.
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Figure 1: Proposed 4D trajectory prediction approach

Some trajectories may have missing parts. To solve this problem, it is necessary to place a low pass filter
with the following function:145

x̃1,i = x1,i (1)

x̃l,i = αxl,i + (1− α) x̃l−1,i, l = 2, ...,mi − 1. (2)

where the aircraft position in 3D coordinates and the heading of the l-th point of i-th trajectory are sub-
stituted into xl,i. α is a smoothing factor in [0, 1]. In this study, α is set to 0.5 to provide better results
without too much delay. mi is the number of points in i-th trajectory.

In order to make dataset suitable for clustering, each trajectory should be represented as a vector. All
the trajectory vectors are resampled into the same length, then their distance (which will be discussed in150

the following section) can be computed. The resampling method for i-th trajectory is given as follows:

Ti =

{
Tl,i

∣∣∣∣l = floor

(
k ·mi

S

)
, k = 1, ..., S

}
(3)
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where the function floor(x) takes the largest integer that does not exceed x. l is a set containing all the index
of sampled points for each trajectory, S is the number of sampled points for each trajectory. Experience
shows that S = 50 would have been enough for clustering purpose. Trajectories with less than 50 points
were eliminated due to statistical insufficiency.155

3.2.2. Dimensionality augmentation

This step aims to augment the dimensionality of dataset for better clustering. The existing dimensions
may not be sufficient and will result in lack of information, which can’t completely reflect the differences
between each trajectory. Thus, augmentation of dimensions will help improve the clustering performance.
Therefore, the following dimensions will be added into the dataset:160

1. Distance from the reference point R, which indicates the convergence of aircraft toward the center of
the TMA. Due to the runway configuration, we can define the reference point (Xref, Yref, Zref) as the
centre of the runway. For each trajectory point, Rl,i is given as:

Rl,i =
√

(Xl,i −Xref)2 + (Yl,i − Yref)2 + (Zl,i − Zref)2 (4)

2. Distance from the corner point D. The corner point (Xcor, Ycor, Zcor) can be assigned as a corner of
the considered airspace. The corner point will help solve the identifying problem when two trajectories165

are symmetric. The Dl,i is calculated by the function below:

Dl,i =
√

(Xl,i −Xcor)2 + (Yl,i − Ycor)2 + (Zl,i − Zcor)2 (5)

The reference point and corner point play the role as multilateration.
3. Angular position from the reference point Θ. It shows the variation (turning status) of trajectories

with respect to the reference point. Θ is defined as:

Θl,i = arctan

(
Yl,i − Yref

Xl,i −Xref

)
(6)

To sum up, the resampled dataset includes original features: UTC time stamp t, position (X, Y , Z),170

heading Ψ and additional features: distance from the reference point R, distance from the corner point D,
angular position from the reference point Θ. To avoid the discontinuity at ±π and for feature scaling, the
sine and cosine values of Θ and Ψ is utilised instead of the original value.

Next, to make every feature on the same scale, each feature is normalised in [0, 1]. The general formula
is given as:175

x∗ =
x−min(x)

max(x)−min(x)
(7)

where x is the original feature and x∗ is the normalised feature. Replacing x with our features, finally, all
features of each trajectory is concatenated and organised as follows:

Ti = [t∗i P ∗i R∗i D∗i cos(Θ)∗ sin(Θ)∗ cos(Ψ)∗ sin(Ψ)∗] (8)

T =

T1

...
Tn

 (9)

where P ∗i = [X∗i Y ∗i Z∗i ]. Then, each trajectory is reshaped into a vector with 500 components. Matrix T
is n× 500 and contains all trajectories with features, where n is the total number of trajectories.

3.2.3. Principal Component Analysis180

As shown in Eq. (8), trajectories are related to various of factors. Nevertheless, among these factors,
some are more related, while the other is less related. Redundant elements will decrease computational
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efficiency, even lead to larger errors. To solve this problem, PCA is introduced. PCA is a powerful tool
used to reduce the dimension of dataset without losing too much information. The main idea of PCA is to
derive an orthogonal linear transformation to project each of the vector variables into principal components185

for the maximum amount of variance that can be presented in lower dimensions (Runkler, 2012).
PCA performs a linear transformation on the n×m (in this case m = 500) matrix T :

Y = E · T (10)

where E is a rotation matrix, Y is the new principal component matrix. The variance of Y is:

var(Y ) = ET · C (11)

where C is the covariance matrix of T , which can be written as:

C =
1

n− 1
· T · TT (12)

The eigenvalues of C can be calculated as {λi|i = 1, ...,m}, which correspond to the variances in Y as190

{vi|i = 1, ...,m}, with λ1 > λ2 > ... > λn.
To map a dataset X ⊂ Rm to a dataset Y ⊂ Rq with q ∈ {1, ...,m−1}, a rotation matrix E = (v1, ..., vq)

can be used. The dimension can be reduced by choosing the number of q. In order to keep most of the
information while reducing dimensions effectively, it is required that the projection should better covers 90%
of the variances, i.e., the cumulative percentage or variance explained G(q) is greater than 90%:195

G(q) =

q∑
i=1

λi

m∑
i=1

λi

≥ 90% (13)

3.2.4. Clustering

Clustering algorithm belongs to unsupervised learning, for the purpose of partitioning unlabelled data
according to similarity. The widely used clustering algorithm for air traffic pattern identification is K-means
(Eckstein, 2009; Tang et al., 2015) and DBSCAN (Gariel et al., 2011; Chen et al., 2011), along with their
improved or combination version.200

The K-means algorithm (MacQueen et al., 1967) is an iterative clustering algorithm that partitions N
observations into K clusters, where the number of clusters K is a hyperparameter. The K-means algorithm
aims to minimise the Within-Cluster Sum of Squares (WCSS) cost function.

L(S;µ) = DK =

K∑
i=1

∑
xj∈Si

‖xj − µi‖
2

(14)

where S is the set of clusters partitioned by this algorithm, µi is the mean of points in Si and K ≤ N .
Initialisation of centroid seeds demands a-priori knowledge. The common idea is to use a farthest-first205

traversal approach or a selection at random from the dataset. Nevertheless, this is not robust to outliers.
Instead, Arthur and Vassilvitskii (2007) proposed K-means++ algorithm using a heuristic to initialise the
centres. It improves both the computation speed and accuracy of K-means.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a commonly used density-
based clustering algorithm (Ester et al., 1996). The core concept of DBSCAN is to evaluate the density210

depending on the number of points within the ε-neighbourhood. DBSCAN classifies the observation points
into three types: core point, density-reachable point and noise point. The algorithm expands to density-
reachable areas from a selected core point, then obtaining a maximum area including the core point and
density-reachable points. Being robust to the quality of datasets, DBSCAN can divide the dataset into
several clusters and noise, where the a-priori selection of the number of clusters is not required. Besides,215
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DBSCAN is able to find arbitrarily shaped clusters. The advantages of DBSCAN make it fit well with
trajectory clustering scenarios. There are two hyperparameters in DBSCAN algorithm: the neighbourhood
radius ε and the minimum number of points required to form a dense region minPts. The value of ε affects
the size of clusters. The value of minPts affects the noise identification and the significance of clusters. After
clustering, each cluster of trajectories can be considered as a main traffic pattern managed by controllers,220

and it has been passed by a large number of flights. The noise represents trajectories in some special cases,
such as holding patterns and large vectoring.

In our case, the first q principal components of the organised trajectory matrix, computed by equation
(13), are clustered by machine learning algorithm, DBSCAN or K-means++.

3.3. MCNN-based prediction model225

In this paper, supervised learning techniques are used for short-term trajectory prediction. Each input x
is a vector that contains the 3D position, heading, horizontal speed and vertical speed. The target variable
t is the Estimated Time of Arrival (ETA) on the runway. We consider the following fixed-design regression
model:

Yn = f(xn) + εn, n = 1, ..., N (15)

where Yn are the random variable that follows a mean function f(·) with errors εn, which are independent230

and identically distributed (i.i.d.) random variables, such that E(εn) = 0 and var(εn) = σ2. The most
classical machine learning model Multiple Linear Regression (MLR) aims to estimate the function f(·)
under a linear assumption. Given multiple independent variables of N statistical units with D dimensions
xn = (xn1, ..., xnD)T and corresponding dependent variable yn, n = 1, ..., N , the goal is to estimate the
mean function f(·) by hw(·):235

h(x;w) =

D∑
d=1

wdxnd + w0, n = 1, ..., N (16)

where {wn|n = 0, ..., N} are coefficients, which can be approximated by least squares regression, taking the
estimator hw(·) that minimises the Mean Squared Error (MSE).

In our case, we use MCNN model to predict the ETA based on preprocessed real 4D trajectory data.
For each cluster (cell) generated by the training set, an individual NN-based learning model will be built by
training the dataset in the associated cluster. Consequently, each cluster will have an individual learning240

model. Then, the test set will be classified into different cell by classification algorithm. The output will be
produced by the corresponding NN-based learning model. The advantage of using Neural Network (NN) in
each cell is that they are able to learn the hidden and non-linear dependencies from the training data. The
architecture of the proposed NN model for each cell is composed of an input layer, a hidden layer and an
output layer, shown in Fig. 2. Given C cells, for each cell c, c ∈ {1, ..., C} and the input vector (x1, ..., xNc

)T245

in test set Tc, the output can be calculated as:

hc(x;w) = Ψ

Mc∑
i=1

wi,cΦ

 Nc∑
j=1

wij,cxj + w0j,c

+ w0,c

 (17)

where Mc is the hidden layer node number, wij,c is the weight between the j-th input node and the i-th
hidden node, wi,c is the weight between the i-th hidden node and the output node, w0j,c is the bias to the
i-th hidden layer, w0,c is the bias to the output layer, Φ is the sigmoid logistic function:

Φ(z) =
1

1 + e−z
(18)

Ψ is the identity function:250

Ψ(z) = z (19)
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To reduce over-fitting, the error function we are trying to minimise is:

E(w) =
∑

(x,y)∈Tc

(hc(x;w)− y)
2

+ λc

Nc∑
j=1

Mc∑
i=1

w2
ij,c (20)

where λc is the regularisation coefficient for NN model in cell c. The back-propagation method was used to
compute the gradient of the error function, and Levenberg-Marquardt algorithm (Reynaldi et al., 2012) was
used to minimise the error.

X-coordinate

Y-coordinate

Z-coordinate

Horizontal speed

Vertical speed

heading

... Predicted ETA

Input layer Hidden layer Output layer

Input node

Hidden node

Output node

bias

Figure 2: Neural network architecture used in this paper

The new input is classified by decision trees according to the entry point of the corresponding trajectory.255

The advantages of the classification decision tree are that it does not acquire any a-priori knowledge and
expensive computation costs. Once the classification tree model is built, the worst time complexity of
classifying an unknown sample is Θ(H), where H is the maximum depth of the classification tree. In
addition, in view of arrival flights in TMA, the longitude and latitude of entry points of trajectories in each
cluster belong to a certain range in the airspace. This characteristic can be used to realise an effective260

classification on new input. In this work, Classification And Regression Trees (CART) algorithm is utilised
for the decision tree, with the aircraft position X and Y as input.

3.4. Performance evaluation and model selection

To assess the performance of MCNN model, the MLR is proposed as the comparison learning model.
DBSCAN and K-means++ are compared in preprocessing clustering part, so as to test different hybrid265

machine learning models.
In machine learning, hyperparameter stands for the parameters that are fixed before actual learning

process begins, which cannot be directly adjusted by empirical risk. The bias-variance tradeoff is controlled
by hyperparameters.

Firstly, in the preprocessing part, we will evaluate the performance of clustering algorithm DBSCAN,270

compared with K-means++. Different hyperparameters selection approaches are proposed for these clustering
algorithms. The training data used is composed of the first q principal components of trajectory matrices Ti
in equation (8) that belongs to the training set of each outer cross validation fold. The number of clusters
of K-means++ can be estimated by the silhouette method (Rousseeuw, 1987). The silhouette value for
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each instance i is a measure of similarity between its cluster and of difference between other clusters. The275

silhouette value is defined as:

si =
ai − bi

max(ai, bi)
(21)

where ai is the average distance from the i-th instance to the other instances of the same cluster, and bi
is the minimum average distance from the i-th instance to instances in a different cluster. For each K
in the hyperparameter grid, the value that maximises the average silhouette coefficient of all instances in
the training set is chosen as the optimal cluster number of K-means++. On the contrary, the number of280

clusters of DBSCAN algorithm need not to be determined a-priori. However, DBSCAN algorithm has 2
hyperparameters ε and minPts, in which ε can be evaluated by computing the K-Nearest Neighbour (K-NN)
distance in the training set (Sander et al., 1998). The principal concept of this method is to calculate the
distance of every point to its K nearest neighbour, and these distances are plotted in an ascending order.
The optimal ε value corresponds to the ”knee” (threshold K-distance value), which is relatively simple to be285

recognised in a graphical representation. Since K-NN is a non-parametric method, the value of K is specified
manually. With regards to minPts, there is no general approach to estimate the value. In order to remove
most abnormal trajectories and balance the size of dataset in the meantime, we search an optimal value of
minPts in the hyperparameter grid to make sure that the noise account for 5% ∼ 8% of the dataset.

Secondly, in order to well select the hyperparameters of prediction model, and to achieve an unbiased290

performance of the prediction model, this paper uses nested cross validation method. It consists of the outer
loop and the inner loop. A K1-fold cross validation splits the dataset S into K1 subsets Si, i ∈ {1, ...,K1}.
For each outer iteration i, K1 − 1 folds S−i = S\Si act as training sets and one fold Si is test set. Then,
there is another K2-fold cross validation, which will further split the training sets S−i into K2 subsets S−i,j ,
j ∈ {1, ...,K2}. For each inner iteration j, K2 − 1 folds S−i\S−i,j play the part of training sets and the295

remaining fold S−i,j is validation set. The purpose of the inner loop is the selection of hyperparameters and
the outer loop aims to assess the model performance. Taking K1 = 5, K2 = 5, the proportion of training
sets, validation sets and test sets is 64%/16%/20%. The kernel idea of the whole process can be summarised
on Fig. 3.

Here, we use a grid search hyperparameters tuning algorithm (Alligier et al., 2015) on NN-based learning300

model. This algorithm aims at selecting the hyperparameter λ of an algorithm Aλ by performing a 5-fold
cross-validation on a set of examples T , which is depicted by algorithm 1.

Algorithm 1 Hyperparameters tuning

1: function TuneGrid(Aλ, grid)[T ]
2: λ∗ ← arg min

λ∈grid
CV5(Aλ, T )

3: return Aλ∗[T ]
4: end function

The coefficient of determination R2 and the statistical significance p-value are considered as the statistics
for the error between the actual and estimated results of the MLR model. R2 is defined as equation (22),
providing a measure of how close the dependent variables are to the independent variables. The p-value305

tests the null hypothesis that the coefficient is equal to zero.

R2 = 1−

N∑
i=1

(yn − ŷn)
2

N∑
i=1

(yn − ȳ)
2

(22)

The performance of classification model is estimated by K-fold cross validation on the training set,
setting K = 5 in this case.

Finally, we use Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to assess the
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Figure 3: Nested cross validation procedure

performance of trajectory prediction models:

MAE =
1

n

n∑
i=1

|ŷi − yi| (23)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2
, (24)

where ŷi is the i-th predicted value and yi is the i-th observed value of ETA. Given that each outer iteration
produces a MAEi, and a RMSEi, i = 1, ..., k1, the average MAE and RMSE can be computed as follows:310

MAE =
1

k1

k1∑
i=1

MAEi, (25)

RMSE =

√√√√ 1

k1

k1∑
i=1

(RMSEi)2, (26)

4. Experiment results and discussion

4.1. Dataset

The available dataset includes ADS-B records in July, 2017 over the TMA of Beijing Capital International
Airport (BCIA), which is one of the busiest airport in the world, with three parallel runways: 18R/36L,315
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18L/36R and 01/19. Since the studied airspace is relatively small, the longitude, latitude of trajectory points
in WGS84 can be projected into a projection plane. Note that, in this paper, arrival flights that correspond
to QFU 36 are taken into consideration, where QFU means the magnetic orientation of runway-in-use. QFU
36 goes to North.

The dataset that we used in the experiments contains 8,677 arrival flights of QFU, being made up of320

902,457 trajectory points. After data cleaning procedure, 103 flights were removed from the dataset, and the
data validity rate is higher than 98%. Then, the dataset is formatted and augmented with dimensionality,
depicted in section 3.2.

4.2. Clustering performance

First, in this study, the cumulative percentage of variance of trajectory matrix in equation 8 is calculated325

and presented in Fig. 4a. When the principal component reaches over 33, the variance explained will
exceed 90%. Let q = 33, then the dimension of each trajectory was reduced to 33 from 500. To sum up,
dimensionality augmentation enriches the features that principal components can choose. PCA reduces
the dimension of the dataset, which makes the following clustering step more efficient and accurate in the
projected principal component space.330
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Figure 4: Parameters selection of algorithms in the preprocessing step

Table 1: The grids of hyperparameters for machine learning algorithms

Method Hyperparameter grid

K-means++ K = {2, 3, 4, 5, 6, 7, 8, 9, 10}
DBSCAN minPts = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
MCNN λc = {0.0001, 0.001, 0.01, 0.1, 0.5, 1, 2, 5}, c = 1, ..., C

Mc = {2, 3, 4, 5, 6, 7, 8, 9, 10}, c = 1, ..., C

Then, the hyperparameters grids of aforementioned machine learning approaches are used, see Table 1.
According to the density distribution of the dataset, K is set to 5 in K-NN. In all outer cross validation
folds, K-NN distance plots of instances in the training set indicate that ε = 6.5. Fig. 4b represents the
K-NN distance plot in one of the folds. minPts = 50 satisfies that the noise accounts for 5% ∼ 8% of the
dataset. Among the hyperparameter grid of K-means++, K = 4 minimises the average silhouette value of335

all instances in the training set for every outer cross validation. Fig. 4c is extracted from one of the cross
validation fold as an example.

We find that DBSCAN algorithm clusters the trajectories into 5 partitions and noise. Taken one of
cross validation folds into consideration, Fig. 5a represents 3D plot for the first principal components of the
trajectory matrix. In this case, cluster points involve 93.00% and the noise points account for 7.00%. Black340
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crosses indicate noise, and circles with different colour stand for trajectories in different clusters. Fig. 5b
demonstrates the corresponding 2D trajectories. It can be seen that 5 main arrival procedures are clustered.
Fig. 5c shows trajectories recognised as noise, which is mainly composed of holding patterns and trajectories
with large vectoring, which will have an interference for the training stage. Therefore, the noise should
be deleted from the dataset. With the same cross validation fold as Fig. 5, K-means++ clusters all the345

trajectories into 4 partitions. Unlike DBSCAN, K-means++ would not identify the noise. Fig. 6a represents
the first 3 principal components of the trajectory matrix. Fig. 6b shows the corresponding trajectories,
in which the cluster #4 combine cluster #3 and cluster #5 in Fig. 5b together. The clustering result of
K-means++ is not good, considering the combining cluster contains several arrival procedures.

In addition, Fig. 7 illustrates the decision trees for classification according to clusters generated by350

DBSCAN and K-means++ in one of the outer cross validation folds. It is clear that according to maximum
depth and the number of nodes, the time complexity and the overfitting risk of Fig. 7a are much smaller
than Fig. 7b.
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4.3. Prediction performance

Different time horizons of prediction will have different prediction error. To depict the error distribution,355

box-plot is utilised as a graphical tool to visualise the main statistical measurements. Fig. 8 portrays the
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Figure 7: Classification tree trained by DBSCAN and K-means++ clusters in one of the outer cross validation folds

model prediction performance at different time horizons. In each sub-figure, the X-axis presents the transit
time t(s) in TMA. While t(s) = 0, it means that aircraft is entering the TMA, and t(s) = 800 means
that aircraft is flying in TMA for 800 s. Note that the shortest transit time in TMA is around 800 s,
which mainly corresponds to the flights entering from west. When t(s) > 800, some of the flights may360

have landed on the runway. Fig. 8 shows the prediction errors for trajectories from all the entry points of
TMA. The Y-axis depicts the absolute prediction error between predicted ETA and observed Actual Time
of Arrival (ATA). For each 50 s time step, a box-plot shows the 5%, 25%, 50%, 75% and 95% quantiles.
The remaining 10% error mostly come from abnormal trajectories (highly deviated, go around, with holding
procedure, in emergency, etc.), which are difficult to be predicted. So this part of error is not displayed. Two365

models are presented in each sub-figure. For clearly visualisation, two models are overlaid. We find that
with different prediction methods, the results show the same trend, that is: when the time to destination
is fewer, the absolute prediction error is smaller. We further observe the distribution of ETA prediction
errors. Note that the whiskers contains 90% of the prediction errors, and the box contains 50% of the
prediction errors. At the entry time of TMA, t(s) = 0, in view of all prediction methods except MLR model,370

over 50% of trajectory predictions errors are less than 125 seconds. According to Report on National Civil
Flights Operation Efficiency in 2017 published by CAAC Operation Monitoring Center (2018), the average
arrival delay time of BCIA is 30.7 minutes per aircraft. By comparison, the result of the proposed model is
satisfactory, which can better predict delays.

Overall, the NN model prevails against the MLR model. Moreover, in view of the same machine learning375

method, the model with clustering preprocessing step has less prediction errors than the one without cluster-
ing preprocessing step. The preprocessing part can improve the prediction performance of the MLR model,
and DBSCAN-based preprocessing performs slightly better than K-means++-based preprocessing. The pre-
processing part plays a positive effect both on NN-based model and MLR-based model, in which MLR-based
model has a greater improvement on prediction performance. Among all models, the NN model combined380

with DBSCAN preprocessing model performs best ETA prediction. Thus, we conclude that the cluster-
ing preprocessing is effective in improving the prediction accuracy on almost all time horizons, especially
DBSCAN algorithm.

For different traffic patterns (clusters), the prediction error from different entry point of TMA (t(s) = 0)
is different. The statistics of prediction results on NN and MLR with DBSCAN-based preprocessing model in385

each clusters and each outer cross validation fold were summarised in Tab. 2 and Tab.4. For MLR model, the
correlation coefficient R2 between the ATA and estimated ETA for each clusters is computed, representing
the percentage of the variance explained in the ATA. The computed p-value for the null hypothesis was
almost zero, which was small enough to reject the null hypothesis at a significance level of 0.01.

In Tab. 2, new test data can be well clustered into 5 partitions by application of the classification tree390

and the DBSCAN algorithm. The accuracy of the classification tree is more than 99.5%, and in view of
MAE and RMSE, the proposed NN model performs better than the MLR model for each cluster. For
cluster #4, the associated MAE is generally smaller than the other partitions, on account of the shape
and the flying distance of the arrival procedure of trajectories. We also find that cluster #4 usually has
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the shortest transit time in TMA, which is from the west with less deviation before landing. Besides, in395

Tab. 3, compared with DBSCAN-based models, we find that the average number of nodes of classification
tree for K-means++ is 11 times larger, the classification accuracy for K-means++ is about 3% lower, and the
percentage variance of clusters in different outer cross validation folds of K-means++ is much less stable.
Taking Fig. 5 as an example to explain the reason of such differences. In Fig. 5a and Fig. 5b, there are
some clusters that intersect. In addition, because K-means++ cannot identify the noise, some abnormal or400

deviated trajectories were partitioned in clusters. Therefore, the classification trees have to devote more
efforts for noise and clusters with intersection, which need more binary classifiers for fine classification that
may cause overfitting. On the contrary, the shape of clusters generated by DBSCAN is quite good, and there
is no obvious intersection between clusters. Even the decision trees for K-means++ are more complicated, the
overall performance is getting worse. Compared with the performance of ETA prediction on NN and MLR405

with K-means++-based preprocessing step on each outer cross validation fold, It is also indicated that NN
model performs still better than MLR model for each cluster in terms of MAE/RMSE. Last but not least,
in Tab. 4, regarding overall prediction errors MAE and RMSE, the NN model with DBSCAN preprocessing
performs best, followed by NN model with K-mean++. MLR model without preprocessing performs worst
on the prediction task.410

Table 2: The performance of ETA prediction on NN and MLR with DBSCAN-based preprocessing step on each outer cross
validation fold

Outer CV#
Classification tree

Cluster# Percentage
DBSCAN P. + NN DBSCAN P. + MLR

Accuracy Size MAE[s] RMSE[s] MAE[s] RMSE[s] R2 p-value

1 99.92% 19

1 5.15% 134.20 166.56 162.80 201.44 0.90 ≈ 0
2 12.19% 192.25 275.28 229.83 314.99 0.90 ≈ 0
3 54.98% 128.60 184.52 154.94 215.48 0.88 ≈ 0
4 11.71% 84.31 142.19 90.32 144.31 0.94 ≈ 0
5 9.26% 161.13 223.92 200.39 255.23 0.89 ≈ 0

2 99.61% 15

1 5.42% 164.42 218.15 175.22 236.19 0.90 ≈ 0
2 12.03% 184.90 286.96 220.73 312.54 0.91 ≈ 0
3 55.74% 142.85 233.94 165.28 251.08 0.88 ≈ 0
4 11.21% 106.91 160.81 120.16 173.04 0.94 ≈ 0
5 9.48% 188.87 356.39 218.93 368.60 0.92 ≈ 0

3 99.84% 19

1 4.93% 128.23 161.03 134.21 176.84 0.90 ≈ 0
2 10.98% 161.44 203.57 236.30 287.21 0.91 ≈ 0
3 56.66% 144.49 211.19 162.70 228.78 0.88 ≈ 0
4 10.76% 81.07 108.45 113.08 144.20 0.94 ≈ 0
5 9.40% 146.32 356.39 195.29 249.01 0.89 ≈ 0

4 99.77% 21

1 4.99% 122.03 155.63 153.30 202.44 0.90 ≈ 0
2 11.12% 160.28 218.39 198.74 268.66 0.91 ≈ 0
3 57.59% 123.23 173.47 137.96 183.15 0.88 ≈ 0
4 10.50% 95.19 151.39 154.52 209.90 0.94 ≈ 0
5 9.86% 139.49 293.05 185.23 330.03 0.88 ≈ 0

5 99.92% 11

1 5.02% 124.38 155.63 147.56 204.50 0.90 ≈ 0
2 11.72% 157.05 227.16 193.07 252.01 0.91 ≈ 0
3 56.01% 123.80 182.80 143.88 200.72 0.87 ≈ 0
4 10.86% 117.85 333.58 165.29 355.82 0.94 ≈ 0
5 9.39% 144.61 183.42 171.50 220.41 0.88 ≈ 0

5. Conclusion

In this paper, a novel 4D trajectory prediction approach that combines clustering model with prediction
model is proposed, implemented and simulated for ETA prediction. The proposed model contains clustering-
based preprocessing step and MCNN-based machine learning prediction step.

First of all, four steps in the preprocessing part are discussed in detail, including data cleaning and415

formatting, dimensionality augmentation, PCA and clustering via DBSCAN. They support to cluster dif-
ferent traffic flows into different traffic patterns. Then, MCNN-based prediction model is introduces. Model
validation methods are presented to well train the associated prediction model in corresponding clusters.
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Table 3: The performance of ETA prediction on NN and MLR with K-means++-based preprocessing step on each outer cross
validation fold

Outer CV#
Classification tree

Cluster# Percentage
K-means++ P. + NN K-means++ P. + MLR

Accuracy Size MAE[s] RMSE[s] MAE[s] RMSE[s] R2 p-value

1 96.57% 189

1 56.58% 132.95 181.09 149.10 205.64 0.86 ≈ 0
2 13.00% 182.60 264.28 216.32 297.36 0.88 ≈ 0
3 18.21% 119.65 189.74 124.61 173.45 0.88 ≈ 0
4 12.20% 167.83 248.05 201.59 279.07 0.88 ≈ 0

2 98.61% 121

1 58.07% 141.21 235.99 158.17 246.24 0.86 ≈ 0
2 11.18% 184.53 345.09 217.16 348.63 0.92 ≈ 0
3 17.85% 128.03 186.80 133.91 191.13 0.90 ≈ 0
4 12.90% 187.92 286.01 217.12 306.47 0.89 ≈ 0

3 95.85% 225

1 57.99% 141.89 209.23 166.78 233.82 0.86 ≈ 0
2 11.98% 164.78 210.26 250.49 301.44 0.88 ≈ 0
3 17.13% 102.30 133.47 127.53 160.14 0.87 ≈ 0
4 12.90% 157.33 209.05 201.26 261.95 0.88 ≈ 0

4 96.79% 203

1 58.36% 118.65 162.36 141.73 187.14 0.85 ≈ 0
2 12.09% 161.72 214.28 198.10 268.12 0.89 ≈ 0
3 12.80% 115.25 146.73 127.20 164.58 0.86 ≈ 0
4 16.75% 131.08 230.94 137.81 242.00 0.87 ≈ 0

5 96.06% 195

1 45.36% 125.98 191.33 138.49 201.65 0.86 ≈ 0
2 17.28% 135.32 232.01 140.62 226.50 0.88 ≈ 0
3 24.68% 150.65 243.84 157.07 257.20 0.88 ≈ 0
4 12.68% 162.09 226.63 190.85 253.26 0.88 ≈ 0

Table 4: The average performance of ETA prediction on NN and MLR with/without preprocessing step over 5 folds

Preprocessing
Classification tree NN MLR

Accuracy Avg number of nodes MAE[s] RMSE[s] MAE[s] RMSE[s] R2 p-value

Without - - 145.58 218.26 222.88 302.59 0.77 ≈ 0
K-means++ 96.78% 187 139.09 212.20 160.01 232.76 0.81 ≈ 0
DBSCAN 99.81% 17 135.62 210.21 162.85 236.04 0.81 ≈ 0

Numerical experiments demonstrate that NN with DBSCAN preprocessing performs best in terms of
MAE and RMSE, compared with other 5 methods, including NN with K-Means preprocessing, NN without420

preprocessing, MLR without preprocessing, MLR with K-Means preprocessing and MLR with DBSCAN
preprocessing. Clearly, the hybrid machine learning prediction model MCNN with DBSCAN preprocessing
can make an accurate, efficient and robust short term trajectory prediction in TMA.

Future work could be conducted on a larger time scale or special scale. Moreover, limited by the size of
dataset that we obtain at this moment, deep learning models are not used in this paper. More advanced425

deep learning model can be applied to improve the prediction performance when the dataset is enough for
training the model.
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