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Abstract: Planning conflict-free trajectories is a long-standing problem in Air Traffic Management.1

Navigation functions designed specifically to produce flyable trajectories have been previously2

considered, but lack the robustness to uncertain weather conditions needed for use in an operational3

context. These uncertainties can be taken into account be modifying the boundary of the domain4

on which the navigation function is computed. In the following work, we present a method for5

efficiently taking into account boundary variations, using the Hadamard variation.6

Keywords: Navigation Function, Hadamard Formula, Trajectory Planning, Air Traffic Control.7

1. Introduction8

The aviation industry currently faces meaningful challenges to overcome the increasing traffic9

across the world. Safety solutions are a demand in all flight phases in order to cope with traffic10

capacity, all-weather conditions and efficiency. In order to address the 5% per year increase in11

air traffic, the Single European Sky ATM Research (SESAR) program in Europe and the NextGen12

program in the USA have been initiated to design new rules and tools for future air traffic13

management (ATM).14

Each flight phase has specific operational constraints. Of interest here is the en-route flight phase.15

This phase is comprised from completion of initial climb through cruise altitude and completion of16

controlled descent to the initial approach fix. En-route air traffic is currently managed by subdividing17

airspace into sectors and air routes. In each sector, a team of air traffic controllers supervises the18

transiting aircraft and prevents conflicts by deviating some aircraft from their planned route. Each19

team communicates with the teams responsible for neighbouring sectors to transfer aircraft flying20

through several sectors.21

As traffic grows, the workload in a sector may exceed air traffic controller capabilities. In22

this case, the sector is subdivided into smaller sectors, thus lowering the number of aircraft under23

the responsibility of an air traffic controller at any given time. However, this increases the time24

spent transferring aircraft between sectors up to the point where coordinating between sectors takes25

precedence over separating aircraft and solving conflicts. The SESAR program overcomes this pitfall26

by delegating most of the separation task to the aircraft themselves, thus inducing a higher level27

of automation. In this context, fixed air routes will no longer be necessary and trajectories will be28

planned in 4D in such a way that conflicts are avoided by design.29

A major challenge associated with aircraft trajectory planning, in addition to operational30

constraints and flight dynamics, is the influence of wind. Much research has been conducted to31

plan such routes several days in advance. However, no algorithm is known to produce planning such32

that the resulting aircraft trajectories be robust to uncertain head- or tailwind. Artificial potential33
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fields, as first used by [14], enable a mobile to reach a destination while avoiding obstacles in a34

complex environment. This method has been extended to dynamic environments, with multiple35

mobile trajectory planning as in [15], coordinating between mobiles in [31] and moving obstacles in36

[8]. Navigation functions, a specific case of artificial potential fields, introduced originally for robots37

trajectory planning by [6] and [25], were extended to generate aircraft trajectories. Such trajectories38

meet ATM restrictions on speed and curvature. Furthermore, a proof of conflict avoidance can be39

obtained. Navigation functions have also been used to plan trajectories under a wind constraint40

in [23] for sailboat navigation. Recent developments in navigation functions also include their41

application to the case of real-time spacecraft guidance [26], or in uncertain environments [9].42

However, the navigation function works under the assumption that aircraft or other mobiles43

move in a deterministic way. We present in this paper a method to account for time uncertainty44

in aircraft trajectory planning. To account for this uncertainty, we consider the variation of the45

navigation function with respect to variations of the boundary of the configuration space. Of interest46

in this paper is the practical construction of Hadamard’s variational formula, as presented in [10] for47

the Green’s function of the Laplace equation on a 2-dimensional sphere world.48

The purpose of this paper is to present a method for computing the Hadamard variational49

formula given a specific domain perturbation. This variational formula requires knowledge of the50

Green’s function on the initial domain. Numerical evaluations of the Green’s function for certain51

problems, such as the Helmholtz operator on periodic structures [13], heat diffusion in 1D [1], the52

elliptic problem [2], or the exterior Neumann problem [28].53

An analytical expression of the Green’s function for Laplace’s equation has also been obtained54

in multiply connected domaines [3]. However, this formulation is difficult to implement in practice,55

as it relies on the Schottky-Klein prime function [4].56

The motivation for this paper is from designing schemes to plan trajectories for multiple mobiles57

under uncertainty using harmonic navigation functions.58

After a state of the art on navigation functions in section 2.1, section 2.2 presents a method for59

numerically computing the Green’s function of the Laplacian operator, and section 2.3 applies this60

method to the computation of the variation of the navigation function with respect to the domain61

boundary variation. The methods are illustrated and the results for this method are exhibited in62

section 3. Finally, future work is outlined in section 4.63

2. Materials and Methods64

2.1. Navigation functions65

Navigation functions on an arbitrary sphere world were introduced by Rimon and Koditschek66

[16] in the context of robot navigation for generating trajectories that present a guarantee of obstacle67

avoidance. Navigation function are a family of potential functions, with their maximum on the68

boundary of the obstacles, their minimum at the destination and no interior local minimum or69

maximum. Formally, navigation functions are defined as follows:70

Definition 1. A map ϕ : En → [0, 1] is a navigation function on a compact connected smooth manifold71

F ⊂ En if it is:72

1. Analytic on the interior of F73

2. Polar on F with a minimum at an interior point qd ∈ ◦F74

3. Admissible on F75

4. Morse on Ω76

Once the navigation function is computed, robot trajectories are determined by following −∇ f77

at non critical points or the steepest descent given by the Hessian at critical points. The trajectories78

hereby obtained reach the destination while avoiding obstacles.79
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Navigation functions have been extended to aircraft trajectory planning [27], taking into account80

ATM considerations such as limits on speed and curvature, as aircraft can only fly at [−3%, +6%] of81

their nominal speed [5].82

Of present interest are harmonic navigation functions on a manifold of R2 with non-overlapping83

spherical boundaries. Such a domain is referred to as a sphere world. Let D be a sphere world as84

described and zd the destination point in the interior of D.85

Consider the Dirichlet problem

∆φ = 0 on the interior of D
φ(z) = c ∈ R∗+, z ∈ ∂D

φ(zd) = 0 (1)

where

∆ =
∂2

∂x2 +
∂2

∂y2 (2)

is the Laplacian operator in 2 dimensions. As stated in [24], the function φ on L2(D) defined by this86

problem is a navigation function. Indeed, no interior point can be a local extrema so that φ is polar. φ87

is admissible by construction and is Morse on D88

However, navigation functions work under the assumption that trajectories are deterministic.89

The kind of trajectory obtained by this method is not robust against uncertainties, and thus90

phenomenon such as wind may cause the separation norms to be violated. This prevents navigation91

functions from being deployed in an operational context. The purpose of this work is to provide tools92

for extending navigation functions to the case of aircraft trajectories under a wind uncertainty.93

In the following sections, we will introduce the Green’s function and a numerical method to94

obtain it on sphere worlds, and its application to navigation function under a domain boundary95

uncertainty.96

2.2. Semi-analytical approximation of the Green’s function for the Laplacian operator97

2.2.1. Green’s function98

Let Ω ∈ R2 be a planar bounded domain with the boundary ∂Ω =
⋃

i Ci such that Ci be non99

intersecting circles and C1 be exterior to all other circles, as illustrated in Figure 1. The centers of100

circles Ci are noted ci and the radii ri. In this configuration, ∂Ω is Lipschitz-continuous and Ω is a101

Lipschitz domain.102

Let us consider the equation

−∆u = f on Ω, u = 0 on ∂Ω (3)

where f ∈ L2(Ω) is a given function. If the domain boundary ∂Ω is sufficiently smooth, then Equation103

3 admits a unique solution u ∈ H1
0(Ω).104

The Green’s function, noted G : (x, y) ∈ Ω̄×Ω 7→ R is the solution of

−∆u = δs on Ω, u = 0 on ∂Ω (4)

where δs is the Dirac distribution centered in s ∈ Ω. Contrary to Equation 3, the right hand term in
Equation 4 is not L2. However, the Lp-integrability of the Green’s function for elliptical equations on
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c1

c4

c2

c3

Figure 1. A sphere world bounded by an outer circle of center c1 and three non overlapping inner
circles of centers c2, c3 and c4 respectively.

Lipschitz domains is given by [19]. Furthermore, as presented in [21], it follows from Equation 4 that
the solution u to Equation 3 has the form

u(x) =
∫

∂Ω
u(y)

∂G
∂n

(x, y) dy (5)

2.2.2. Green’s function from conformal mappings105

Definition 2. Let Ω ⊂ C be a domain. A fundamental solution of the Laplace equation is a mapping
G : : ω×Ω→ R such that z 7→ G(z, z0) is harmonic in Ω− z0 for any z0 ∈ Ω and:

lim
z→z0

G(z, z0) = +∞

A representation theorem for such a G is given in [11]:106

Theorem 3. Let G be a fundamental solution of Laplace equation in a domain Ω. Then it exists a function
h : Ω × Ω → R, harmonic in its first argument, and a real constant λ > 0 such that for any (z, z0) ∈
Ω×Ω, z 6= z0:

G(z, z0) = λ log
1

|z− z0|
+ h(z, z0)

For a given λ, h, hence G, is uniquely defined by its values at the boundary ∂Ω. The special107

choice λ = 1/2π and vanishing boundary conditions yields the so-called Green’s function of the108

Laplace equation. It can be obtained by solving for h the system:109

∆zh = δz0 (6)

h(z, z0) = − 1
2π log 1

|z−z0|
, z ∈ ∂Ω (7)

Theorem 4. Let G be Green’s function for the Laplace equation in the domain Ω. The following relation holds
in the distributional sense for any z0 ∈ Ω:

∆zG(., z0) = δz0

Proof. Using the standard operators ∂, ∂, it comes: ∆zG(., z0) = 4∂∂G(., z0). For an arbitrary function110

φ holomorphic in Ω, continuous on ∂Ω:111

d (∂G(., z0)φ) = ∂∂G(., z0)dz ∧ dz + ∂G(., z0)∂φdz ∧ dz (8)

= −∂∂G(., z0)dz ∧ dz = − 1
4 ∆G(., z0)φ (9)



Version August 7, 2018 submitted to Math. Comput. Appl. 5 of 17

By Stokes theorem:112 ∫
Ω

∆G(z, z0)φ(z)dz ∧ dz = −4
∫

∂Ω ∂G(z, z0)φ(z)dz (10)

Since dx ∧ dy = −2idz ∧ dz, the equation 10 yields:113 ∫
Ω

∆G(z, z0)φ(z)dx ∧ dy = 2
i
∫

∂Ω ∂G(z, z0)φ(z)dz (11)

and finally using the relation:

∂ log |z− z0| =
1

2(z− z0)

the right hand side term equals:
1

i2π

∫
∂Ω

φ(z)
z− z0

dz = φ(z0)

114

Using the system defining h to obtain an approximate solution is not an easy task from115

a numerical point of view as it requires solving a Laplace equation that becomes increasingly116

ill-conditioned as z0 approaches the boundary of the domain. This is mainly due to the fact that117

the singularity lies within the domain of interest.118

In order to transform this inconvenient geometry into a more convenient one, we choose a119

conformal mapping that eliminates the singularity at z0.120

Consider the following conformal mapping

Tz0 : z 7→ 1
z− z0

(12)

Provided that z0 is interior to Ω, the map of Ω by Tz0 noted ΩT , as illustrated in Figure 2, is the
unbounded region exterior to a set of non-overlapping circles of center cT

j and of radii rT
j defined by

cT
j =

cj − z0

|cj − z0|2 − r2
j

(13)

rT
j =

rj∣∣|cj − z0|2 − r2
j

∣∣ (14)

Let H = G(·, z0) ◦ Tz0 : z 7→ G(Tz0(z), z0). Given that Tz0 is a conformal mapping, H is the
harmonic solution exterior to non-overlapping disks that vanishes on the disk boundaries and such
that H(z) ∼ log |z| as |z| → ∞. Furthermore, contrary to G(·, z0), function H has no singularity on its
domain. Function G(·, z0) can then be determined given the knowledge of function H

G(·, z0) = H ◦ T−1
z0

(15)

In the following subsection we present a method for approximating H121

2.2.3. Harmonic function exterior to non-overlapping disks122

We seek a function H on domain ΩT as defined prior. We use the following Laurent expansion
[17] for H

H : z 7→ α +
J

∑
j=1

β j log |z− cT
j |+<

( J

∑
j=1

∞

∑
k=1

(γjk − iδjk)(z− cT
j )
−k
)

(16)
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c1

c3

c2

z0

Tz0

cT
1

cT
3

cT
2

Ω ΩT

Figure 2. Mapping of the sphere world Ω by Tz0 . ΩT is the space exterior to three circles.

with

J

∑
j=1

β j = 1 (17)

and where α, β j, γjk and δjk are scalars to be determined. This function is harmonic with H(z) ∼ log |z|123

as |z| → ∞ and vanishing values on the boundary of ΩT .124

This series ∑∞
k=1(γjk− iδjk)(z− cT

j )
−k can be approximated by its N first terms. Thus we consider

the approximation h of function H

h : z 7→ α +
J

∑
j=1

β j log |z− cT
j |+<

( J

∑
j=1

N−1

∑
k=1

(γjk − iδjk)(z− cT
j )
−k
)

(18)

The Green’s function G(·, z0) can then be approximated by the function g = h ◦ T−1
z0

. This function
g has the additional benefit of being easily derived to any order as it is the composition of standard
functions. Given Equation 18 the derivatives of h are

∀z ∈ Ω̄T ,
∂h
∂x

(z) =
J

∑
j=1

β j
x− xj

|z− cT
j |2
−

J

∑
j=1

N−1

∑
k=1
<
(

k(γjk − iδjk)(z− cT
j )
−k−1

)
∂h
∂y

(z) =
J

∑
j=1

β j
y− yj

|z− cT
j |2

+
J

∑
j=1

N−1

∑
k=1
=
(

k(γjk − iδjk)(z− cT
j )
−k−1

)
(19)

The derivatives of g are thus obtained by combining Equations 19, 15 and 12. Once the coefficients for125

h are determined, these derivatives come for free, as no additional coefficients need to be computed.126

This property is of interest to us for the purpose of the Hadamard variation covered in section 2.3 as127

the normal derivatives on the domain boundary are required.128

The values of coefficients of the expansion of h are obtained by a numerical method derived
from that of [30], using collocation points equally spaced on the set of boundary circles, to approach
the coefficients of 18 given a domain Ω. A least squares method can be used to set the boundary
conditions. To ensure that the vanishing condition on the boundary is satisfied, a number n of
collocation points denoted by zi, i ∈ [[1, n]] are set on each circle. Values for the coefficients are
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chosen by minimizing the sum of squares of h(zi). Finding the coefficients of h is then equivalent to
solving the optimization problem {

min ||AX||2

s.t. vTX = 1
(20)

where X and v are two vectors of length (1 + J + 2NJ)

X =
(
α, β1, . . . β J , γ11, δ11, . . . δJN

)
(21)

v =
(
0 1 . . . 1
←−−−→

J

0 . . . . . . 0
←−−−−−−−−−→

2NJ

)
(22)

and A is an n by (1 + J + 2NJ) matrix.129

The problem set in Equation 20 can be turned into a set of linear equations by using Lagrange
multipliers [18]. Given enough collocation points, this problem has a unique solution X as defined in
Equation 21, from which we obtain the approximation h from Equation 18 of the harmonic function
on ΩT and the approximation g of the Green’s function, with function g defined for a fixed point z0

as

g = h ◦ T−1
z0

(23)

2.3. First order variation of the harmonic solution130

The purpose of this section is to present the main results relating the behavior of the solution of
an elliptic problem with Dirichlet boundary conditions to the variation of its border. Let (M, g) be a
connected orientable smooth Riemannian manifold of dimension d and let γi, i = 1 . . . N be a finite
set of disjoint embedded smooth submanifolds of dimension d− 1 that partitionM into two disjoint
components M+,M− that are manifolds of dimension d with common boundary γ = ∪i=1...Nγi.
M+ is assumed to be relatively compact. Finally, let X be a smooth vector field onMwith flow φ(t, x)
that is transversal to γ (except perhaps at a finite number of points). The flow of X will be denoted
by φ : ]− ε, ε[×M → M, with as usual ∂tφ(0, x) = X(x). For a fixed t, φt will denote the function
φt : x 7→ φ(t, x). The flow φ will model an admissible deformation of the manifold with boundary
M+ ∪ γ. Following [22], the deformed boundary at t ∈]− ε, ε[ will be defined as γt = φ (t, γ). and
the perturbed problem as:

∆ut = 0 in φ(
(
t,M+

)
(24)

ut|γt = ft (25)

Since the primary goal is to obtain a formula for the Green’s function variation, the problem
stated in Equation 24 will be reformulated to accommodate a distribution in the right hand term of
Equation 24. Likewise, boundary condition 25 will be simplified later to ut|γt = 0. The final problem
in distributional form is then: ∫

M+
t

∆utvω = T(v)

u|γt = ft

(26)
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where ω is the riemanian volume form and T is the right hand term distribution. Recalling that
∆ut = div∇ut, it comes: ∫

M+
t

∆utvω =
∫
M+

t

vd(i∇ut ω)

= −
∫
M+

t

g (∇ut,∇v)ω +
∫

γt
v∇ut|Nσ

(27)

where the subscript N denotes the component of the vector normal to γ and σ = iNω, with N the
normal vector to γ. Any test function v is the image by φ∗t of a test function φ−1∗

t v. The perturbed
problem 27 can thus be rewritten so as to involve only integrals onM+:

−
∫
M+

φ∗t g (∇ut,∇v) φ∗t ω +
∫

γ
φ∗t vφ∗t∇ut|Nφ∗t σ = φ∗t T(v)

φ∗t v ∈ D (M)

(28)

Taking the derivative of the first integral in the left hand side of 28 with respect to t at t = 0 yields:∫
M+

X (g (∇u,∇v))ω +
∫
M+

g (∇u̇,∇v)ω +
∫
M+

g (∇u,∇v)div Xω

v ∈ D (M)
(29)

By Cartan’s formula, div(X)ω = d(iXω), thus:∫
M+

g (∇u,∇v)div Xω =
∫
M+

d (g (∇u,∇v) iXω)−
∫
M+

d (g (∇u,∇v)) ∧ iXω

=
∫

γ
g (∇u,∇v) XNσ−

∫
M+

X (g (∇u,∇v))ω
(30)

Putting it in 29, the derivative becomes:∫
M+

g (∇u̇,∇v)ω−
∫

γ
g (∇u,∇v) XNσ (31)

The derivative with respect to t at t = 0 of the boundary term:∫
γt

v∇ut|Nσ =
∫

γ
φ∗t v∇φ∗t |Nφ∗t σ

can be expressed as: ∫
γ

v∇u̇|N − X (v∇u|N) σ (32)

with the boundary condition u|γ = 0, the first term vanishes. However, it will be kept in the sequel
to obtain a more general variation formula. Gathering things together yields:

−
∫
M+

g (∇u̇,∇v)ω +
∫

γ
g (∇u,∇v) XNσ +

∫
γ

v∇u̇|N −
∂v
∂N
∇u|N XNσ (33)

Considering the problem: ∫
M+

u∆G̃xω = δx

∇v|γ = 0
(34)
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and putting back its solution as v in 33 and using:∫
M+

u∆ω = −
∫
M+

g (∇u̇,∇v)ω

gives for the derivative of the solution:

u̇ =
∫

γ
G̃x∇u̇|Nσ−

∫
γ

∂G̃x

∂N
∇u|NXNσ (35)

Finally, if u is taken to be the green function of the original problem, the well known Hadamard
formula is obtained [29]:

δG(x, y) =
∫

∂Ω

∂G
∂n

(w, x)
∂G
∂n

(w, y)XNσ (36)

3. Results and Discussion131

3.1. Numerical validation of the Green’s function approximation132

In this section, we discuss the results obtained by implementing the above method and verify133

that the resulting functions present certain expected properties. We also justify the decisions134

regarding the choice of parameters for Equation 18 in the light of the relative error and the135

computation time. We finally discuss the relevance of this method for the application at hand, namely136

computing navigation functions.137

Python 2.7 was used to implement the method described in section 2.2 on an office computer138

with an Intel Core i7-4710MQ CPU , 2.50GHz, 8 cores.139

3.1.1. Convergence of the method140

Reconstruction of the harmonic solution for constant boundary conditions141

Given the Green’s function G on a domain Ω̄×Ω, the harmonic solution can be found for any
Dirichlet boundary conditions from Equation 5. In particular, one important property of the Green
function is that if the function u in Equation 5 is constant and equal to 1, then we find that for any
x ∈ Ω ∫

∂Ω

∂G
∂n

(x, y) dy = 1 (37)

We build function g to estimate the Green’s function as defined in Equation 23 on a domain
featuring two inner circle boundaries of centers 2i and −1− 2i and of radii 1. and 0.5 respectively,
and bounded by an outer circle of radius 5. centered at the origin. We then evaluate the quality of the
estimation by comparing the integral of its normal derivative to 1 :

ε =
∣∣∣1− ∫

∂Ω

∂g
∂n

(x, y) dy
∣∣∣ (38)

The integral is computed using the quad function from the scipy Python library [12], and based on a142

technique from the Fortran library QUADPACK.143

In Figure 3 is a measure of the quality of the estimation from Equation 37, given by the logarithm144

of ε, relative to the number of collocation points at a given point x = −2 interior to the domain and145

for a given number of terms in the Laurent expansion N = 2, N = 5 or N = 10. Overall, this value146

follows a decreasing curve, thus the distance decreases as the number of collocation points increases.147

There is a steep increase of the curve for values of nc around 2N.148
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Figure 3. log
∣∣∣1− ∫

∂Ω

∂g
∂n

(x, y) dy
∣∣∣ with x = −2 and a fixed N for values of nc ranging from 2 to 64 in

the configuration described in section 3.1.1. The x-axis is the number of collocation points nc.

c1 c2

r1 r2

Figure 4. Domain on which an exact solution is computed. The outer boundary is the unit circle.
The inner boundary is the circle of center c2 = 0.4 and of radius r2 = 0.4. The Dirichlet boundary
conditions used are such that the value is c1 = 0 on the inner boundary and r1 = 1 on the outer
boundary

For higher fixed values of N, the curve starts at a higher point, and converges for higher values149

of nc, but in either case, the distance from
∫

∂Ω

∂g
∂n

(x, y) dy to 1 plateau around 10−14 for nc > 2N.150

This indicates that the obtained values are constrained by round-off errors.151

There is no improvement for nc > 2N, since the problem is over-constrained, as can be seen in152

the linear problem stated in Equation 20, where 1 + J + 2(N − 1)J coefficients are to be determined153

from Jnc equations.154

In the following section, we will further evaluate the quality of the approximation of the Green’s155

function derived from our method by integrating over the domain boundary to find the harmonic156

solution for non-constant boundary conditions, similar to those of the foreseen application of our157

method.158

Reconstruction for non-constant boundary conditions159

On certain sphere worlds, an analytical solution can be found to Equation 3. Here, we consider160

the crown defined by the unit circle as an outer boundary, and the circle of center 2/5 and of radius161

2/5 as an inner boundary as pictured in Figure 4.162
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For a domain bounded by two concentric circles, with constant Dirichlet conditions on each
circle, the harmonic solution to this problem is a function of the form z 7→ A + B log z with constants
A and B chosen to fit the boundary condition. A Möbius mapping [20] can be found that transforms
this symmetrical problem into that described in Figure 4. From here, and given Dirichlet boundary
conditions such that the value on the inner boundary be constant equal to scalar a ∈ R and the value
on the outer boundary be constant equal to b ∈ R, then the harmonic potential on this domain is
function

ue : z 7→ b− a
log 2

log
∣∣∣2z− 1

z− 2

∣∣∣+ b (39)

We can thus compare the solution reconstructed with the Green’s function as described in
Equation 5, noted ug

ε1 = ||ue − ug||1 ≈
1
n

n

∑
i=1
|ue(zi)− ug(zi)| (40)

The zi in this equation are placed on a fine enough Cartesian grid, such that the result has converged.163

In Figure 5a, the logarithm of the distance between both solutions is presented. As the number of164

terms used in the Laurent series increases, the difference ε1 decreases for high numbers of collocation165

points. As discussed previously, the error converges for values of nc greater than 2N. As such, as the166

number of terms N in the Laurent expansion increases, the error ε1 converges for larger numbers nc167

of collocation points, but converges towards a lower value.168

In Figure 5b, log ε1 is represented for the comparison between the analytical solution and that169

obtained with the finite elements method using Lagrange elements of order 2. Here, we observe170

that the error for the solution computed with the Green’s function is comparable to that for the finite171

elements method.172

Although we compare the results obtained using the reconstruction from the Green’s function173

to those of the finite element method, it is to be noted that reconstructing the harmonic solution174

from the Green’s function is more time-consuming than solving the finite elements problem, as the175

Green’s function simultaneously gives the harmonic solution for all boundary conditions. As such,176

our method is not appropriate for solving single navigation functions. However, in the context of177

solving boundary variation problems, the hereby presented method computing the Green’s function178

is superior. We further illustrate this in the following paragraphs by exhibiting the time complexity.179

3.1.2. Time complexity180

In this section, we consider the execution time to compute the approximation of the Green’s181

function at one point, noted g in section 2.2. We normalize the resulting times relative to the execution182

time in the test case where N = 2 and nc = 2. The results are presented in Figure 6 for different values183

of N and of nc.184

As can be seen in Figure 6, the time required to compute the Green’s function rapidly increases185

as the number of terms in the Laurent expansion increases. However, as seen in sections 3.1.1 and186

3.1.1, the solution rapidly converges and good results can be obtained with small values of N.187

The order of magnitude for the base case in our configuration, with nc = 2 and N = 2, is a188

millisecond. This relatively small amount of time must be put in perspective with the fact that the189

approximation g of the Green’s function may be computed hundreds of times for different points of190

the domain in order to estimate the value of the harmonic solution in one point.191

In the following section, we will present a practical example of our method, relevant to the192

application at hand.193
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(a) log ε1 as a function of nc for a fixed number of terms in the
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Figure 5. log ε1 with our method based on the Green’s function compared to that obtained with the
finite elements method
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Figure 6. Normalized execution as a function of nc for a fixed number of terms in the Laurent
expansion N = 2, N = 5, or N = 10

3.1.3. Possible applications of the solution194

Green’s function of sphere worlds195

Having constructed a semi-analytical method for carrying out the computations of the Green’s196

function, we now include representative examples illustrating our construction on sphere worlds.197

Figure 7 depicts examples of sphere worlds with one obstacle and the singularity placed at198

different points in the domain. The resulting function vanishes except in the vicinity of the singularity.199

In each of the Laurent expansion, ten terms are used. Thirty collocation points are set on the domain200

boundaries at regular intervals.201

Sphere worlds with more obstacles can be tackled with no additional difficulty.202

Computing navigation functions203

In order to demonstrate the usability of our method in the context of aircraft trajectory planning,204

we have carried out the computation of navigation functions with the Green’s function and traced205

some resulting trajectories. These are exhibited in Figure 8. The domain is defined with dimensions206

similar to those found in operational contexts. The outer boundary, figuring the limit of the airspace207

is 100NM in diameter ; the obstacle discs, representing the other aircraft are 5NM in diameter. The208

destination is near the center of the domain.209

The trajectories are plotted using a gradient descent method [7] with a constant step. We find210

that the generated trajectories all converge towards the destination, while avoiding all obstacles with211

a wide margin, as is illustrated in Figure 8.212

3.2. Numerical validation of the Hadamard variation of the Green’s function213

In the present section, we will exhibit the results obtained with the aforementioned method for214

variations of the domain boundary. We consider here a sphere world Ω bounded by one destination215

disc (c0, r0), one obstacle disc (c1, r1) and an outer boundary disc (c2, r2), such as the one presented216

in Figure 7. We hereby study two manners of disturbing the domain boundary217

• by varying the center of the obstacle disc,218

• and by varying the radius of the obstacle disc.219



Version August 7, 2018 submitted to Math. Comput. Appl. 14 of 17

(a) Singular point z0 = 0.1 (b) Singular point z0 = −0.3− 0.7i

Figure 7. Approximation g of the Green’s function on unit disc with obstacle of radius 0.1 centered at
−0.2− 0.5i and destination disc of radius 0.2 centered at 0.5i

(a) 6 obstacles (b) 12 obstacles

Figure 8. Navigation functions with trajectories from starting points 40− 40i, 35− 55i, 50− 25i,−80−
40i and −80 + 50i represented.
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Figure 9. Relative error of the variation of the Green’s function deduced from the Hadamard variation
for a perturbation of the radius of the inner disc (displacement component ~δc is null). The x-axis is the
logarithm of the inverse of the step by which the inner disc is modified.

The domain resulting from disturbing the domain boundary is denoted by Ω∗. In any case, the form
of δρ as introduced in Equation 36 can be explicitly expressed for the entire domain border. Let ~δc and
δr be respectively the variation of the obstacle disc center and radius. Then the domain variation is

δρ =

{
~n(w) · ~δc + δr on the obstacle

0 elsewhere
(41)

where ~n(w) is the normal vector to the domain boundary at point w ∈ ∂Ω. For a pure translation of220

the disc, the term δr is null. For a pure variation of the obstacle disc radius, the term ~δc is null.221

In practice, for determining aircraft trajectories, only the center of the obstacle disc is submitted222

to uncertainty, since the radius obstacle disc is defined by the aircraft separation norms.223

In the following paragraphs, we will consider the variation of the Green’s function for small224

variations of the obstacle radius.225

We first introduce notations. Let G : Ω̄ ×Ω be the Green’s function computed at each η ∈ Ω̄
from Equation 23. Given the study of parameters in section 3.1, the values of N and nc in computing
the Green’s function are set respectively to 10 and 30. δG denotes the variation of the Green’s function
as defined in Equation 36 and the Green’s function estimated using the Hadamard variation is noted
G̃ = G + δG. The Green’s function on the perturbed domain Ω∗ is noted G∗ : Ω̄∗ × Ω∗ and is
similarly computed at each η ∈ Ω̄∗ from Equation 23. Finally, δG, the Hadamard variation of the
Green’s function is compared to G − G∗, the actual variation of the Green’s function on the entire
domain Ω̄×Ω using the relative error for the variation as a metric

εg =

∣∣∣∣∣∣∣∣ |(G∗ − G)− δG|
|G∗ − G|+ |δG|

∣∣∣∣∣∣∣∣
1

(42)

where the norm || · ||1 is computed on Ω̄ ×Ω by discretizing the domain along a Cartesian grid as226

was done for Equation 40. This error, which is expected to approach 0 for small values of δρ, is given227

in Figure 9 for perturbations of decreasing amplitudes, for a dilation of the radius of the inner disc.228
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4. Conclusion229

In this article, a method for effectively computing the navigation function when the domain230

boundary is uncertain was presented. It is a two-fold method, where section 2.2 aims at determining231

the Green’s function for the Laplacian operator and section 2.3 uses the resulting Green’s function232

for determining the Hadamard variation. This promising method can be extended to the case of233

stochastic partial differential equations for aircraft trajectory planning.234
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