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Abstract: In this paper, the problem of clustering rotationally invariant shapes is studied and a solution1

using Information Geometry tools is provided. Landmarks of a complex shape are defined as probability2

densities in a statistical manifold. Then, in the setting of shapes clustering through a K-means algorithm,3

the discriminative power of two different shapes distances are evaluated. The first, derived from4

Fisher–Rao metric, is related with the minimization of information in the Fisher sense and the other is5

derived from the Wasserstein distance which measures the minimal transportation cost. A modification6

of the K-means algorithm is also proposed which allows the variances to vary not only among the7

landmarks but also among the clusters.8

Keywords: Shape Analysis; clustering; K-means algorithm; Fisher-Rao metric; wasserstein distance9

1. Introduction10

Shapes clustering is of interest in various fields such as geometric morphometrics, computer vision11

and medical imaging. In the clustering of shapes, it is important to select an appropriate measurement12

of distance among observations. In particular, we are interested in classifying shapes which derive from13

complex systems as expression of self-organization phenomenon. We consider objects whose shapes are14

based on landmarks [1–3]. These objects can be obtained by medical imaging procedures, curves defined15

by manually or automatically assigned feature points or by a discrete sampling of the object contours.16

Since the shape space is invariant under similarity transformations, that is translations, rotations and17

scaling, the Euclidean distance on such a space is not really meaningful. In Shape Analysis [4], to apply18

standard clustering algorithms to planar shapes, the Euclidean metric has to be replaced by the metric of19

the shape space. Examples were provided in References [5,6], where the Procrustes distance was integrated20

in standard clustering algorithms such as the K-means. Similarly, Lele and Richtsmeier [7] applied standard21

hierarchical or K-means clustering using dissimilarity measures based on the inter-landmark distances. In22

a model-based clustering framework, Huang and Zhu [8] and Kume and Welling [9] developed a mixture23

model of offset-normal shape distributions.24

In Shape Analysis, it is common to assume that the landmark coordinates have an isotropic covariance25

structure [4]. To relax the isotropic assumption, a bivariate Gaussian model was proposed to describe26

the landmarks of a planar shape [10,11], where the means are the landmark geometric coordinates and27
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capture uncertainties that arise in the landmark placement while the variances derive from the natural28

variability across the population of shapes. The novelty of this shape representation is given by the fact that29

variances are considered as additional coordinates for the landmarks of a shape. According to Information30

Geometry, the space of bivariate Gaussian densities is considered as a statistical manifold [12,13] with the31

local coordinates given by the model parameters. In this way, distances between landmarks can be defined32

using the geodesic distances induced by different Riemannian metrics.33

In this paper, we consider the Fisher–Rao and the Wasserstein metrics as Riemannian metrics on the34

statistical manifold of the Gaussian densities. The geodesic distance induced by the Fisher–Rao metric is35

related to the minimization of information in the Fisher sense while the Wasserstein distance is related to36

the minimal transportation cost. Applications of geodesics to shape clustering techniques have also been37

provided in a landmark-free context [14,15].38

As is well known, any hierarchical clustering algorithm uses as input the pairwise distances of all39

possible pairs of objects under study. Using the geodesic distances induced by Wasserstein and Fisher–Rao40

metrics, in References [10,11], a hierarchical clustering algorithm which allows the variances to vary among41

the landmarks was proposed.42

In this paper, the discriminative power of these shapes distances is evaluated in the setting of shapes43

K-means clustering which is easier to implement and computationally faster. Furthermore, a modification44

of the K-means algorithm is proposed which allows the variances to vary not only among the landmarks45

but also among the clusters. The simulation results show that the proposed algorithm is able to cope with46

the effects of anisotropy in the landmark variances across different clusters.47

2. Geometrical Structures for a Manifold of Probability Distributions48

We call “manifold” a geometric object which is locally Euclidean then described by local coordinates.
Manifolds can be used to study patterns from complex systems. Since pattern recognition essentially relies
on quantitative assessment of the proximity of points, for the comparison of patterns, we need a well-suited
similarity measure (distance or divergence). From Differential Geometry, we know that a Riemannian
metric on a differential manifold X is induced by a metric matrix g, which defines an inner product on
every tangent space of the manifold as follows: 〈u, v〉 = uT gijv with associated norm ‖u‖ =

√
〈u, u〉.

Then, the distance between two points P, Q of the manifold is given by the minimum of the lengths of all
the piecewise smooth paths γ joining these two points. Precisely, the length of a path is calculated using
the inner product,

Length of γ =
∫
‖γ′(t)‖dt

thus
d(P, Q) = minγ{Length of γ}.

A curve that encompasses this shortest path is called a Riemannian geodesic and the previous distance49

is named geodesic distance. We remark that in general the concept of geodesic is related to connections50

defined on a manifold. If a connection is not Riemannian, then a geodesic is different from a shortest path.51

Probability theory, in the presence of non-deterministic phenomena, provides a natural description of52

the raw data. Each measurement x is regarded as a sample from an underlying probability distribution of53

the measurement characterized by its probability density function p(x/θ). Measurements described by the54

distribution parameters, θ, may contain more information than a measurement expressed as a value and an55

associated error bar. Therefore, we apply pattern recognition methods directly in the space of probability56

distributions. Let P be a family of probability density functions p(x | θ) parameterized by θ ∈ Rk. It is57

well known that we can endow it with a structure of manifold, called statistical manifold, whose local58
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coordinates are the parameters of the family. As an example, we consider the family of p-variate Gaussian59

densities:60

f (x | θ = (µ, Σ)) = (2π)−
p
2 (det Σ)−

1
2 exp{−1

2
(x− µ)TΣ−1(x− µ)}

where x = (x1, x2, . . . , xp)T , µ = (µ1, µ2, . . . µp)T is the mean vector and Σ the covariance matrix. Note that61

the parameter space has dimension k = p + p(p+1)
2 . In particular, we are interested in the case p = 2.62

Two geometrical structures have been extensively studied for a manifold of probability distributions.63

One is based on the Fisher information metric (Fisher–Rao metric), which is invariant under reversible64

transformations of random variables, while the other is based on the Wasserstein distance of optimal65

transportation, which reflects the structure of the distance between random variables.66

In the statistical manifold of bivariate Gaussian densities, we consider these two different Riemannian67

metrics which in turn induce two types of geodesic distances.68

Fisher–Rao Metric for Gaussian Densities69

The geometry of the Gaussian manifold endowed with the Fisher–Rao metric was intensively studied70

in References [16,17]. To avoid considering manifolds with boundaries, it is convenient to assume that all71

densities are non-degenerate, thus the covariance matrices are invertible. In this case, one can define the72

manifold of n-dimensional Gaussian densities as the set Rn ×Rn(n+1)/2 = Rn+n(n+1)/2 with local charts73

given by the obvious identification Nn(µ, Σ) 7→ (µi,i=1...n, σij,i=1...n,j≤n), where the σij are the elements of74

the matrix Σ. A tangent vector at a point (µ, Σ) of the manifold is just a vector from Rn+n(n+1)/2. While75

quite tractable, this choice of parameterization does not give any insight about the structure of the manifold.76

A more enlightening approach is obtained by considering groups of transformations, as detailed below.77

Let symm+(n) be a group of symmetric positive definite matrices of size n × n endowed with
the product [18]:

(A, B) 7→ A ◦ B = A1/2BA1/2 (1)

and let us denote, using a common abuse of notation, the group of translations of Rn also by Rn.78

Now, define the group G(n) as the semi-direct product:

G(n) = symm+(n)nρ Rn (2)

where the action ρ of symm+(n) on Rn is given by left multiplication with the square root of the
matrix, namely:

ρ(A)u = A1/2u, A ∈ symm+(n), u ∈ Rn (3)

In the sequel, we are dropping the ρ subscript in the semi-direct product and assume it implicitly.79

An element in G(n) can be represented as a couple (A, u) with A ∈ symm+(n), u ∈ Rn. The group80

product is obtained from the action ρ as (A, u) · (B, v) = (A1/2BA1/2, A1/2v + u).81

The inverse of an element (A, u) is given by (A−1,−A−1/2u). The group G(n) is a Lie group with Lie
algebra g(n) = symm+(n)⊕Rn with symm+(n) the vector space of symmetric matrices. Finally, the left
translation by an element (A, u) is the mapping:

(B, v) 7→ L(A,u)(B, v) = (A, u) · (B, v) (4)
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Being an affine map, its derivative is its linear part. The Frobenius inner product on the space of square
matrices of dimension n, defined as 〈A, B〉 = tr

(
AtB

)
= tr

(
ABt), jointly with the standard euclidean

inner product on Rn, induces a left invariant metric by:

〈〈(X, η), (Y, ξ)〉〉(A,u) = Ktr
(

A−1/2XA−1YA−1/2
)
+ ηt

1 A−1η1 (5)

where (X, η), (Y, ξ) are tangent vectors to G(n) at (A, u) and K > 0 is a fixed scaling factor that may be82

arbitrary chosen to balance the relative contributions of the matrix part and the translation part.83

It turns out that the metric obtained that way is exactly the Fisher–Rao metric on the manifold
of multivariate Gaussian densities. Using the notations of Skovgaard [16], the length element of the
Fisher–Rao metric gF is:

ds2 =
1
2

tr
(

Σ−1XΣ−1X
)
+ ηtΣ−1η (6)

with (X, η) a tangent vector at (Σ, µ).84

The expression of ds2 is the one of a warped product metric [19], which allows some simplifications85

when computing the geodesics between two densities with same means.86

A closed form for the geodesic distance between two densities with diagonal covariance matrices87

may also be obtained as follows [17]:88

dF(θ, θ′) =

√√√√√2 ∑2
i=1

ln
|( µi√

2
,σi)−(

µ′i√
2

,−σ′i )|+|(
µi√

2
,σi)−(

µ′i√
2

,σ′i )|

|( µi√
2

,σi)−(
µ′i√

2
,−σ′i )|−|(

µi√
2

,σi)−(
µ′i√

2
,σ′i )|

2

(7)

where θ = (µ, Σ) with µ = (µ1, µ2) and Σ = diag(σ2
1 , σ2

2 ), θ′ = (µ′, Σ′) with µ′ = (µ′1, µ′2) and Σ′ =89

diag((σ′1)
2, (σ′2)

2).90

For general Gaussian densities with Σ any symmetric positive definite covariance matrix, a closed form91

for the geodesic distance is not known and one has to solve numerically a system of differential equations:92

Dttµ− DtΣΣ−1Dtµ = 0 (8)

DttΣ + DtµDtµ
t − DtΣΣ−1DtΣ = 0 (9)

where the expression Dt (respectively, Dtt) stands for derivative (respectively, second derivative) with93

respect to t. A geodesic between two densities can be found by a shooting approach, which starts with94

one density as an initial condition to the system in Equation (8) and iteratively adjusts the initial speed95

vector of the curve so as to reduce the distance to the target density until the desired accuracy is reached. A96

collocation algorithm can also be used, and is a common choice for solving ordinary differential equations97

with boundary conditions. It is generally more stable than the shooting method, but may require more98

computations. In both cases, a tricky part of the process is to ensure that the Σ matrix remains positive99

definite. A rewrite of Equation (8) with the Cholesky decomposition Σ = LtLK allows this condition to100

be satisfied by design and is the preferred choice. Another option to get an approximate value is to use101

Equation (7) after diagonalizing the covariance matrices.102

In regard to the Riemannian metric gw which induces the Wasserstein distance [20], for Gaussian
densities, the explicit expression of the distance is the following:

dW(θ, θ′) = |µ− µ′|+ tr(Σ) + tr(Σ′)− 2tr(
√

Σ
1
2 Σ′Σ

1
2 ) (10)
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where | · | is the euclidean norm and Σ
1
2 is defined for a symmetric positive definite matrix Σ so that103

Σ
1
2 · Σ 1

2 = Σ. We remark that, if Σ = Σ′, the Wasserstein distance reduces to the Euclidean distance.104

Otto [20] proved that, with respect to the Riemannian metric which induces the Wasserstein distance,105

the manifold of Gaussian densities has non-negative sectional curvature. We deduce that the Wasserstein106

metric is different from the Fisher–Rao metric. Indeed, for example, in the univariate case, the statistical107

manifold of Gaussian densities with the Fisher–Rao metric can be regarded as the upper half plane with108

the hyperbolic metric, which has negative curvature as it is well known.109

Once a distance is defined, it can be used for clustering on a manifold. It is proven that the distance110

induced from Fisher–Rao metric and Wasserstein distance are in the more general class of Bregman111

divergences defined by a convex function [21]. For this class, a theorem states [22] that the centroid for a112

set of n points θi, i = 1, 2, ..., n in the statistical manifold of the Gaussian densities is the Euclidean mean113

1
n ∑n

i=1 θi. We use this result in the next section where a K-mean shapes clustering algorithm is defined114

using geodesic distances.115

3. Clustering of Shapes116

We consider only planar objects, as for example a flat fish or a section of the skull. The shape of the117

object consists of all information invariant under similarity transformations, that is translations, rotations118

and scaling [4]. Data from a shape are often realized as a set of points. Many methods allow to extract119

a finite number of points, which are representative of the shape and are called landmarks. One way120

to compare shapes of different objects is to first register them on some common coordinate system for121

removing the similarity transformations [2,23]. Alternatively, Procrustes methods [24] may be used in122

which objects are scaled, rotated and translated so that their landmarks lie as close as possible to each123

other with respect to the Euclidean distance.124

Suppose we are given a planar shape configuration, S, consisting of a fixed number K of
labeled landmarks

S = {µ1, µ2, . . . , µK}

with generic element µk = {µk1, µk2, } for k = 1, . . . , K. Following Gattone et al. [10], the k-th landmark,
for k = 1, . . . , K, may be represented by a bivariate Gaussian density as follows:

f (x | θk = (µk, Σk)) = (2π)−1(det Σk)
− 1

2 exp{−1
2
(x− µk)

TΣ−1
k (x− µk)} (11)

with x being a generic 2-dimensional vector and Σk given by

Σk = diag(σ2
k1, σ2

k2) (12)

where σ2
k = (σ2

k1, σ2
k2) is the vector of the variances of µk.125

We remark that, in the previous representation, the means represent the geometric coordinates of126

the landmark and capture uncertainties that arise in the landmark placement. The variances are hidden127

coordinates of the landmark and reflect its natural variability across a population of shapes. Equation (11)128

allows assigning to the kth landmark the coordinates θk = (µk, σk) on the four-dimensional manifold129

which is the product of two upper half planes.130

Let S and S′ two planar shapes registered on a common coordinate system using Procrustes method.131

We parameterize them as follows: S = (θ1, . . . , θK) and S′ = (θ′1, . . . , θ′K).132

The distances between landmarks allow defining a distance of the two shapes S and S′. Precisely,133

a shape metric for measuring the difference between S and S′ can be obtained by taking the sum of the134

geodesic distances between the corresponding landmarks, according to the following definition:135
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D(S, S′) =
K

∑
k=1

d(θk, θ′k) (13)

Please note that this expression is not the geodesic distance on the product manifold that one would
have expected from the landmark model. This last distance is given by:

D(S, S′) =

√√√√ K

∑
k=1

d(θk, θ′k)
2 (14)

and is a L2 distance instead of Equation (13) that is L1. It turns out that, according to simulations done, the136

L1 approach is more robust and gives all the time better clusterings.137

Then, a classification of shapes, using in turn, as distance d, the distance dF induced from Fisher–Rao138

metric and the Wasserstein distance dW , can be done following the standard methodology. In particular,139

the K-means clustering procedure allows the variances to vary step by step in each cluster fitting better140

real shape data.141

4. K-Means Clustering Algorithm142

The proposed shape distances are implemented in two different K-means algorithms: Type I and143

Type II. While in the Type I algorithm the landmark coordinates variances are assumed isotropic across the144

clusters, in Type II the variances are allowed to vary among the clusters.145

Our task is clustering a set of n shapes, S1, S2, . . . , Sn into G different clusters, denoted as146

C1, C2, . . . , CG.147

4.1. Type I Algorithm148

1 Initial step:149

Compute the variances of the k-th landmark coordinates σ2
k = (σ2

k1, σ2
k2), for k = 1, . . . , K.150

Randomly assign the n shapes, S1, S2, . . . , Sn into G clusters, C1, C2, . . . , CG.151

For g = 1, . . . , G, calculate the cluster center cg = (θ
g
1 , . . . , θ

g
K) with k-th component θ

g
k = (µgk, σ2

k )152

obtained as θ
g
k = 1

ng
∑i∈Cg θi

k, where ng is the number of elements in the cluster Cg and θi
k is the k-th153

coordinate of Si given by θi
k = (µik, σ2

k ).154

155

2 Classification:
For each shape Si, compute the distances to the G cluster centers c1, c2, . . . , cG.
The generic distance between the shape Si and the cluster center cg is given by:

D(Si, cg) =
K

∑
k=1

d(θi
k, θ

g
k )

where the distance d could be the distance dF induced from Fisher–Rao metric or the Wasserstein
distance dW .
Assign Si to cluster h that minimizes the distance:

D(Si, ch) = min
g

D(Si, cg).

3 Renewal step:156
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Compute the new cluster centers of the renewed clusters c1, . . . , cG.157

The k-th component of the g-th cluster center cg is defined as θ
g
k = 1

ng
∑i∈Cg θi

k.158

4 Repeat Steps 2 and 3 until convergence [22].159

4.2. Type II Algorithm160

1 Initial step:161

Randomly assign the n shapes, S1, S2, . . . , Sn into G clusters, C1, C2, . . . , CG.162

In each cluster, compute the variances of the k-th landmark coordinates σ2
gk = (σ2

gk1
, σ2

gk2
), for163

k = 1, . . . , K and g = 1, . . . , G.164

Calculate the cluster center cg = (θ
g
1 , . . . , θ

g
K) with k-th component θ

g
k = (µgk, σ2

gk) obtained as165

θ
g
k = 1

ng
∑i∈Cg θi

k for g = 1, . . . , G, where ng is the number of elements in the cluster Cg and166

θi
k = (µik, σ2

gk) for i ∈ Cg.167

168

2 Classification:
For each shape Si, compute the distances to the G cluster centers c1, c2, . . . , cG.
The generic distance between the shape Si and the cluster center cg is given by:

D(Si, cg) =
K

∑
k=1

d(θi
k, θ

g
k )

where the distance d could be the distance dF induced from Fisher–Rao metric or the Wasserstein
distance dW .
Assign Si to cluster h that minimizes the distance:

D(Si, ch) = min
g

D(Si, cg).

3 Renewal step:169

Update the variances of the k-th landmark coordinates in each cluster by computing σ2
gk = (σ2

gk1
, σ2

gk2
),170

for k = 1, . . . , K and for g = 1, . . . , G.171

Calculate the new cluster centers of the renewed clusters c1, . . . , cG.172

The k-th component of the g-th cluster center cg is defined as θ
g
k = 1

ng
∑i∈Cg θi

k.173

4 Repeat Steps 2 and 3 until convergence [22].174

5. Numerical Study175

The purpose of the simulation study was to evaluate the cluster recovery of the proposed shape
K-means algorithm and to test its sensitiveness with respect to different shape distances defined on the
manifold of the probability distributions. The shapes were simulated according to a Gaussian perturbation
model where the ith configuration is obtained as follows:

Xig = (µg + Ei)Γi + 1KγT
i (15)

where176

• Ei are zero mean K× 2 random error matrices simulated from the multivariate Normal distribution177

with covariance structure ΣE;178

• µg is the mean shape for cluster g;179

• Γi is an orthogonal rotation matrix with an angle θ uniformly produced in the range [0, 2π]; and180
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• γT
i is a 1× 2 uniform translation vector in the range [−2, 2].181

Three types of covariance structures are considered:182

• Isotropic with ΣE = σIK ⊗ σI2183

• Heteroscedastic with ΣE = diag[σ1, σ2 . . . , σK]⊗ σI2184

• Anisotropic with ΣE = σIK ⊗ diag[σx, σy] with σx 6= σy185

The data were generated from the model in Equation (15) with sample size n = 100 and the number186

of clusters equal to G = 2. The mean shapes in each cluster were taken from the rat calvarial dataset [1]187

corresponding to the skull midsagittal section of 21 rats collected at ages of 7 and 14 days. In the isotropic188

case, σ was equal to 13. In the heteroscedastic case, the values of σ1, σ2, . . . , σK were equal to 13 for 3189

randomly chosen landmarks and equal to 1.3 for the remaining 5 landmarks of each shape. Finally, the190

anisotropic case was simulated by setting σx = 13 and σy = 1.3 in one cluster and σx = 1.3 and σy = 13 in191

the other cluster.192

Examples of the simulated data under the different covariance structures are provided in Figures 1–3.193

In the isotropic case (Figure 1), all landmark coordinates exhibit the same independent spherical variation194

around the mean. In the heteroscedastic case (Figure 2), the spherical variation is allowed to vary between195

the landmarks and the clusters. Finally, Figure 3 shows the anisotropic case where the variability of the196

landmark coordinates is different in the horizontal and vertical directions.197

The shape K-means algorithm is implemented by using:198

• The Fisher–Rao distance under the round Gaussian model representation (dr) where the variance is199

considered as a free parameter, which is isotropic across all the landmarks200

• The Fisher–Rao distance under the diagonal Gaussian model representation (dd1 (Type I K-means201

algorithm) and dd2 (Type II K-means algorithm))202

• Wasserstein distance (dp)203

./figures/isotropic.pdf

Figure 1. Independent spherical variation around each mean landmark.

./figures/heteroscedastic.pdf

Figure 2. Heteroscedastic variation around each mean landmark.

./figures/anisotropic.pdf

Figure 3. Anisotropy in the x and y directions around each mean landmark.

For each covariance structure, we simulated 150 samples and, for each sample, we computed the204

adjusted Rand index [25] of each clustering method. The adjusted Rand index is a measure of agreement205

between two partitions. It ranges from about 0 when the compared partitions are completely random to 1206

when they are equal. The index is generally used as a measure of cluster recovery, the closer the index to 1207

the better the clustering results.208

Figures 4–6 display the boxplots of the adjusted Rand index over 150 simulated samples for each209

clustering method. Outliers are plotted individually with the + symbol. When the covariance structure210

is isotropic (Figure 4), all distances show a similar behavior. In particular, the Fisher–Rao distance with211

round Gaussian distribution (dr) and the Wasserstein distance (dw) yield the best clustering results with212

median values of the adjusted Rand index both equal to 0.96 versus 0.85 and 0.88 obtained by the diagonal213

Gaussian distribution with Type I (dd1) and Type II (dd2) algorithms, respectively. In the heteroscedastic214

setting (Figure 5), both the Fisher–Rao with the round Gaussian distribution (median adjusted Rand215

index equal to 0.54) and the Wasserstein distance (median adjusted Rand index equal to 0.43) perform216
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poorly in comparison to the Fisher–Rao distance based on the diagonal distribution. As expected, the217

models which take into account different landmark variances (dd1-Type I algorithm) and also differences218

in the variances between the clusters (dd2-Type II algorithm) show a very good behavior with median219

values of the adjusted Rand index equal to 0.84 and 1, respectively. A very similar pattern is observed220

when anisotropy is also added in the covariance structure (Figure 6). As expected, the Type II algorithm221

significantly increases the computational time needed to meet the convergence condition since in each222

iteration both the means and the variances of the cluster centers have to be updated. On average, the Type223

II algorithm’s running time is approximately 20 times longer than Type I.224

./figures/resisotropic.pdf

Figure 4. Isotropic case: Boxplots of the adjusted Rand index over 150 simulated samples for each clustering
method; aRand index median values are 0.96 (dr), 0.85 (dd1), 0.88 (dd2), 0.96 (dw).

./figures/reshet.pdf

Figure 5. Heteroscedastic case: Boxplots of the adjusted Rand index over 150 simulated samples for each
clustering method; aRand index median values are 0.54 (dr), 0.84 (dd1), 1.00 (dd2), and 0.43 (dw).

./figures/resany.pdf

Figure 6. Anisotropic case: Boxplots of the adjusted Rand index over 150 simulated samples for each
clustering method; aRand index mean values are 0.51 (dr), 0.79 (dd1), 1 (dd2), and 0.44 (dw).

6. Conclusions225

In this study, Information Geometry was used as a useful tool in the area of shape clustering. We first226

described a shape representing each landmark by a Gaussian model using the mean and the variance as227

coordinates, reflecting the geometrical shape of the configuration and the variability across a family of228

patterns, respectively. Within this framework, we considered the Fisher–Rao and the Wasserstein metric229

for quantifying the difference between two shapes.230

Two version of the Fisher–Rao metric were proposed, depending on how the variances in the data are231

employed. In one case (round Gaussian distribution model), the variance was considered a free parameter232

that is isotropic across all the landmarks. In the second case, the isotropic assumption was relaxed allowing233

the variances to vary among the landmarks (diagonal Gaussian distribution model).234

The results of the numerical study have shown that the violation of the isotropic assumption on the235

landmarks variability may cause a severe loss in the clustering recovery. Indeed, this assumption is rarely236

satisfied in practice where it is regularly seen that landmarks have different variances. In such a case, the237

relative importance among landmarks must be taken into account in the similarity measure adopted in the238

clustering algorithm. The proposed geodesic distance under the diagonal Gaussian model representation239

is able to face this problem. A further assumption that may be violated is that in all clusters the landmarks240

coordinates have a common covariance matrix. To cope with this issue, a new K-means shape algorithm241

was implemented that allows for differences among the clusters in the landmark coordinates variability.242

Other extensions of the current work deserve further investigation, for example, the use of geodesics243

in the case of the general multivariate Gaussian model and considering more general shape measures,244

such as α-divergences.245
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