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ABSTRACT 
 
The probability of failure (failure rate) is a key input parameter to integrity monitoring systems 
used for safety, liability or mission critical applications. A standard approach in the design of 
Global Positioning System (GPS) integrity monitoring is to utilize the service commitment on the 
probability of major service failure, often by applying a conservative factor. This paper addresses 
the question of what factor is appropriate by applying Bayesian inference to real and hypothetical 
fault histories.  
 
Global Navigation Satellite System (GNSS) anomalies include clock or signal transmission type 
faults which are punctual (may occur at any time) and incorrect ephemeris data which are broadcast 
for a nominal two hours. These two types of anomaly, classified as continuous and discrete 
respectively are addressed. Bounds on the total probability of failure are obtained with given 
confidence levels subject to well defined hypotheses relating past to future performance. Factors 
for the GPS service commitment of 10-5 per hour per satellite are obtained within the range two to 
five with high confidence (up to 1-10-9).  
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1. INTRODUCTION 
 
The Global Navigation Satellite System (GNSS) failure rate is a key parameter in the design of 
safety, liability or mission critical applications. At present, only the Global Positioning System 
(GPS) publishes a Performance Standard (PS) for civilian use which includes service commitments 
relating to this probability (GPS, 2008). The commitment of 10-5 per hour per satellite, translates 
to about 3 per year over the entire constellation (GPS, 2001). This value is based on a blend of 
experience obtained from past failure events (Van Dyke et. al., 2003; Van Dyke et. al., 2004) and 
reliability analysis undertaken for the constellation and ground segment.  
 
The use of GNSS within the safety critical domain of civil aviation has led to many integrity 
monitoring developments. Placing trust within the service commitments provided by GNSS 
Service Providers (GSPs) represents an external risk to aviation certification authorities whose 
primary role it is to maintain the safety of passengers and crews within its airspace. To meet 
aviation’s strict requirements, a number of approaches have been undertaken to lessen the external 
risk of the certification authority.  
 
These solutions or augmentations are the Satellite Based Augmentation System (SBAS), the 
Ground Based Augmentation System (GBAS) and the Aircraft Based Augmentation System 
(ABAS) (ICAO, 2006). The latter includes the class of consistency checking algorithms known as 



Receiver Autonomous Integrity Monitoring (RAIM). SBAS is built on dense regional networks of 
stations incorporating fault monitors which place very little trust in the core GNSS. GBAS utilizes 
local reference stations with monitors whose performance is based on equally conservative prior 
probabilities of fault occurrence. In fact, the U.S GBAS implementation known as LAAS assumes 
10-4 per hour per satellite, ten times that of the service commitment (Pullen et. al., 2006).  
 
Integrity Monitoring techniques are often founded on equating the integrity risk for a failure to the 
product of the probability of occurrence of the failure, often expressed in the range domain, and 
the probability of missed detection, expressed in the position domain and defined as the event of 
the positioning error 𝑒  exceeding the alert limit 𝐴𝐿  and the monitoring test statistic 𝑇  not 
exceeding the threshold 𝑇% (Lee and Van Dyke, 2002). 
 

𝑰𝑹 = 𝑷𝒇𝒂𝒊𝒍 × 𝑷𝒎𝒅(𝒆 > 𝑨𝑳|𝑻 < 𝑻𝒉) (1) 

 
The total integrity risk is then predicated on summing mutually exclusive failure cases. The RAIM 
methodology employed in ABAS (Lee and Van Dyke, 2002; RTCA, 2004), is inherently founded 
on a satellite fault probability of 10-5 per hour (Pullen et. al., 2006; Lee and Van Dyke, 2002).  
 
Future architectures are being assessed within the aviation community which aim to provide the 
relative autonomy and low costs of RAIM without the need to place significant trust in the core 
GNSS (FAA, 2010; Blanch et. al. 2013). One such architecture, Advanced RAIM (ARAIM), is 
the subject of the Working Group C ARAIM Technical subgroup (ARAIM SG) (Blanch et. al., 
2013; WG-C, 2012). Discussion within the ARAIM SG has focused on the question of how much 
trust can be placed in the core GNSS? This paper proposes a solution to the associated question of 
how do we quantify the trust we place in the core GNSS?  
 
The methodology presented is applicable to any safety, liability or mission critical GNSS 
application that places trust in the core GNSS. The alternative is to assume that all GNSS fault 
modes occur with a probability of unity as taken for the ionosphere threat to CAT II/III GBAS 
(Murphy et. al., 2010). 
 
The paper is organized as follows. Section 2 presents the available methodologies. Section 3 
presents the failure types and partitions them for the appropriate analysis of sections 6 and 8. 
Section 4 introduces the failure rate model. Section 5 presents the Bayesian inference 
methodology. Section 6 applies Bayesian inference to the observed continuous time fault history. 
Section 7 presents the application to new satellite blocks. Section 8 addresses discrete time failures. 
Section 9 presents the combined failure model including an algorithmic framework outlining the 
role of the preceding sections before Section 10 concludes. 

2. FOUNDATIONS 

This paper determines the probability of failure onset without accounting for the transition from a 
fault mode to the fault-free mode following control segment intervention (GPS, 2008; Blanch, 
2012). A number of different approaches may be taken as outlined below.  
 
2.1 Acceptance of the Performance Standard 



 
A first approach could be to accept the standards provided by the core GNSS such as in the GPS 
Standard Positioning Service (SPS) Performance Standard (PS) (GPS, 2008) and the associated 
external risk. The GPS SPS PS defines a Major Service Failure (MSF) to occur when the 
Instantaneous User Ranging Error (IURE) exceeds 4.42 times the satellite’s broadcast User 
Ranging Accuracy (URA). The standard then states that an MSF will not occur with a probability 
greater than 10-5 per hour per satellite which equates to approximately three failures per year over 
the constellation. The URA is broadcast for each satellite and varies with time, as does the true 
distribution of the IURE, whereas from the user perspective, a ranging failure, which may lead to 
a positioning failure, depends upon the time-varying user-satellite geometry. Furthermore, the 
MSF magnitude could potentially be larger than the failures which must be addressed, to support, 
say LPV-200 operations with ARAIM (ICAO, 2006; FAA, 2010; WG-C, 2012). 
 
2.2 Fault Tree Analysis 
 
Alternatively, fault tree analysis could be applied within a risk assessment of the core GNSS space 
and ground segments. A Failure Modes and Effects Analysis (FMEA) is performed, capturing the 
faults with the potential to cause a positioning failure (Van Dyke, 2003; Van Dyke et. al., 2004). 
Table	1 presents the list of feared events considered for ARAIM (WG-C, 2012). The advantage of 
this approach is setting very low probabilities to rare faults with sufficient justification. However, 
there is a tendency to conservatively but arbitrarily inflate the prior probabilities of other failure 
events, thus negating the gains. 
 
2.3 Empirical Approach 
 
The approach taken in this paper is to estimate the failure rate for the ensemble of feared events 
using the fault history. It is a methodology readily available to the navigation community given 
the extensive data stored globally and thus enables the use of data mining activities to capture the 
occurrence of failure events (Heng et. al., 2010).  Previous fault analyses employed within the 
augmentation system definitions have assumed failure rates for different feared events based on 
an analytical expert opinion, to which conservative factors are then applied (Shively, 1999).  

3. FAILURES AND FEARED EVENTS 

The approach taken in this paper is based on the true unknown time-varying satellite failure rate 
𝜆. In order to fully understand its properties, the following failure definitions are considered: 

• Ranging/Positioning Failure: 
the event that the instantaneous error (range or position domain) exceeds a predefined 
threshold (Figure 1 & Figure 2) (GPS, 2008).  

• Integrity Failure: 
the event that the probability of an instantaneous position error exceeding a predefined 
threshold without timely detection, exceeds a predefined probability limit (Figure 3) 
(ICAO, 2006) 

• Overbounding Failure: 
the frequency density which lies outside the assumed model (Figure 4) (DeCleene, 2000) 

• Statistical Failure: 



a change in the underlying error distribution to a ‘failure’ state defined by statistical 
parameters (i.e. mean and sigma) (Figure 5) (Lee et. al., 2006) 
 

These definitions may be applied in the range domain, position domain or test statistic domain 
(Sturza, 1989). Whilst the performance commitments are naturally in the range domain (GPS, 
2008), the position domain is used for the application requirements (ICAO, 2006).  

    

Figure 1: Range Error Failure 

 

Figure 2: Positioning Failure 

 
 

 
Figure 3 Integrity Failure 

 
 Figure 4: Overbounding Failure 



 
Figure 5: Statistical Modelling Failure 

Navigation system requirements are expressed in terms of either positioning failures or integrity 
failures (ICAO, 2006), yet implicit assumptions are made that the mathematical techniques 
employed and the physical assumptions taken are valid. This provides the link between the natural 
definitions of Figure 2 and Figure 3 with those of Figure 4 and Figure 5. The MSF event (GPS, 
2008) is a function of URA. However, when the IURE remains below the 4.42×URA value, a 
change in the underlying error distribution, such as an increased mean or inflated standard 
deviation can also represent a failure condition. This is the case if the zero-mean Gaussian model 
parameterised by URA no longer overbounds the true distribution. 

In this paper, the range failure of Figure 1 is taken as the baseline. Whilst, such events may be 
understood to occur at the onset of the defined failure windows shown in Figure 1, Figure 2 and 
Figure 3, it is not immediately obvious how a rate can be applied to the failure interpretations 
expressed by Figure 4 and Figure 5.  

Table 1 lists the most commonly considered feared events (WG-C, 2012). Column three codifies 
whether the fault occurs at a punctual continuous (and random) point in time (C) or during a 
discrete sample with correlation throughout the sample period (typically two hours) (D). These 
cases are handled separately in sections 5-6 and 8 respectively. Nominal events consisting of both 
types are denoted (B).  

Table 1: Feared Events 

Feared Event Comment C/D 
Nominal Clock + Ephemeris Error Incorrect overbounding/statistical modelling by the URA  B 

Single Fault  Clock and Ephemeris 
Fault - Physical 

Physical satellite clock run-off / excessive acceleration or 
uninformed manoeuvre / thruster firing 

C 

Single Fault  Clock and Ephemeris 
Fault - Message 

Upload of incorrect ephemeris and clock offset model 
parameters. Correlated in time throughout the period of 
navigation message transmission (nominally up to two hours) 

D 

Wide Clock and Ephemeris Fault - 
Physical 

Physical satellite clock run-off / excessive acceleration or 
uninformed manoeuvre / thruster firing on multiple satellites 

C 

Wide Clock and Ephemeris Fault - 
Message 

Upload of incorrect ephemeris and clock offset model 
parameters. Correlated in time throughout the period of 
navigation message transmission (nominally up to two hours) 

D 

Nominal Signal Deformation Incorrect overbounding/modelling through the URA and ICAO 
signal deformation modelling 

B 

Single Fault Signal Deformation Physical ‘evil waveform’ event can occur at any continuous time C 



Nominal code-carrier incoherence Incorrect overbounding/statistical modelling by the URA. B 
Single Fault code-carrier 
incoherence 

Physical effect of divergence between the code and carrier 
phases as a result of payload failure 

C 

Nominal IFB Incorrect overbounding/statistical modelling through the 
broadcast IFBs and URA. 

B 

Single Fault IFB Physical effect of the divergence between the frequency  delays 
at the satellite hardware 

B 

Nominal Antenna bias Incorrect overbounding/statistical modelling by the URA 
(satellite hardware effects) and user receiver model sigma 

C 

Single Fault Antenna bias Physical effect of a hardware failure. C 
Nominal Ionospheric error Not considered – addressed by ionosphere free smoothing C 
Single Fault Ionosphere Not considered – addressed by ionosphere free smoothing 

(Pullen et. al., 2006) 
C 

Wide Fault Ionosphere Not considered – addressed by ionosphere free smoothing C 
Nominal Tropospheric error Not considered – relates to overbounding/statistical modelling 

failure of the troposphere model 
C 

Single Fault Troposphere Not considered – see (van Graas and Zhu, 2011) C 
Nominal Code Noise and Multipath  Not considered – user segment fault C 
Receiver Fault  Not considered – user segment fault C 

 

A failure (condition) as defined by Figures 1 to 5 is distinguished from a fault being the physical 
event (payload functioning in an abnormal state). The table of feared events presents both faults 
and other events which may occur nominally and lead to a failure condition. In that regard a feared 
event is a type of fault. 

The rate 𝜆 does not include failures due to the signal environment or user segment equipment. The 
probability of space and control segment failures depends upon the satellite’s hardware (clock age, 
payload, block design) or the ground control segment (network, software, operational status). This 
variability of the failure rate λ as a function of time is addressed in the following section. 

4. FAILURE RATE MODEL 

This paper presents a Bayesian approach to determining the true failure rate (O’Hagan and Forster, 
2003). It is assumed that the physical process’s true failure rate exists and may be estimated using 
Bayesian analysis as opposed to a classical approach (Neyman, 1937). Whilst a confidence 
distribution may be constructed by extending the classical notion of the confidence interval, such 
an approach has not been extensively formalised (Fraser, 2011). The advantages of a Bayesian 
approach are that it allows a more natural means to express the posterior distribution for the 
estimated random parameter. Furthermore, understanding this parameter to be time-varying and 
random allows an easier interpretation of the conditions in which the approach is valid (as 
expressed in hypotheses 1-3). Finally, whilst this paper ultimately selects a non-informative prior, 
the Bayesian approach maintains the possibility of combining the technique with prior information 
from an FMEA.  

Following this Bayesian approach, initially the mathematical formulation is restricted to punctual, 
continuous time events. If the true instantaneous failure rate is known to be constant then the 



number of failures observed over a given duration would follow a Poisson process (Cox and Isham, 
1980). Due to changes in the control segment, the active satellite clock and aging of payload 
components, the true instantaneous failure rate varies with time. The Non-Homogeneous Poisson 
Process (NHPP) with variable failure rate 𝜆(𝑡) models this real system (Pham, 2006). Under the 
NHPP the true expected number of failure events up to time 𝑇 is: 

𝒎(𝑻) = = 𝝀(𝒕)
𝑻

𝟎
𝒅𝒕 (2) 

The probability of 𝑘 failures having occurred over the period [0, 𝑇] is then known to follow the 
standard Poisson relation: 

𝑷(𝒌) =
𝒎(𝑻)𝒌

𝒌! 𝒆H𝒎(𝑻) (3) 

 

To utilise this result in the future, the following two hypotheses are assumed: 

H1. Short term variations in 𝜆(𝑡) are not observable 

H2. ∀𝑇	∃𝑆 > 𝑇	𝑠. 𝑡		
𝑚(𝑇)
𝑇 ≥

∫ 𝜆(𝑡)𝑑𝑡S
T 	

𝑆  
 

Hypothesis 1 states that whilst the system changes from ground operational actions, satellite aging 
and other factors, the impact on the instantaneous probability of failure cannot be determined from 
data. It is a hidden variables statement that supposes all that is undeterminable may be considered 
random. What is of interest is the likelihood that the number of failure events exceeds the number 
that is predicted. 

Aircraft perform approach and landing operations using monitoring algorithms predicated on a 
particular failure probability. If the true failure probability exceeds this value during an approach 
but this value is not determinable as the fluctuations from causal relations are too complex to 
determine, it is then appropriate to assert that the system meets the integrity requirements based 
on the best available knowledge. The alternative is to estimate the impact of satellite aging and all 
other factors upon the failure rate. However, the authors’ view is that this is too complex to model 
appropriately.  

Hypothesis 2 goes further by relating the expected failure rate at time 𝑇 to future expectations of 
the failure rate. It states that a future time 𝑆 exists where the true expected failure rate will be no 
greater than the current expected rate. It may be understood that the total system reliability does 
not degrade over the long term. Note this hypothesis applies to the total system rather than a 
particular satellite. It asserts that a future time 𝑆 may be found, and not that the condition holds for 
all 𝑆.   



The service commitment may then be understood as implementing sound processes, by 
maintaining the same rigour in satellite and ground system design, mitigating observed problems 
in the control segment operations and maintaining satellites as they age. The variable 𝝀 is then 
used as the true mean failure rate 𝜆 = 𝑚(𝑡)/𝑇 which for the purposes of notational simplicity is 
scaled to be the rate per 𝑇 (to be rescaled when expressing the results per hour as in Table 4) and 
the model reduces to the Poisson Process (Cox and Isham, 2006). 

𝑷(𝒌) =
𝝀𝒌

𝒌! 𝒆
H𝝀 (4) 

5. BAYESIAN INFERENCE 

Inference may be made using past failure data to estimate the posterior distribution of 𝜆. Bayes 
theorem for a continuous variable 𝜆 with discrete events 𝑘 is as follows (Box and Tiao, 1973): 

𝒇(𝝀|𝒌) =
𝑷(𝒌|𝝀)𝒇(𝝀)

∫𝑷(𝒌|𝝀)𝒇(𝝀)𝒅𝝀
 (5) 

where: 

𝑃(𝑘|𝜆) - probability of 𝑘 failure events occuring over 𝑇 given  𝜆 

𝑓(𝜆) - continuous prior PDF for 𝜆 

𝑓(𝜆|𝑘) - continuous posterior PDF for 𝜆 

The quantity of interest is the continuous posterior distribution for the failure rate 𝑓(𝜆|𝑘). Over a 
given period with a given definition of failure, 𝑘  may be determined. The Poisson model 
determines the values the function 𝑃(𝑘|𝜆) takes whilst the prior probability 𝑓(𝜆) may be formed 
using two approaches (Box and Tiao, 1973; Jeffreys, 1946): 

A. Non-informative reference priors giving the data maximum weight over prior information 

B. Priors expressed using standard conjugates based on ‘expert opinion’ 

For completeness, both approaches are used to check whether the choice of prior has a strong 
impact on the results. The form of the conjugate prior distribution does not influence the inference 
output significantly, what is critical are the CDF percentiles.  

Firstly, the conjugate distribution to the Poisson distribution which may be used for the prior 𝑓(𝜆), 
the Gamma distribution, is introduced (Raiffa and Schlaifer, 1961): 

𝒇(𝝀) =
𝜶𝝂𝝀𝝂H𝟏𝒆H𝜶𝝀

𝜞(𝝂)  (6) 

with shape parameter 𝜈,  scale parameter 1 𝛼⁄ , and the gamma function 𝛤(∙) 



Three reference priors are employed (Box and Tiao, 1973; Jeffreys, 1946) : 

Bayes Uniform Prior: (𝜈 = 1 & 𝛼 = 0)  

𝒇(𝝀) ∝ c𝟏/𝑴𝟎
𝟎 ≤ 𝝀 ≤ 𝑴
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆  where 𝑴 → 	∞ (7) 

Albert’s Prior: (𝜈 = 0 & 𝛼 = 0) 

𝒇(𝝀) ∝
𝟏
𝝀 (8) 

Jeffrey’s Prior (𝜈 = 1/2 & 𝛼 = 0): 

𝒇(𝝀) ∝
𝟏
√𝝀	

 (9) 
 

Although there is no single standard reference prior, Jeffrey’s prior is the most commonly 
employed.  

In addition, hypothetical expert opinions are considered, expressed in terms of the conjugate prior. 
The gamma distribution parameters and percentiles are given in Table 2, selected with respect to 
the GPS constellation. 

Table 2 Expert Opinion Conjugate Priors 

Expert Opinion 𝜈 𝛼 Mean/year 95%/year Comments 

Positive 3 0.1 1.5 3 95% at 3/year 

Realistic 3 0.05 3 6 Mean at 3/year 

Conservative 2.5 0.02 6.25 14 95% at 1/month 

Highly - Conservative 2 0.005 67 47 5% at 3/year  
95% at 1/week 

 

The positive expert in the first row of Table 2 is the expert opinion of following the recent trend. 
The realistic expert view follows GPS SPS PS (2008) whilst the conservative view holds a 95% 
confidence that a fault per month is to be expected and the highly conservative a 95% confidence 
of a fault per week. Table 3 presents the respective Gamma distribution parameters. 
 

Table 3. Prior Distribution Parameters 

ID Prior 2𝜈 2𝛼 

1 Uniform 2 0 
2 Albert 0 0 



3 Jeffrey 1 0 
4 Positive 6 0.2 
5 Realistic 6 0.1 
6 Conservative 5 0.04 
7 Highly Conservative 4 0.01 

 
Employing the parameters given in Table 3 gives the following posterior distributions: 
 

1 𝑓(𝜆|𝑘, 0,1	) =
𝑒Hn𝜆o

𝛤(𝑘 + 1) 

2 𝑓(𝜆|𝑘, 0,0) =
𝑒Hn𝜆oHq

𝛤(𝑘)  

3 𝑓 r𝜆|𝑘, 0, q
s
t =

𝑒Hn𝜆oH
u
v

𝛤w𝑘 + q
sx

 

4-7 𝑓(𝜆|𝑘, 𝛼, 𝜈) =
𝑒H(qyz)n𝜆oy{Hq(1 + 𝛼)oy{

𝛤(𝑘 + 𝜈) 	 

 

Integrating the posterior distributions with a 𝑘 value taken from the fault history determines the 
true failure rate with a given level of confidence. Example results are given in the appendix for 
various 𝑘 values and show only minor differences. The exception is for a low 𝑘 value (Table 12) 
as a result of choosing the conjugate distribution parameters to best fit the tail.  For full 
constellations with a long service history, the differences are much smaller (Table 9) and the prior 
distribution has little impact on the posterior distribution. In the case of low 𝑘 value it may be more 
appropriately argued that the no prior information rule should be applied. Therefore, Jeffrey’s prior 
is employed for the remainder of the paper. 

6. FAULT HISTORY 

Consider the fault history of the existing constellations, GPS and Glonass. A data mining approach 
presented in (Heng et. al., 2010; Heng, 2012) found a total of 28 potential GPS anomalies over the 
period 2004 to mid-2012. Here an anomaly is defined with respect to the service commitments, 
when the instantaneous user ranging error exceeds 4.42 times the URA (GPS, 2008). The 
anomalies are potential as they have not been fully verified in an independent manner and any 
faults lasting less than 15 minutes may not be included. Of the 28 potential anomalies, 21 were 
clock faults and fit the continuous definition.  

Using the posterior distribution given by Jeffrey’s prior: 

𝒇r𝝀|𝒌, 𝟎, 𝟏
𝟐
t =

𝒆H𝝀𝝀𝒌H
𝟏
𝟐

𝜞w𝒌 + 𝟏
𝟐x

 (10) 



 
and the fault history obtained by Heng et. al. (2012) gives the confidences for the true past mean 
failure probability shown in Table 4. Note that a constellation of 30 satellites is assumed for the 
purposes of transforming to a per satellite basis. This gives a total number of hourly periods of 
2235330 over the 8½ year period. 

Table 4. GPS Failure Rate Confidence 

Percentile Ponset/hr/sat All Faults Ponset/hr/sat Cts Time Faults 
95% 1.7×10-5 1.4×10-5 
99% 1.9×10-5 1.6×10-5 
99.9% 2.2×10-5 1.8×10-5 
1-10-5 2.6×10-5 2.2×10-5 
1-10-7 3.0×10-5 2.5×10-5 
1-10-9 3.3×10-5 2.8×10-5 

 

Table 4 shows that whilst values greater than the service commitments are obtained for all 
confidence levels larger than 95%, the inflation of 10-5 is not excessive. The relationship between 
confidence percentile and failure rate is approximately log-linear. Confidence bounds up to 10-9 
are presented as this presents the lower bound on risks which must be mitigated, known to have 
potentially catastrophic consequences in civil aviation (EASA, 2012). A confidence level is 
considered rather than fault rate but this provides some justification to the range of percentiles. 

The highest confidence percentile of 10-9 requires a reasonable inflation factor of only 2.8 over the 
GPS service commitments. However, note that the discrete time faults addressed in section 8 must 
also be included. 

Heng (2012) also analyses the Glonass fault history. Using an arbitrary fault threshold of the IURE 
of 50m (no public service commitments exist for Glonass) a total of 192 potential anomalies were 
identified between 2009 to August 2012. Using this result, Table 5 presents the equivalent 
confidence levels of the Glonass failure rate based on the assumption of a 24 satellite constellation. 
This gives a total number of hourly periods of 777888 over the assessment period in (Heng, 2012). 

Table 5. Glonass Failure Rate Confidence 

Percentile Ponset/hr/sat All Faults 
95% 2.8×10-4 
99% 3.0×10-4 
99.9% 3.1×10-4 
1-10-5 3.4×10-4 
1-10-7 3.6×10-4 
1-10-9 3.8×10-4 

 



Using the data from (Heng, 2012), the Glonass failure rates are an order of magnitude greater than 
those of GPS. The log-linear relationship is preserved and a high confidence leads to only a 
reasonable inflation over the best estimate. 

This section has presented the results of the methodology using the best available fault history data 
from (Heng, 2012), but the approach could be re-applied using different failure thresholds to obtain 
appropriate results. This is particularly relevant for Glonass in which reference (Heng, 2012) 
utilised a threshold of 50m, which is large with respect to some applications.  

7. NEW CONSTELLATIONS 

In section 6, the inference methodology was applied to fault history data of the existing 
constellations. In this section, the failure rates are derived for new constellations, such as Galileo 
or Beidou, or new blocks of satellites which may require a reset of the fault history. 

Consider the failure rates with given confidences as a function of the observation window 𝑇, 
starting at an initial operating capability. It is assumed for the analysis that no faults are observed 
over this period but to maintain conservatism, a value of 𝑘 = 1 is used, thereby extending the 
applicability of the derived values in the immediate period following a failure. 

Table 6. Derived Failure Probabilities vs. Constellation Operational Time 

Total Operational Time Ponset/const 
6 months 5.4×10-3 
1 year 2.7×10-3 
2 years 1.3×10-3 
5 years 9.1×10-4 
10 years 5.5×10-4 
20 years 2.7×10-4 
30 years 1.8×10-4 
50 years 5.5×10-5 
75 years 3.6×10-5 
100 years 2.7×10-5 

 
Table 6 shows the total (fault-free) operational time of a constellation of 24 satellites and the 
corresponding derived probability of failure with a confidence of 1-10-9.  

8. DISCRETE TIME EVENTS 

In the previous sections the NHPP was used to model the failure rate for punctual continuous time 
fault events. Consider discrete time failures which occur over a sample period such as incorrect 
ephemeris parameters. A temporal correlation exists between the presence of a fault at 
neighbouring times. This may be over the standard navigation message period of applicability (2 
hours for GPS) or up to a maximum of the data period used for orbit determination (48 hours). 

For discrete events, the appropriate model is an inhomogenous Binomial process, but no 
simplification to the standard Binomial process through taking the mean over time exists. Instead 



the real process is considered to be a sequence of events with probability of failure 𝑠 =
{𝑝q, 𝑝s, 𝑝� … } and the following assumption is imposed: 

H3. The sequence 𝑠 is non-increasing (𝑝o ≥ 𝑝oyq) 

This is a stronger condition than hypotheses H1 and H2 applied in the continuous time case. It 
only applies to the navigation message type faults which depend on the ground network and may 
be understood as the ground network does not degrade over time. Under this assumption the 
standard Binomial process model is used to conservatively infer the posterior distribution for the 
current 𝑝 based on past fault data. 

r𝒏𝒌t𝒑
𝒌(𝟏 − 𝒑)𝒏H𝒌 (11) 

where: r𝑛𝑘t =
�!

o!(�Ho)!
 

𝑘 the number of failure events 

𝑛 the number of independent samples 

𝑝� the true probability of fault during a single independent sample indexed by 𝑖 

The conjugate prior distribution to the binomial is the beta distribution (Johnson and Kotz, 1995). 

𝒇(𝒑)~𝒑𝜶H𝟏(𝟏 − 𝒑)𝜷H𝟏 (12) 

 
The Jeffrey’s prior parameter values to minimise the impact of prior information for the beta 
distribution are: 𝛼 = q

s
	&	𝛽 = q

s
 which give the following posterior distribution. 

𝒇(𝒑|𝒌,𝒏)~𝒑𝒌H𝟏/𝟐(𝟏 − 𝒑)𝒏H𝒌H𝟏/𝟐 (13) 

 
The percentiles are determined by integrating up to the fault probability. Whilst the true time 
between independent navigation messages remains open to debate, values of 2 hours (nominal 
navigation message validity, 4 hours (nominal curve fit period), 12 hours (approximate orbital 
period) and 48 hours (data period used for orbit modelling) are used. These correlation times lead 
to numbers of samples of 898272, 449136, 149712 and 37428 on the basis of a 24 satellite 
constellation operating from the 1st Jan 2004 to 16th July 2012, being the period employed in 
(Heng, 2012). Table 7 shows the probability of failure per sample following the integration of the 
posterior distribution, whilst Table 8 converts these values to per hour figures.  

Table 7. GPS Discrete Failure Rate Confidence 

Percentile Ponset/sample/sat Discrete Time Faults 
Independent sample period 



2hr 4hr 12hr 48hr 
95% 1.4×10-5 2.2×10-5 8.3×10-5 3.3×10-4 
99% 1.6×10-5 3.4×10-5 1.0×10-4 4.1×10-4 
99.9% 1.8×10-5 4.2×10-5 1.3×10-4 5.0×10-4 
1-10-5 2.2×10-5 5.6×10-5 1.6×10-4 6.7×10-4 
1-10-7 2.5×10-5 6.9×10-5 2.1×10-4 8.3×10-4 
1-10-9 2.8×10-5 8.2×10-5 2.5×10-4 9.8×10-4 

 

Table 8. GPS Discrete Failure Rate Confidence per hour 

Percentile Ponset/hr/sat Discrete Time Faults 
Independent sample period 
2hr 4hr 12hr 48hr 

95% 5.7×10-6 5.7×10-6 7.0×10-5 7.0×10-6 
99% 8.5×10-6 8.5×10-6 8.5×10-6 8.5×10-6 
99.9% 1.0×10-5 1.0×10-5 1.0×10-5 1.0×10-5 
1-10-5 1.1×10-5 1.4×10-5 1.4×10-5 1.4×10-5 
1-10-7 1.7×10-5 1.7×10-5 1.7×10-5 1.7×10-5 
1-10-9 1.7×10-5 2.0×10-5 2.0×10-5 2.0×10-5 

 

and show higher confidence is obtained without an extreme increase in the failure rate reflecting 
the continuous case. Although the larger correlation time decreases the number of samples, due to 
the factoring by the period, Table 8 shows only a minor sensitivity to this assumption. Note 
however, that the longer correlation time faults could be subject to longer exposure times if there 
are no guarantees of detection by the control segment. Alternatively, a more complex model could 
be employed to reflect this (Blanch, 2012). 

Considering the discrete model for new systems or constellations gives confidence levels on the 
probability of failure as shown in Table 9. 

Table 9. Derived Failure Probabilities vs. Constellation Operational Time 

Total Operational Time Independent sample period 
6 months 4.5×10-3 
1 year 2.4×10-3 
2 years 1.2×10-3 
5 years 5.0×10-4 
10 years 2.5×10-4 
20 years 1.3×10-4 
30 years 8.5×10-5 
50 years 5.1×10-5 
75 years 3.4×10-5 
100 years 2.6×10-5 

 



9. ALL EVENTS MODEL 

In order to summarise the steps required to arrive at the bounds of the total failure rate as given in 
Table 10, Figure 6 presents the process in full. 

 

Figure 6: Failure Rate Bounding Process 

 

The results provided in sections 6 and 8 to complete a table of the total probability of failure per 
hour and per satellite using the more conservative 48 hour sample period. 

Table 10. GPS Total Failure Rate Confidence 

 Ponset/hr/sat 
Percentile Continuous Discrete Total 
95% 1.4×10-5 7.0×10-6 2.1×10-5 
99% 1.6×10-5 8.5×10-6 2.4×10-5 
99.9% 1.8×10-5 1.0×10-5 2.8×10-5 



1-10-5 2.2×10-5 1.4×10-5 3.6×10-5 
1-10-7 2.5×10-5 1.7×10-5 4.2×10-5 
1-10-9 2.8×10-5 2.0×10-5 4.8×10-5 

 

Table 10 shows that in order to have a high confidence, factors of the order of 2 to 5 are required 
based on the fault history provided in (Heng, 2012). Table 11 presents the equivalent total failure 
model for the case of new satellite constellations or blocks and the associated operational time. 

Table 11. Operational Time 

 Ponset/const Ponset/sat (24) 
Total Operational Time Cts Dsc Total Total 
6 months 5.4×10-3 4.5×10-3 1.0×10-2 4.2×10-4 
1 year 2.7×10-3 2.4×10-3 5.1×10-3 2.1×10-4 
2 years 1.3×10-3 1.2×10-3 2.5×10-3 1.0×10-4 
5 years 9.1×10-4 5.0×10-4 1.4×10-3 5.8×10-5 
10 years 5.5×10-4 2.5×10-4 8.1×10-4 3.3×10-5 
20 years 2.7×10-4 1.3×10-4 4.0×10-4 1.7×10-5 
30 years 1.8×10-4 8.5×10-5 2.7×10-4 1.1×10-5 
50 years 5.5×10-5 5.1×10-5 1.0×10-4 4.2×10-6 
75 years 3.6×10-5 3.4×10-5 7.0×10-5 2.9×10-6 
100 years 2.7×10-5 2.6×10-5 5.3×10-5 2.2×10-6 

 

10. CONCLUSIONS 

This work has presented a novel approach to the setting of failure probability assumptions for 
GNSS safety, liability and mission critical applications. A methodology has been defined whilst 
carefully stating the assumptions needed to infer future reliability statistics based on past data. 
Results have been presented for two intrinsic fault types, continuous faults which are punctual 
events occurring at any continuous point in time and discrete faults whose occurrence is tied to an 
independent single  sample. This dichotomy is crucial so not to model certain fault types using an 
inappropriate model.  
 
Confidence bounds have been determined for the failure probability of continuous faults in the 
range of 1-3 times larger than the service commitment of 10-5 per hour per satellite with extremely 
high confidence. This suggests that the analysis matches well the service commitments but could 
enable a quantified layer of conservatism to be applied. Similarly, for the discrete time events, 
conservative factors of 1-2 are determined. Therefore, for the total fault probability factors up to 5 
are obtained. Application of the methodology to new blocks of satellites has shown how quickly 
confidence could be gained from a new constellation or modernization programs in the absence of 
failures. 
 



The natural objection to this analysis is whether applying inferences on past data is applicable to 
future failure probability predictions. However, such inductive argument is intrinsic to the service 
commitment statements and any other statements relating to future performance. 
 
The step forward taken by this paper is in introducing a quantifiable conservative bound avoiding 
the need for arbitrary assumptions. The probability of failure is considered a random time varying 
parameter whose distribution is estimated rather than deriving a more simplistic point estimate. 
Secondly, justification is given to using inference on past data for future operations. From the point 
of view of a fastidious system designer, this paper gives confidence to the existing GPS 
performance commitments with some small conservative factors applied to provide the confidence 
margins preferred. The paper also shows the approach applied to new constellations with limited 
fault histories (e.g. Galileo). In future, informative priors could be included to take account of an 
FMEA undertaken within the constellation design, testing and validation. 
 
APPENDIX 
 
This appendix presents tables giving the confidence bounds for different failure number cases and 
for each of the priors considered in the paper.  
 
ID Expert 10-3 10-5 10-7 10-9  ID Expert 10-3 10-5 10-7 10-9 
1 Uniform 9.23 14.24 19.12 23.94  1 Uniform 11.23 16.55 21.67 26.67 
2 Albert 6.91 11.51 16.12 20.72  2 Albert 9.23 14.24 19.12 23.94 
3 Jeffrey 8.13 12.95 17.70 22.42  3 Jeffrey 10.26 15.43 20.43 25.35 
4 Positive 11.87 16.97 21.81 26.50  4 Positive 13.45 18.77 23.78 28.61 
5 Realistic 12.44 17.78 22.84 27.77  5 Realistic 14.09 19.66 24.91 29.97 
6 Conservative 11.92 17.28 22.40 27.39  6 Conservative 13.67 19.28 24.60 29.74 
7 Highly 

Conservative 
11.17 16.47 21.56 26.54  7 Highly 

Conservative 
12.99 18.57 23.87 29.01 

Table 12: 𝒌 = 𝟏 confidence bounds    Table 13: 𝒌 = 𝟐 confidence bounds 
 
ID Expert 10-3 10-5 10-7 10-9  ID Expert 10-3 10-5 10-7 10-9 
1 Uniform 24.13 31.17 37.57 43.63  1 Uniform 51.08 60.67 69.06 76.77 
2 Albert 22.66 29.52 35.79 41.74  2 Albert 49.80 59.29 67.60 75.24 
3 Jeffrey 23.40 30.35 36.69 42.69  3 Jeffrey 50.44 59.98 68.33 76.01 
4 Positive 24.57 31.26 37.31 43.00  4 Positive 48.75 57.66 65.43 72.56 
5 Realistic 25.74 32.75 39.08 45.04  5 Realistic 51.08 60.40 68.54 76.01 
6 Conservative 25.79 32.93 39.39 45.48  6 Conservative 51.95 61.51 69.85 77.51 
7 Highly 

Conservative 
25.46 32.63 39.13 45.25  7 Highly 

Conservative 
52.10 61.74 70.17 77.91 

Table 14: 𝒌 = 𝟏𝟎 confidence bounds   Table 15: 𝒌 = 𝟑 confidence bounds 
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