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Abstract

With the increase in air traffic, new concepts have been introduced to organize and better manage air traffic
flows (free flight, air-corridors, airstreams) with the view of increasing traffic safety and airspace capacity by
solving air traffic conflicts. Hence the need of ad-hoc descriptions and parametrization of more complex and
flexible transport aircraft trajectories with new characteristics, allowing high traffic densities as well as limiting
environmental impact (noise).
In the first part of this paper the motivation and trajectory generation problem for transportation aircraft is
introduced, and a state of the art with respect to transportation aircraft trajectory generation techniques is
proposed. Then a smooth path generation based on Bezier curves is proposed.
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I. INTRODUCTION

Nowadays, commercial airliners aircraft even with operating Airborne Collision Avoidance Systems
(ACAS) or Traffic Alert and Collision Avoidance Systems (TCAS), are exposed to near mid air
collisions, or in worst case scenarios, to events like the one occurred on july 1 over Überlingen,
Germany in 2002, where two transport-category aircraft collided after TCAS instructed one pilot to
climb, but the pilot descent in compliance to air traffic controller instructions.
Moreover, even if only 1 in 10 Traffic Advisory (TAs) provided by TCAS result in a Resolution
Advisory (RAs), situations like:
• January 2001, a Boeing 747 followed the instruction of the ATC to descend instead of his TCAS

RA to climb, intersecting course with a DC-10. The collision was avoided when the 747 was
put into a steep descent after visual contact with the other aircraft. However, about 100 crew and
passengers aboard the 747 sustained injuries due the emergency maneuver.

• Switzerland, June 2011, Raytheon 390 crew followed an ATC descent clearance during their TCAS
climb RA, creating a conflict with an Airbus 319. Both aircraft passed in very close proximity
(0.6 nm horizontally and 50 feet vertically) without either sighting the other.

• Switzerland, May 2012, an Airbus A320 departing Zurich in a climbing turn received a TCAS
RA climb caused by an AW 139 only equipped with TCAS 1 also departing Zurich. The conflict
in Class ’C’ airspace was attributed to inappropriate clearance issue by the TWR controller and
their inappropriate separation monitoring.

• May 2013, an A319 in Swiss Class ’C’ airspace received a TCAS ’Level Off’ RA against a 737
above after being inadvertently given an incorrect climb clearance by ATC.

and other 1, are clear examples of human error and lack of homogeneity in TCAS.
In spite of the fact that up-to-date TCAS (III and IV) versions were capable to give Vertical and/or
Horizontal direction as RAs, both were abandoned due to new arising issues. As both SESAR and
NextGen projects plan to implement new operational concepts which will reduce the spacing between
aircraft. TCAS in its current form is not compatible with such concepts and would alert too frequently
to be useful.
Consequently, in order to allow aircraft to fly closer, quick and efficient 4D trajectory generation is
crucial. In this manner, as position and time of aircraft during fly is properly handled, air traffic conflicts
can be avoided or addressed if present, taking into account load factor limits to look after passengers
well-being.

The generation of flyable and efficient trajectories has been considered by several authors [1], [2], [3],
[4], [5], [6]. From a general view, reference trajectories are essential for flight plans which meet a large
set of overfly or profile constraints, which vary in general from flight to flight. On the other hand, the
generation of reference trajectories at short term should allow the implementation of procedures in the
case of potential conflicts.
Current path generation for transport aircraft is based on a sequence of objective points in a 2D or 3D
space given to connect two geographical locations [7]. Then, using diagrams like Voronoi, or Delaunay
triangulation, or any other method, a piecewise path is constructed using straight lines denominated
legs. This path may be offered by a high-level path planner from techniques such as Dijkstra’s, A*,
probabilistic roadmaps, genetic algorithms [8], or Rapidly exploring random tree star (RRT*) [9], just
to mention a few.
However, as path differential requirements have to be satisfied, the initial trajectory needs to be reshaped
in order to provide a flyable trajectory for transport aircraft. The problem to design a flyable path over or
close the objective points while satisfying constraints such as maximum curvature and/or G2 continuity

1https://www.skybrary.aero/index.php/Accident_and_Serious_Incident_Reports:_LOS
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(curvature continuity), has been addressed using different approaches.
As a pioneer, Dubins assured that the shortest path between two points involves circles and straight
line path segments [10]. However, curvature continuity at the joints of lines and circular arcs is not
satisfied. Techniques to solve this track transition problem are addressed using Clothoids [11], but as
they don’t have closed-form expressions, the computation complexity is increased. Circular arcs as
transitions tracks have been also proposed [2], where a 2D real-time trajectory is generated satisfying
curvature and velocity constraints. Also, the deviation between the generated circular path and the
associated control points is minimized using a parameter κ ∈ [0, 1]. If κ = 0, the distance is zero, so
the plane will fly exactly over the waypoint, and if κ = 1, minimum-time transitions between control
points are achieved. However, the election of this parameter κ becomes an issue when a range of
distance wants to be elected as a permitted deviation from the generated path.
Furthermore, Dubins like approaches generate paths limited to straight lines and arcs of circles without
parametrization, thus, the method shows disadvantages being able to generate several arcs without
curvature continuity or with high computation complexity.
Another tool to generate smooth flyable paths are splines, defined by series of low order polynomials.
In [3], after finding the best path from a UAV position location to a target location using a Voronoi
diagram and a Dijkstra’s algorithm, the 2D path is smoothed using cubic splines. It is worth to say
that the optimal locations of the middle knots of a spline are crucial for the shape of the segments.
However, the optimal computation of these points is very time-consuming unless a set of cases are
defined apriori.
As an attractive approach, Bezier curves are able to generate continuous-curvature paths, having the
advantage of passing through initial and final points while the whole curve always lies within the
convex hull that is constructed by the control points. Also, the initial and final piecewise straight
lines of the control polygon are always tangent to the Bezier curve at the starting and ending control
points. An example is given in [12], where the authors present the generation of a 3D path obtained
from a combination of Rapidly exploring random tree star (RRT*) using a C2 class Bezier curve, and
Dynamic Movement Primitives (DMP’s), that allow cooperative aerial manipulators to avoid known
and unknown obstacles.
As the final Bezier curve is a barycentric combination of the polygon vertices formed by the control
points, one may think that a trajectory cannot be accurately generated if the control points positions
are zig-zags like, however, this aspect can be handled by stitching several Bezier curves to form a
bigger path while assuring G2 continuity at the joints. In [4], after a Guiding Attraction based Random
Tree (GART) is used to obtain control points in a 2D plane, a kinematic smoother based on sixth
order Bezier curves to achieve second derivative continuity (curvature continuity) is proposed. Finally,
a local optimal reshaping of the path, minimizing length and curvature cost is performed. In [5], it is
presented an algorithm based on cubic Bezier curves for 3D path smoothing, satisfying G2 continuity
and maximum curvature constraints, where instead of addressing a direct solution for the 3D path
smoothing, a 2D path smoothing for consecutive triplets of control points is applied, seeing each
triplet as a 2D plane thanks to the Frenet frame; Nevertheless, deviation from the resulting trajectory
w.r.t. the control points is not controlled at all.
In this paper, assuming velocity or time constraints, a time-parametrized smooth trajectory valid for
4D guidance is developed by stitching several Bezier curves while assuring G2 continuity at the joints,
also, the Euclidian distance between a certain control point and the proposed trajectory is controlled,
yielding an optimal 4D path as a reference trajectory.
The paper is organized as follows, Section II gives some theory on Bezier curves and conditions
for G2 continuity. Then the path generation is explained in Section III. In Section IV, the optimal
reshaping of the path is described. Also, the obtention of the load factor for independent vertical or
lateral trajectories is obtained in Section V Finally, conclusions are given in Section VI.
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II. BEZIER CURVES

A Bezier curve P (s) of degree n, obtained from n+ 1 control points (P0, . . . , Pn), is described by

P (s) =
n∑
i=0

Bn
i (s)Pi s ∈ [0, 1] (1)

where Bn
i (s) is the ith Bernstein polynomial of degree n, given by

Bn
i (s) =

(
n

i

)
si(1− s)n−i i ∈ {0, 1, . . . , n} (2)

Let a Bezier curve C(s) with m + 1 control points (C0, . . . , Cm), and a second Bezier curve D(s)
with n + 1 control points (D0, . . . , Dn) be joined. According to [13] on Cn class and regularity, Cn

Continuity, and Gn Continuity, C0 continuity is guaranteed if:

Cm = D0 (3)

Then, knowing that the first curve is tangent to the last leg, and the second curve is tangent to the first
leg, a smooth transition is assured if (3) is satisfied and Cm, D0, Cm−1, D1 are on the same line.
Furthermore, C1 continuity is guaranteed if the tangent vector of the first curve at s = 1 is identical
to the tangent vector of the second curve at s = 0, meaning that:

C ′(1) = m(Cm − Cm−1) = n(D1 −D0) = D′(0) (4)

This states that the ratio
(
Cm−Cm−1

D1−D0

)
, involving the length of the last leg of the first curve

(‖Cm−Cm−1‖), and the length of the first leg of the second curve (‖D0−D1‖), must be n
m

. Since n
and m are fixed numbers, the positions of Cm−1 and D1 can be rearranged to be not only at the same
line, but also at the proper distance to assure C1 continuity.
In the same tenor, C2 and G2 continuity are guaranteed at the joint if it is verified that

C ′′(1) = m(m− 1)(Cm − 2Cm−1 + Cm−2)

= n(n− 1)(D2 − 2D1 +D0) = D′′(0) (5)

Hence, to assure G2 continuity, the locations of Cm, Cm−1, Cm−2, D0, D1, D2, where (3)-(5) are
satisfied, need to be proposed.

III. TRAJECTORY GENERATION

A. G2 Continuity Path
In order to handle the curvature while the torsion (what distinguishes a circle from a helix) is zero,

the 3D path is decomposed into several 2D planar trajectories laying on the tangent/normal plane of
the frenet frame, as some authors have proposed [5]. Since three control points are required to form
a plane, at least n = 3 control points (P1, . . . , Pn) are defined, and then divided into n − 2 triplets.
Also, in order to assure an accurate generation of the path even if the objective points are zig-zags
like, several quintic Bezier curves, one for each triplet of control points, are stitched together to form
a bigger path while assuring G2 continuity at the joints.
For a triplet of control points (P1, P2, P3), like the ones depicted in figure 1, G1 continuity can be
achieved by interpolating four points (Q0, Q1, Q4, Q5), and for G2 continuity, six points are interpolated
(Qi; i ∈ {0, . . . , 5}). After the interpolation of these auxiliary control points is done, in the case of the
G2 continuity path, a quintic Bezier curve is adjusted to them.
The points are interpolated as follows.
Q0 and Q5 are defined to be at the middle point of ( ¯P1P2) and ( ¯P2P3) respectively, forcing a past
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Fig. 1. Bezier curve completed with starting and ending straight lines.

and following Bezier curve formed by the past and next triplet of control points, to finish and start at
Q0 and Q5 control points, in other words, a next triplet of points conformed by (P2, P3, P4) will have
a Bezier curve starting at Q5, so (3) is fulfilled.
For Q1 and Q4, they are computed to be also in the same line of ( ¯P1P2) and ( ¯P2P3) respectively, but
separated by a δ1 distance from Q0 in the case of Q1, and a distance δ2 from Q5 in the case of Q4.
Note that the number of auxiliary interpolated points to compute the Bezier curves are the same for
all the triplet of points, so m and n from (4) are equal, hence, to fulfill G1 continuity, only remains
to guarantee that the distance δ2 of a certain triplet of control points is equal to the distance δ1 of the
next triplet of control points.
Finally, if the positions of Q2 and Q3 are computed also in the same line of ( ¯P1P2) and ( ¯P2P3)
respectively, separated by the same distances δ1 from Q1, and δ2 from Q4, if it is proposed: δ1 =

¯P1P2

4
,

and δ2 =
¯P2P3

4
.

Equations (4), (5) are satisfied, assuring G2 continuity as the curvature is forced to be zero at the joints
between Bezier curves.
Besides, knowing that the first and last Bezier curves conforming the total path will start and end at
the middle point of their correspondent control points, as straight lines have zero curvature, the path
can be completed with straight lines without affecting the G2 continuity (see figure 1).

B. Parametrization of the path
As several Bezier curves conform the total path, and each Bezier curve is parametrized by s ∈ [0, 1],

a time re-parametrization needs to be done for the creation of a flyable path for transport aircraft.
First, the arc length of each Bezier curve is obtained by integrating from zero to one the norm of the
first derivative of the Bezier curves, as well as the initial and final straight lines that conform the total
path. Once the arc lengths are obtained, a velocity for the aircraft to follow the path can be chosen,
or as an alternative way, the time in which the aircraft is supposed to fly over the joints of the Bezier
curves is defined. For the numerical simulation, some control points were chosen, given in Table 1.

5



These points generate a G1 and G2 path depicted in figure 2.
Regarding to the joints of the G2 Bezier curves, and assuming that the path is intended to be followed at
a constant 200m/s velocity, figure 2 shows the arc lengths (li; i ∈ [1, 6]) and their times (tj; j ∈ [0, 6])
assigned. Note that these values of time, are the times at which the Bezier curves are joined. The
values of li and tj are given in Table 2.

TABLE 1

CONTROL POINTS.

X(m) Y(m) Z(m)
1 0 0 10,000
2 120,843 16,983 9,300
3 210,332 -14,779 9,000
4 272,744 -759 8,200
5 388,920 -11,130 9,500
6 478,501 12,964 9,800

Fig. 2. Generated path showing arc lengths and joints of Bezier curves.

TABLE 2

TIMES AND ARC LENGTHS.

Arc length(m) Time(s)
t0 0

l1 61,016 t1 305.1
l2 107,536 t2 842.8
l3 78,523 t3 1,235.4
l4 89,990 t4 1,685.3
l5 104,206 t5 2,206.4
l6 46,383 t6 2,438.3
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However, as Bezier curves are not parametrized by time, an operation is performed such that:

s =
t− ti
ti+1 − ti

i ∈ [0, 1, ..., 5] (6)

So that the multiple Bezier curves parametrized by s ∈ [0, 1], can be used at the proper time intervals
[ti, ti+1]. Finally, comparing the curvatures of the G1 and G2 continuity paths (see figure 3), it is clearly
seen how the G2 path has continuity in the curvature at the joints of the different Bezier curves, and
that these joints occur at the assigned time, represented by asterisks in the correspondent axis.

Fig. 3. Curvature of the G1 and G2 continuity paths.

IV. OPTIMAL RESHAPING

Depending on the application, some aircraft may need to fly directly over the control points or at
least near a defined range of distance from the control points. In order to achieve this demand, the
Euclidian distance from the G2 continuity path w.r.t. the nearest control point is controlled. For this
special case, an extra auxiliary point (Q3 in figure 4) is computed such that an optimum path based on
sixth order Bezier curves is obtained. The other auxiliary control points are conserved as they are in
order to do not affect curvature continuity, but the position of the heptic auxiliary point will be moved
gradually until the generated path passes within a distance range defined by the user. The direction in
which this point is moved will be denoted by

~aux =
~(Q2 −Q1) + ~(Q4 −Q5)

‖ ~(Q2 −Q1) + ~(Q4 −Q5)‖
(7)

In figure 4, a 100m maximum deviation for a triplet of control points is commanded, meaning that the
optimized path will be generated such that it will pass no further than 100m away the control point
P2. In this case, the optimizing algorithm stopped at a distance of 92.48m. The distance at which the
algorithm stops depends on the step size in which Q3 is moved away in the direction of ~aux. For a
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small step size, the path will be closer to the distance defined by the user, in this case 100m, but the
computation time will be increased.
Now, for a complete trajectory, using the control points of Table 1, a 100m maximum deviation is

Fig. 4. 100m deviation optimized path for a triplet of control points using an auxiliary control point (Q3).

commanded, the resultant path is shown in figure 5.
The Euclidian distance at which the trajectory is generated from the closest control points is given by
Table 3. Assuring that the maximum deviation distance is achieved.
As close as the optimal path is to the control points, the curvature becomes bigger, such that a

TABLE 3

DISTANCE OF CURVE FROM CONTROL POINTS.

From P2 P3 P4 P5

Distance(m) 92.4823 99.7277 96.0905 79.5305

maximum curvature could also be defined and controlled by the deviation distance defined by the user,
establishing a tradeoff between deviation of the path from the control points and maximum curvature
constraints. Furthermore, as the generated trajectory is time-parametrized, it could be used for 4D
guidance problems.

V. LOAD FACTOR OF THE TRAJECTORY

As transport aircraft are designed to flight smooth trajectories, some limitations on the load factor
have to be respected for the well being and comfort of passengers. According to [14], on a typical
flight, the load factor is limited to +2.5g and -1g for regular maneuvers, or up to 3.8g in maximum
takeoff weight. The expressions for the load factor (in the body frame) of an aircraft are given by

nx = −sθ + (rv − qw)/g (8)
ny = cθsφ + (pw − ru)/g (9)
nz = cθcφ + (qu− pv)/g (10)
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Fig. 5. 100m deviation optimized path.

Under the assumptions of a steady turn, it can be obtained that

nz =
cθ
cφ

(11)

Note that the bigger value of nz is obtained when θ = 0◦, so, for a 2.5g limit, the maximum bank
angle is 66.5◦.
Also, an analysis involving the centrifugal acceleration yields

mV 2
a

R
= Lsφ (12a)

Lcφ = W (12b)

thus, (12b) can be rewritten as
L

W
=

1

cφ
= nz (13)

which is also when θ = 0◦ in (11), then, using this relation into (12a), the load factor can be related
with the radius of horizontal curvature R as

R =
1

nz

V 2
a

gsφ
(14)

Also, using (13) and the Pythagorean identity we obtain

sφ =

√
1− 1

n2
z

(15)

Then (14) is expressed completely in terms of the load factor as

R =
V 2
a

g
√
n2
z − 1

(16)
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Arriving to an expression relating the load factor and speed of an aircraft with the horizontal path of
radius R that corresponds to these variables.
On the other hand, if a pitch up motion is assumed, the considerations of φ = p = 0, u = Va and
θ = 0◦ for a maximum load factor, yields to

nz = 1 +
qVa
g

(17)

which can be expressed as

q =
(nz − 1) g

Va
=
Va
R′

(18)

where R′ is the radius of vertical curvature.
In this manner, as the curvature is the inverse of the radius, a load factor for independent lateral or
vertical maneuvers performed by the aircraft can be obtained.
In this way, following the load factor limits, and depending on the speed of the aircraft, a maximum
radius path can be computed, and in case that the radius of the path needs to be increased to achieve
more accuracy in the deviation of the desired path from the control points, speed of the aircraft can
be decreased to attend the issue.

VI. CONCLUSIONS

In this paper, a formal approach for the design of 4D smooth trajectories for commercial aircraft
has been developed. The proposed approach is based on the use of a particular family of curves, the
Bezier curves, which are built from control points. These control points are shown to be related with
path constraints issues as well as flyability constraints.
The adoption of these trajectories should ease air traffic management in congested areas, as well as
improve the performance of on-board guidance systems.
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