
HAL Id: hal-01821994
https://enac.hal.science/hal-01821994

Submitted on 23 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cliques and a new measure of clustering: with
application to U.S. domestic airlines

Steve Lawford, Yll Mehmeti

To cite this version:
Steve Lawford, Yll Mehmeti. Cliques and a new measure of clustering: with application to U.S.
domestic airlines. Physica A: Statistical Mechanics and its Applications, 2020, 560 (125158),
�10.1016/j.physa.2020.125158�. �hal-01821994�

https://enac.hal.science/hal-01821994
https://hal.archives-ouvertes.fr


Cliques and a New Measure of Clustering:
with Application to U.S. Domestic Airlines∗

Steve Lawford and Yll Mehmeti

ENAC, University of Toulouse

Abstract

We propose a natural generalization of the well-known clustering coefficient for triples C(3) to any number of
nodes. We give analytic formulae for the special cases of three, four, and five nodes and show, using data on
U.S. airline networks, that they have very fast runtime performance. We discuss some theoretical properties and
inherent limitations of the new measure, and use it to provide insight into changes in network structure over time.

1 Introduction

Networks are ubiquitous in social and economic settings. Recent examples of their empirical application include
Banerjee et al. [4], Faris and Felmlee [12], Jackson [16] (social networks), Akbas et al. [3], Cohen-Cole et al.
[7], El-Khatib et al. [11], Hochberg et al. [14], Robinson and Stuart [22] (financial networks), and Aguirregabiria and
Ho [2], Baumgarten et al. [5], Guimerà et al. [13], Lin and Ban [18], Lordan et al. [19], Ryczkowski et al. [23], Verma
et al. [26] and Wuellner et al. [27] (transportation networks). These papers formalize real-world interactions — such
as information transfer links between firms, or physical air travel routes between airports — using the tools of graph
theory. Typically, they report a selection of summary statistics to capture particular global or local aspects of the
network, including its density, distribution of node centrality, and clustering. These measures can provide insight
into network structure and dynamics, that would not be available from using other methods. Clustering is especially
important in economic and social networks, and captures the extent to which an individual’s contacts are themselves
linked. There is evidence that a high level of clustering is related to cooperative social behaviour and beneficial
information and reputation transfer, and that many real-world networks exhibit higher clustering than if links were
formed at random (e.g. Newman [21], Jackson [15, 16] and references therein).

One widely used measure of clustering in a network (graph) is the overall clustering coefficient which is defined
in Newman [21, equation (3.3)] as, in our notation,

C(3) =
3×number of triangles in the network
number of connected triples of vertices

, (1)
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where a connected triple is a set of three distinct nodes u, v and w, such that at least two of the possible edges
between them exist. In other words, how often are an individual’s friends also friends with one another, on average,
across the entire network? Since C(3) is based upon connected triples of nodes, it is natural to ask whether a similar
measure can be derived for any number of nodes. In this paper, we make the following specific contributions:

• We propose a new generalized clustering coefficient C(b), based upon connected groups of b nodes, which
nests the standard clustering coefficient C(3). We develop a very fast analytic implementation for connected
groups of three, four and five nodes, that we show to be up to 2,000 times faster than a naı̈ve nested loop
algorithm, for some small dense graphs.

• We examine some theoretical properties of C(b) and show that it will become prohibitively difficult to compute
C(b) efficiently as b increases, even using analytic formulae, since these will become too cumbersome to
derive. Using data on U.S. airline networks over time, we also show that C(b) can be highly correlated across
b, and with network density, which may reduce its practical benefits on some datasets of interest. It is not yet
known whether this high correlation holds generally for large classes of networks.

All analytic formulae that we use, and several proofs, are collected in Appendix A, and a supporting table of
correlation coefficients and additional figures are reported in Appendix B.

2 Graph Theory and Clustering

We briefly review some relevant tools of graph theory. Important monographs include Diestel [10] (mathematics),
Jackson [15] (economics of social networks) and Jungnickel [17] (algorithms). A graph is an ordered pair G = (V,E)
where V and E denote the sets of nodes and edges of G, respectively. We use n = |V | and m = |E| to represent
the numbers of nodes and edges of G. A graph has an associated n× n adjacency matrix g, with representative
element (g)i j that takes value one when an edge is present between nodes i and j, and zero otherwise. We also use
(i, j) ∈ E to denote an edge between nodes i and j, and say that they are directly-connected. A graph is simple and
unweighted if (g)ii = 0 (no self-links) and (g)i j ∈ {0,1} (no pair of nodes is linked by more than one edge, or by
an edge with a weight that is different from one). A graph is undirected if (g)i j = (g) ji. A walk between nodes
i and j is a sequence of edges {(ir, ir+1)}r=1,...,R such that i1 = i and iR+1 = j, and a path is a walk with distinct
nodes. A graph is connected if there is a path between any pair of nodes i and j. In this paper, we consider simple,
unweighted, undirected and connected graphs.

The degree ki = ∑ j(g)i j is the number of nodes that are directly-connected to node i, and the (1-degree)
neighbourhood of node i in G, denoted by ΓG(i) = { j : (i, j) ∈ E}, is the set of all nodes that are directly-connected
to i. The density d(G) = 2m/n(n− 1) is the number of edges in G relative to the maximum possible number of
edges in a graph with n nodes. A graph G′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E where (i, j) ∈ E ′

implies that i, j ∈V ′. A spanning tree on G is a connected subgraph with nodes V and the minimum possible number
of edges m = n−1. A complete graph on n nodes, Kn, has all possible edges, and a complete subgraph on b nodes is
called a b-clique. A maximal clique is a clique that cannot be made larger by the addition of another node in G with
its associated edges, while preserving the complete-connectivity of the clique. A maximum clique is a (maximal)
clique of the largest possible size in G, and the clique number w(G) of the graph G is the number of nodes in a
maximum clique in G. Let G(n, p) be an Erdős-Rényi random graph with nodes V = {1, . . . ,n} and edges that
arise independently with constant probability p. Using the notation of Agasse-Duval and Lawford [1], we refer
to particular topological subgraphs by M(b)

a , where b is the number of nodes in the subgraph, and a is the decimal
representation of the smallest binary number derived from a row-by-row reading of the upper triangles of each
adjacency matrix g from the set of all topologically-identical subgraphs on the same b nodes.
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2.1 Analytic formulae for a generalized clustering coefficient

The clustering coefficient C(3) is bounded by 0≤C(3)≤ 1, attaining the minimum when there are no triangles in
the graph, and taking the maximum value for a complete graph Kn. Since each triangle contains three triples of
nodes, a factor of three appears in the numerator of (1). A naı̈ve algorithm based on nested loops, that considers
every distinct triple of nodes in G, will run in O(n3) time. However, it is easy to write down an analytic version of
C(3), using the nested subgraph enumeration formulae in Agasse-Duval and Lawford [1, equations (1) and (2)]:

C(3) =
3 |M(3)

7 |
|M(3)

3 |
=

tr(g3)

∑i ki(ki−1)
, (2)

and where C(3) makes explicit the definition of clustering in terms of triples M(3)
3 and triangles M(3)

7 .
If we instead interpret (2) as the average probability that any three connected nodes in a graph are also completely-

connected, then a natural generalization follows to any number b of nodes, such that 3 ≤ b ≤ n. We define the
generalized clustering coefficient as follows:

C(b) =
a(b)×number of b-cliques in G
number of b-spanning trees in G

, (3)

where Cayley’s formula a(b) = bb−2 gives the number of spanning trees in Kb, and ensures that 0 ≤ C(b) ≤ 1.
Clearly, C(b) nests C(3), and equals zero if and only if there are no b-cliques in the graph. Moreover, we show:

Proposition 2.1. Let G be a connected graph with at least b nodes (b ≥ 3). Then C(b) = 1 if and only if G is
complete.

A naı̈ve algorithm for (3), based on nested loops, will run in O(nb) time. For example, the denominator of (3)
can be calculated by considering every distinct set of b nodes in G, and counting the number of spanning trees
on each subgraph. This will be excessively slow. If we instead think of C(b) as a measure of the prevalence of
b-cliques relative to all connected groups of b nodes, then it is clear that we can use analytic subgraph enumeration
for counting the cliques and the spanning trees for the special cases C(4) and C(5), in the same way as for (2):

C(4) =
16 |M(4)

63 |
|M(4)

11 |+ |M
(4)
13 |

=
4 ∑i tr(g3

−i)

∑i ki(ki−1)(ki−2)+6 ∑(i, j)∈E(ki−1)(k j−1)−3 tr(g3)
. (4)

C(5) =
125 |M(5)

1023|
|M(5)

75 |+ |M
(5)
77 |+ |M

(5)
86 |

=
25 ∑i ∑ j∈ΓG(i) tr(((g−i)− j)

3)

∑i ki(ki−1){(ki−2)(ki−15)−24}+12 ∑(i, j)∈E(ki−1)(ki + k j−8)(k j−1)
−48 ∑ki>2(g3)ii(ki−2)+12 ∑i 6= j(g4)i j−12 tr(g3)

.
(5)

The numerator terms |M(4)
63 | and |M(5)

1023| are the number of 4-cliques and 5-cliques respectively. The denominator
terms are the counts of the 4-star (|M(4)

11 |), the 4-path (|M(4)
13 |), the 5-star (|M(5)

75 |), the 5-arrow (|M(5)
77 |), and the 5-path

(|M(5)
86 |), which are illustrated in Figures 1 and 2. Since there are sixteen possible spanning trees on any given

four nodes in the graph, all of which will occur in K4, the factor a(4) equals 16. Similarly, counting the distinct
5-spanning trees in K5 gives a(5) equal to 125.

However, while this approach seems promising, it will rapidly become too cumbersome to derive analytic
formulae for larger values of b, because the number of denominator terms explodes. Essentially, we would need

3



Figure 1: The sixteen spanning trees on four labelled nodes: four 4-stars M(4)
11 and twelve 4-paths M(4)

13 .

(a) 5-star M(5)
75 . (b) 5-arrow M(5)

77 . (c) 5-path M(5)
86 .

Figure 2: A selection of 5-node undirected connected subgraphs.

Figure 3: The six non-isomorphic trees on six nodes.
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to find a formula for every non-isomorphic tree on b nodes. For example, C(6) would require evaluation of six
denominator terms (Figure 3). Numerical values are given as series A000055 in the Online Encyclopedia of
Integer Sequences ( http://oeis.org/A000055 ). For example, C(7) has 11 denominator terms, C(8) has 23
denominator terms, and C(36) has more than 6.2 × 1012 terms! This creates an intrinsic bound on the general
applicability of analytic formulae for C(b): we can reasonably expect to use them for C(3), C(4), C(5) and perhaps
C(6), but not beyond.1

3 Data and Results

To illustrate the behaviour of C(b), we construct quarterly networks for eight airline carriers over the period 1999Q1
to 2013Q4, using publicly-available data from the U.S. Department of Transportation’s DB1B Airline Origin and
Destination survey and T-100 Domestic Segment (All Carriers) census.2 The DB1B is a 10% random sample of
quarterly ticket-level itineraries, collected from reporting carriers. The T-100 is a monthly 100% census on domestic
nonstop flight segments, including number of enplaned passengers and available capacity. Both datasets have been
widely used in empirical work in economics e.g. Aguirregabiria and Ho [2], Ciliberto and Tamer [6], Dai et al. [9].
We do not observe the actual date of flight or purchase, ticket restrictions, or the buyer’s characteristics.

We merge the DB1B and T-100, retaining all scheduled nonstop round-trip tickets, for domestic carriers, between
airports in the continental U.S. We do not keep tickets that were sold under a codesharing agreement, that have
unusually high or low fares, or that are considered unreliable by the data provider. Some carriers (e.g. JetBlue
Airways and Southwest Airlines) report large numbers of business and first class tickets. We only use coach class
tickets, unless more than 75% of a carrier’s tickets are listed as business or first class, in which case we keep all
tickets for that carrier. Individual tickets are then aggregated to non-directional route-carrier observations. We omit
route-carriers with an especially low number of passengers, that do not have a constant number of passengers on
each segment, or that are not present over the full sample period. In building the route networks, a node is an airport
that was served as a route origin or destination, and an edge is present if some passengers travelled on a direct route
between two nodes, for a given carrier-quarter. Our eight empirical networks are connected in every quarter of the
sample. Further details of the data treatment are available from the authors.

Since C(b) is intimately related to the relative number of cliques, we start by using the Bron-Kerbosch algorithm
to identify all cliques in a given network. Figure 4 displays the 2013Q4 network of Southwest Airlines, and highlights
one maximal 4-clique, between Albuquerque, Dallas, Houston, and Kansas City. It is interesting to see how many
maximal cliques of any given size there are in a network, and whether this distribution is stable over time. We
illustrate using Southwest’s network, in Figure 5, which shows that the distribution is more spread out, and that more
larger cliques appear, over time. There is a maximum clique size of eleven, which corresponds to 12.5% of all of the
airports served by Southwest in 2013Q4. This might seem surprising, given that Southwest’s network is relatively
sparse, with a density d(G) equal to 15% in that quarter. Since every airport in the maximum clique has at least
11 connections, we can think of it as a group of “important” airports, that are also very highly connected among
themselves.3 An operational reason for developing such groups could be to enable the opening of a large number
of new indirect routes between airport pairs, at relatively low cost, with the addition of a few well-chosen direct
routes. It seems likely that Southwest, through its network expansion, has focused both on increasing the size and
connectivity of a moderate number of “core” airports while also creating links from non-core airports into the core.4

1In the special case of G(n, p), it follows directly from (3) that C(b) = p(b−1)(b−2)/2 in expectation, since there are
(n

b
)

p(
b
2) b-cliques and

bb−2 (n
b
)

pb−1 b-spanning trees in G(n, p). Numerical values of
(b−1

2
)

are given in A161680 of the OEIS ( http://oeis.org/A161680 ).
2The carriers are American Airlines (AA), Alaska Airlines (AS), Delta Air Lines (DL), AirTran Airways (FL), Spirit Airlines (NK),

United Airlines (UA), US Airways (US), and Southwest Airlines (WN).
3We find evidence that nodes that belong to maximal cliques in Southwest’s network are more connected, on average, than nodes that are

not in maximal cliques, and that the average degree of nodes in maximal cliques increases in the order of the clique (Figure B.2).
4Not all networks evolve in this way e.g. the distribution of maximal cliques for American (AA) is far more stable over time (Figure B.3).
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Figure 4: The Albuquerque–Dallas–Houston–Kansas City maximal 4-clique in Southwest’s network.

Figure 5: The distribution of maximal k-cliques in Southwest’s network, in 1999Q1, 2004Q2, 2009Q3 and 2013Q4.

6



Figure 6: Counterexample for C(3)≥C(4).

Since there are a substantial number of cliques with more than three nodes, we examine how C(3), C(4) and
C(5) vary across carriers, and over time (Figure 8). We make the following remarks:

• There is considerable heterogeneity across carriers. For instance, Southwest has quite a stable C(3) over
1999Q1 to 2013Q4, despite its significant expansion in terms of airports and routes. On the other hand, United
has far more clustering (in triangles) from 2009 onwards, while Alaska has progressively less.

• Generalized clustering C(b) is highly positively correlated across b, for some networks e.g. Delta, and is also
positively correlated with network density (see Table 1 in Appendix B). Some of this follows by construction
e.g. for every newly formed 4-clique in a network, there will be between two and four new 3-cliques, while
every newly formed 5-clique will create between two and five new 4-cliques and between three and ten new
3-cliques. High correlation reduces the information-content of C(4) and C(5), but it is unclear whether this
result holds for most classes of network, or if airline networks are in fact a special case. In order to control for
this correlation, we might consider performing the following regressions: C(4) = constant+β C(3)+ error
and C(5) = constant+β C(3)+γ C(4)+error, and using the residuals rather than C(4) and C(5) themselves.5

• There is some evidence that C(3)>C(4)>C(5), and we might think that this holds for all graphs. However,
we were able to construct a series of (pathological) counterexamples.

The general rule behind the construction is as follows: we create a complete Kb subgraph and then build a
“chain” of n−b nodes attached to one of the nodes in Kb. As n increases, the number of complete subgraphs
of order no more than b does not change (for instance, there are four triangles and one 4-complete subgraph in
Figure 6). Furthermore, increasing n after a certain point will only add paths of length b to the denominator of
C(b), and no other spanning trees (e.g. b-stars). It is easy to show that

C(3) =
12

n+10
; n≥ 5; C(4) =

16
n+22

; n≥ 6, (6)

from which C(3)≥C(4) as n≤ 26, with equality when C(3) =C(4) = 1
3 .

In Figure 7, the number of 4-complete and 5-complete subgraphs is constant as n increases. Beyond a certain
point, only 4-paths and 5-paths are added to the denominators of C(4) and C(5) and no further 4-stars or
5-stars or 5-arrows are created. We can show that

C(4) =
80

n+95
; n≥ 7; C(5) =

125
n+203

; n≥ 8, (7)

5We illustrate the C(4) procedure in Figure B.1, for US Airways and Southwest (WN). Since C(3) and C(4) display evidence of a unit
root (US) and a unit root and trend (WN), we first run regressions of the form ∆C(b)t = α +δ t +u(b)t , for b = 3,4. We then regress the
difference and trend stationary û(4) on a constant and û(3), and find that 76% (US) and 89% (WN) of the variation in C(4) is “explained” by
C(3). In this sense, C(4) is moderately informative once C(3) has been accounted for. It is unclear if other networks will give similar results.
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Figure 7: Counterexample for C(4)≥C(5).

from which C(4) ≥C(5) as n ≤ 97. Equality occurs when C(4) = C(5) = 5
12 . Incidentally, for this graph,

C(3)≥C(4) as n≤ 12.2, i.e., n < 13. In principle, this construction can be used to show that C(b)<C(b+1)
for any b < n and sufficiently large n.

To end, we simulated the actual runtimes of the analytic formulae for C(b) for b = 3,4,5, on dense Erdős-Rényi
graphs G(n,0.9), and compared these with the runtimes of a simple nested loop implementation. We are able to
show that the theoretical asymptotic runtime of each of the analytic clustering formulae is lower than that of the
nested loops.6 However, the small-sample runtime is much lower when analytics are used (Figure 9): the analytic
algorithm is roughly 2,000 times faster for C(3) and more than 500 times faster for C(4) and C(5) for the dense
G(n, p). While analytic runtime gains are lower for sparse G(n, p), they remain very substantial, and this contributes
to making these generalized clustering coefficients a practical tool.

4 Conclusions

We have examined the nature and dynamics of topological cliques in real-world airline networks. We propose a
fast generalized clustering coefficient C(b), that can be readily implemented for b = 3,4,5. Despite some apparent
drawbacks, including the difficulty of deriving higher order C(b), and high correlation across different values of b,
the new measure can potentially provide insight regarding larger (than triangle) groups of completely-connected
nodes in a network. More generally, analytic formulae for subgraph enumeration might have application to other
statistics that are commonly used in applied graph theory. Future work linking graphs and econometrics should
also lead to a better understanding of the economic, strategic and spatial factors that drive dynamic clustering in
real-world networks.

6The worst-case theoretical runtime of a nested loop implementation of C(b) is O(nb), since there are b nested loops. In a very sparse
graph, the actual runtime of nested loops can be much faster, and coding shortcuts can take advantage of the fact that not every b-tuple needs
to be considered. Directly from (2), (4) and (5), we can see that the numerator will dominate the asymptotic runtime of the analytic formulae.
We find that C(3) is O(nω ), C(4) is O(nω+1), and C(5) is O(nω+2), where ω is the exponent of matrix multiplication, for which current
implementations give 2.38≤ ω ≤ 3. The very fast matrix multiplication algorithms due to Coppersmith and Winograd [8] and Vassilevska
Williams [25] both have ω ≈ 2.38, the well-known algorithm due to Strassen [24] has ω ≈ 2.81, and a naı̈ve algorithm has ω = 3.
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(a) Southwest Airlines. (b) American Airlines.

(c) US Airways. (d) United Airlines.

(e) Spirit Airlines. (f) AirTran Airways.

(g) Alaska Airlines. (h) Delta Air Lines.

Figure 8: The dynamic behaviour of C(3), C(4), C(5) and density from 1999Q1 to 2013Q4.
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(a) C(3).

(b) C(4).

(c) C(5).

Figure 9: Runtimes, in seconds, of C(3), C(4) and C(5) analytic and nested loop algorithms, computed over 100 (or 20 for
C(4) and C(5)) replications of dense Erdős-Rényi graphs G(n,0.9), where we only retain connected graphs.
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A Proofs

Derivations for the 3-star M(3)
3 , the triangle M(3)

7 , the 4-star M(4)
11 , the 4-path M(4)

13 , the tadpole M(4)
15 , and the 4-

complete M(4)
63 are given in Agasse-Duval and Lawford [1, Proposition II.1]. For completeness, we repeat the results

here, without proof, in Proposition A.1. We also include the three spanning trees on five nodes: the 5-star M(5)
75 , the

5-arrow M(5)
77 and the 5-path M(5)

86 , as well as the 5-complete M(5)
1023, all with their corresponding proofs.

Proposition A.1 (Analytic formulae for nested subgraph enumeration).

|M(3)
3 |= ∑

i

(
ki

2

)
=

1
2 ∑

i
ki(ki−1). (8)

|M(3)
7 |=

1
6

tr(g3). (9)

|M(4)
11 |= ∑

i

(
ki

3

)
=

1
6 ∑

i
ki(ki−1)(ki−2). (10)

|M(4)
13 |= ∑

(i, j)∈E
(ki−1)(k j−1)−3 |M(3)

7 |. (11)

|M(4)
15 |=

1
2 ∑

ki>2
(g3)ii (ki−2). (12)

|M(4)
63 |=

1
24 ∑

i
tr(g3

−i). (13)

|M(5)
75 |= ∑

i

(
ki

4

)
=

1
24 ∑

i
ki(ki−1)(ki−2)(ki−3). (14)

|M(5)
77 |= ∑

(i, j)?∈E

(
ki−1

2

)
(k j−1)−2|M(4)

15 |. (15)

|M(5)
86 |=

1
2 ∑

i 6= j
(g4)i j−2 |M(3)

3 |−9 |M(3)
7 |−3 |M(4)

11 |−2 |M(4)
13 |−2 |M(4)

15 |. (16)

|M(5)
1023|=

1
5 ∑

i
|M(4)

63 (g−i)|=
1

120 ∑
i

∑
j∈ΓG(i)

tr(((g−i)− j)
3). (17)

Remark A.1. In (13), g−i is the adjacency matrix corresponding to the subgraph induced by the neighbourhood
ΓG(i) of i, which we denote by G−i = (V (ΓG(i)),E(ΓG(i))), and we use (9) to count the number of triangles.

Remark A.2. In (15), ∑(i, j)∗∈E denotes summation over all edges in E, in both directions (i, j) and ( j, i).

Remark A.3. In (17), (g−i)− j is the adjacency matrix corresponding to the subgraph induced by the neighbourhood
ΓG−i( j) of j, which we denote by G−i− j = (V (ΓG−i( j)),E(ΓG−i( j))), and we use (13) to count the number of
4-cliques.

Proof of Proposition A.1. We treat each subgraph separately, and only report proofs that are not presented in
Agasse-Duval and Lawford [1, Proposition II.1].

(a) |M(5)
75 |: Node i has edges to ki neighbours, and any four of those edges will form a 5-star, centered on i. The

result (14) follows immediately.
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(b) |M(5)
77 |: The method of proof is similar to that used for the count of the nested 4-path |M(4)

13 | in Agasse-Duval
and Lawford [1]. Consider any edge (i, j) ∈ E, as the central edge in a 5-arrow. Let i and j have degrees three
and two respectively, and let node i be directly-connected to nodes x and z, and let node j be directly-connected
to node y. Node i has ki−1 possible neighbours (for nodes x and z) and node j has k j−1 possible neighbours
(for node y). There are 1

2(ki− 1)(ki− 2)(k j− 1) ways in which two neighbours of i can be paired with a

neighbour of j, which gives a total of ∑(i, j)?∈E

(
ki−1

2

)
(k j− 1) across all possible central edges, in both

directions (we use (i, j)? to denote “(i, j) and ( j, i)”). This sum includes the unwanted cases x = y and x = z,
both of which form a tadpole. Since two of the four edges of the tadpole can be a candidate central edge (i, j)
of a 5-arrow, we subtract 2 |M(4)

15 | to give result (15).

(c) |M(5)
86 |: A very similar but less transparent proof can be found in Movarraei and Shikare [20]. A 5-path is a

walk of length 4 with no repeated nodes. Note that 1
2 ∑i6= j(g4)i j gives the number of walks of length 4 from i

to j, which does not only include 5-paths. There are five subgraphs in which we can find walks of length 4
that are not 5-paths:

Subgraph
3-path triangle 4-star 4-path tadpole
M(3)

3 M(3)
7 M(4)

11 M(4)
13 M(4)

15

Number of other walks of length 4 2 9 3 2 2

So, by removing them from the sum, we have (16) as required.

(d) |M(5)
1023|: Consider a 4-complete subgraph M(4)

63 comprised of nodes j, k, l and m. Let each node be in the
neighbourhood ΓG(i) of some node i such that i 6= j 6= k 6= l 6= m. Hence, the five nodes i, j, k, l and m, and
the edges between them, form a 5-complete subgraph M(5)

1023. The quantity |M(4)
63 (g−i)| gives the number of

5-complete subgraphs that contain node i, where g−i is the adjacency matrix corresponding to the subgraph
induced by ΓG(i). By symmetry, summing across all nodes i will give five times the total count of 5-complete
subgraphs in the graph, and so we divide the sum by five to give result (17), which can be simplified further
by using (13) to count 4-complete subgraphs in each subgraph G−i.
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Proof of Proposition 2.1. We consider the “if” and “only if” parts separately:

• (if) Let G be complete. Hence, each set of b nodes of G forms a b-clique and G contains exactly
(n

b

)
b-cliques.

The number of b-spanning trees of G is equal to the number of b-spanning trees enclosed in any b-clique
which is, using Cayley’s formula:

bb−2 ×
(

n
b

)
,

from which (3) gives C(b) = 1.

• (only if) We prove this part by contrapositive. Suppose that G is not complete. Since G has at least b nodes,
we can find a connected subgraph G′ of G with b nodes such that G′ is not a b-clique, and we can extract a
b-spanning tree from G′ by removing any cycles. Hence, there is at least one b-spanning tree in G which is
not enclosed in a b-clique. It follows that:

number of b-spanning trees in G≥ number of b-spanning trees enclosed in a b-clique+1

> number of b-spanning trees enclosed in a b-clique

= bb−2×number of b-cliques in G,

and so C(b)< 1 from (3), which proves the proposition.
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B Additional Figures and Tables

Variable C(3) C(4) C(5) density
C(3) 1.000 0.394 −0.012 0.790
p-value 0.000 0.002 0.927 0.000
C(4) - 1.000 0.910 0.365
p-value - 0.000 0.000 0.004
C(5) - - 1.000 0.039
p-value - - 0.000 0.766
density - - - 1.000
p-value - - - 0.000

(a) Southwest Airlines.

Variable C(3) C(4) C(5) density
C(3) 1.000 0.992 0.963 0.864
p-value 0.000 0.000 0.000 0.000
C(4) - 1.000 0.984 0.852
p-value - 0.000 0.000 0.000
C(5) - - 1.000 0.861
p-value - - 0.000 0.000
density - - - 1.000
p-value - - - 0.000

(b) American Airlines.

Variable C(3) C(4) C(5) density
C(3) 1.000 0.897 0.659 0.781
p-value 0.000 0.000 0.000 0.000
C(4) - 1.000 0.916 0.459
p-value - 0.000 0.000 0.000
C(5) - - 1.000 0.102
p-value - - 0.000 0.438
density - - - 1.000
p-value - - - 0.000

(c) US Airways.

Variable C(3) C(4) C(5) density
C(3) 1.000 0.994 0.968 0.965
p-value 0.000 0.000 0.000 0.000
C(4) - 1.000 0.989 0.936
p-value - 0.000 0.000 0.000
C(5) - - 1.000 0.887
p-value - - 0.000 0.000
density - - - 1.000
p-value - - - 0.000

(d) United Airlines.

Variable C(3) C(4) C(5) density
C(3) 1.000 0.844 0.439 −0.256
p-value 0.000 0.000 0.000 0.049
C(4) - 1.000 0.709 −0.414
p-value - 0.000 0.000 0.001
C(5) - - 1.000 −0.450
p-value - - 0.000 0.000
density - - - 1.000
p-value - - - 0.000

(e) Spirit Airlines.

Variable C(3) C(4) C(5) density
C(3) 1.000 0.854 0.333 0.539
p-value 0.000 0.000 0.009 0.000
C(4) - 1.000 0.682 0.156
p-value - 0.000 0.000 0.235
C(5) - - 1.000 −0.255
p-value - - 0.000 0.049
density - - - 1.000
p-value - - - 0.000

(f) AirTran Airways.

Variable C(3) C(4) C(5) density
C(3) 1.000 NA NA 0.840
p-value 0.000 NA NA 0.000
C(4) - 1.000 NA NA
p-value - 0.000 NA NA
C(5) - - 1.000 NA
p-value - - 0.000 NA
density - - - 1.000
p-value - - - 0.000

(g) Alaska Airlines.

Variable C(3) C(4) C(5) density
C(3) 1.000 0.970 0.807 0.838
p-value 0.000 0.000 0.000 0.000
C(4) - 1.000 0.919 0.743
p-value - 0.000 0.000 0.000
C(5) - - 1.000 0.488
p-value - - 0.000 0.000
density - - - 1.000
p-value - - - 0.000

(h) Delta Air Lines.

Table 1: Pearson’s correlation test for C(3), C(4), C(5) and density, for different networks.
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(a) US Airways.

(b) Southwest Airlines.

Figure B.1: Regression of C(4)? on a constant and C(3)?, where the star notation indicates that both coefficients have been
corrected so that they are difference and trend stationary, before performing the regression (see footnote 5).
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Figure B.2: The mean (black line), median (green line), minimum (blue circle) and maximum (red triangle) degree of nodes
that belong to maximal cliques of order k, in Southwest’s 2013Q4 network. For comparison, we plot the mean
(black dashed line) and median (green dashed line) degree of all nodes in the network. Values in parentheses are
the total number of maximal cliques of order k in the network.

Figure B.3: The distribution of maximal k-cliques in American’s network, in 1999Q1, 2004Q2, 2009Q3 and 2013Q4.
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[26] T. Verma, N.A.M. Araújo, and H.J. Herrmann. Revealing the structure of the world airline network. Scientific
Reports, 4:5638, 2014.

[27] D.R. Wuellner, S. Roy, and R.M. D’Souza. Resilience and rewiring of the passenger airline networks in the
United States. Physical Review E, 82:056101, 2010.

18

http://people.csail.mit.edu/virgi/matrixmult-f.pdf
http://people.csail.mit.edu/virgi/matrixmult-f.pdf

	1 Introduction
	2 Graph Theory and Clustering
	2.1 Analytic formulae for a generalized clustering coefficient

	3 Data and Results
	4 Conclusions
	A Proofs
	B Additional Figures and Tables

