N

N

Towards Handling Latency in Interactive Software
Sébastien Leriche, Stéphane Conversy, Célia Picard, Daniel Prun, Mathieu
Magnaudet

» To cite this version:

Sébastien Leriche, Stéphane Conversy, Célia Picard, Daniel Prun, Mathieu Magnaudet. Towards
Handling Latency in Interactive Software. FMIS 2018, 7th International Workshop on Formal Meth-
ods for Interactive Systems, Jun 2018, Toulouse, France. pp 233-239 /ISBN: 978-3-030-04770-2,
10.1007/978-3-030-04771-9_18 . hal-01815224

HAL Id: hal-01815224
https://enac.hal.science/hal-01815224

Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://enac.hal.science/hal-01815224
https://hal.archives-ouvertes.fr

Towards Handling Latency
in Interactive Software

Sébastien Leriche, Stéphane Conversy, Celia Picard, Daniel Prun, and Mathieu
Magnaudet

ENAC, University of Toulouse - France
firstname.lastname@enac.fr

Abstract. Usability of an interactive software can be highly impacted
by the delays of propagation of data and events and by its variations,
i.e. latency and jitter. The problem is striking for applications involving
tactile interactions or augmented reality, where the shifts between inter-
action and representation can make the system unusable. For as much,
latency is often taken into account only during the validation phase of
the software by means of a value which constitutes an acceptable limit.
In this short paper, we present and discuss an alternative approach: we
want to handle the latency at all phases of the life cycle of the interactive
software, from specification to runtime adaptation and formal validation
for certification purposes. We plan to integrate and validate these ideas
into SMALA, our language dedicated to the development of highly inter-
active and visual user interfaces.

1 Introduction

An interactive software is a computer application which reacts, throughout its
execution, to various sources of events. In particular, it produces a perceptible
representation of its internal state [1,2]. However, the usability of an interactive
application can be appreciably impacted by the delays of propagation of data and
events and by its variations, i.e. latency and jitter. The problem is striking for
applications involving tactile interactions or augmented reality, where the shifts
between interaction and representation can make the system unusable [3, 4]. Yet,
while latency constraints are expressed at specification, they are often taken into
account only very late in the development processes, generally by experimental
a posteriori measurements, when the system is fully implemented. For instance,
in some air traffic control systems such as radar visualization or remote tower,
latency in the visualization of aircrafts position (and the shifts between their real
position) is evaluated during experiments. Instead of redesigning the software,
this may conduct to dimension the spacing limits between aircrafts [5], with
direct consequences on the capacities of air traffic management.

More generally, when focusing on aeronautical software systems, the pro-
cesses of certifications described in the DO-178C/ED-12C offer an important
place to formal checking. We want to take the opportunity to use formal tools
and techniques to handle latency in interactive software. We are particularly
interested in the SMALA language, dedicated to interactive systems.

2 Djnn and Smala

SMALA! is a language that has been designed to effectively support the devel-
opment of reactive applications. SMALA is built on the top of a set of C libraries
named DJNN2. DJNN provides a core library that implements the execution en-
gine allowing to run a tree of components [6].

l | Heading app
/" PDapp }
) \ OSoftware ‘
| D ‘ Attitude Speed Altitude Head];g
frame 0 ol 0. .O. o!
SVG:G Switch Connector FSM | CEMBgtion
o 0 O 0L
noYoke) (wYoke) (State) || (State (noYoke) (wYoke) T transitions Switch Connector FSM content binding
O.. O.. gLy L0 Q. iy 0 .. O O~
Formula Formula : : released) (Pressed) (State) || (State) (released) Pressed) (Form)(Label) Mask) Binding
O O o 0 o:\a O 0 .0.0 0O

Pitch result Roll result
© 0 Q9 o o,

(DoubleProperties)

release) (_Press
o Q9

(Pressed)

SVG:released) (SVG:pressed

Fig. 1. Tree of DJNN components for an interactive software

Once the tree is loaded and started, the core library starts an event loop that
fairly manages the events coming from the environment. On arrival, events are
dispatched to the tree components. The control structures contained in this tree
specify an activation graph through which the events are propagated.

DJNN provides libraries with various components, ranging from components
for arithmetic, logic, finite state machines to graphical shapes, style components,
and geometric transformations. Three rendering engines are available, one based
on the Qt toolkit, another one based on Cairo, and a third one based on OpenGL.

It is possible to build a tree of components by directly using these libraries
and the C language. However the task is akin to those of writing an abstract
syntax tree. Thus, we designed SMALA so as to provide a dedicated syntax with
specific symbols that helps to visualize the interaction between components.
SMALA comes with a compiler that transforms the SMALA program into a pro-
gram written in the C language.

! http://smala.io
2 http://djnn.net

SMALA code for a chronometer is shown on Fig. 2 with an extract of gen-
erated code (C). Here, we load an SVG file containing graphical elements of
the chronometer, that are associated to to dataflow elements. For instance, the
graphical representation of the needle for the seconds is loaded from the SVG
file, and composed with a rotation component. Then, the rotation angle is bound
with the property containing the value of seconds from the chronometer. Thus,
each time the value will vary, the needle will be redrawn with the corresponding
angle.

main.sma x ¥ Chronometersma
4 import Chronometer|
5 pain_ a

6 Component root {
7 Frame T ("Chronometre", ©, ©, 400, 400)

8 Chronometer chrono
9 gui = loadFromXML ("chrono.svg") // charge les éléments de la visualisation
10 bkg << gui.background // insert the background component

11 Component second {

12 Rotation r (6, 0, ©

13 needle << gui.second_needle // aiguille des secondes

4}

15 Component minute {

16 Rotation r (@, O, @)

17 needle << gui.minute_needle // aiguille des minutes

s 3} 4JnAdOCN11d (CPN_B, cpnt_10, "needle’);

19 chrono.sec * 6 => second.r.a // connecte les secondes a 1'angle de 1'aiguille @Inconponent “epnt_ii = djncreateMuitiplier (pic.
20 chrone.min * 6 => minute.r.a // idem pour les minutes

3 /*---- liaison entre les actions sur le graphisme et la FSM du chrono ----*/
22 bkg.start.press -> chrono.start

33 bkg.stop.press -> chrono.stop

24 bkg.pause.press -> chrono.pause

35 /*---- terminaison de 1'exécution sur un clic de Termeture de la Trame ----*/
%6 Exit exit (0, 1)
27 f.close -> exit

Fig. 2. SMALA code, DINN/C generated code, and execution result

As an example, we completely developed the HMI of Volta, the first con-
ventional all-electric helicopter [7]. The HMI has been built concurrently by a
programmer and a graphic designer, demonstrating another powerful aspect of
our approach: the strict separation of concerns between the design of the visu-
alization and the implementation of interactions.

3 Our approach to handle latency

3.1 Formal activities around Djnn/Smala

Although SMALA is still under development, we already could experiment for-
mal techniques for checking properties of SMALA programs. For instance, we
exploited the characteristics of the graph of activation [8]. This graph, deduced
from the SMALA code, provides all the possible activation relationships follow-
ing the occurrence of an event.Thus, we managed to formally check attainability
properties (i. e., an entry always ends up generating an expected exit or an alarm
is always turned off in a certain configuration) or causal activation relationships
(i.e., a displayed error message will never be covered by another).

In addition, with the experience gained from previous work on dedicated
language and formal validation [9], we experimented in [10] the transformation
of SMALA code into Petri nets, with the idea to precisely define an operational

semantics for SMALA and to benefit from the associated formal tools and tech-
niques. As a result, the semantics of SMALA is currently under publication in a
dedicated paper.

Our medium-term prospects concern the prolongation of the previous studies
(based on the graph of activations) and the study of formal proof techniques
applied to SMALA code (translation into Caml and use of COQ), translation into
Event-B)

3.2 Towards handling latency

We want to focus on software layers. Indeed, handling latency can be made at
the hardware level with specific tools [11]. However, the end-to-end approaches
existing today [12] do not allow to understand the specific issues related to
software architecture choices. They are only usable to measure the latency when
the system is in its validation phase.

The classical formal approach to handle latency in software systems is to
consider their Worst-Case Execution-Time (WCET) [13]. WCET tools and tech-
niques allow to verify timing properties. They are primarily made for real-time
systems, and SMALA programs are not. Nevertheless, since the control flow of
SMALA programs can be described as a tree, tree-based techniques for computing
WCET could be applied. Moreover, the execution engine is being rewritten to
comply with the last version of the operational semantics which is a good level
to address latency issues [14].

Relying on the operational semantics, we plan to add into SMALA the reifi-
cation of latency properties. This should allow the programmer to add runtime
adaptations (e.g. simplification/enhancement of the visualization to comply with
latency constraints) and to optimize the redrawing of the graphical scene.

At last, to limit the known impacts of the operating system on latency, we
are experimenting some specific versions of DJNN that can be run on OS-less
(’bare’) systems. This approach should result in an autonomous and complete
software platform to handle latency.

4 Future work

To achieve these goals, we aim at allowing the developer of interactive software
to handle latency as a whole, during each phases of the software life cycle. Thus,
this implies the conception of software tools for the measurement, visualiza-
tion, specification, and formal checking of the different properties. These tools
will make possible, during the design time, the objective evaluation of various
software architecture solutions. At last, a methodology for designing interactive
systems with latency constraints, based on these tools, should be designed.

References

10.

11.

12.

13.

14.

. Beaudouin-Lafon, M.: Designing interaction, not interfaces. In: Proceedings of the

Working Conference on Advanced Visual Interfaces, New York, NY, USA, ACM
(2004) 1522

Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, New York,
NY, USA, ACM (1992) 195-202

MacKenzie, 1.S., Ware, C.: Lag as a determinant of human performance in inter-
active systems. In: Proceedings of the INTERACT ’93 and CHI ’93 Conference on
Human Factors in Computing Systems, New York, NY, USA, ACM (1993) 488-493
Ware, C., Balakrishnan, R.: Reaching for objects in vr displays: Lag and frame
rate. ACM Trans. Comput.-Hum. Interact. 1(4) (December 1994) 331-356
Cordeil, M., Dwyer, T., Hurter, C.: Immersive solutions for future air traffic control
and management. In: Proceedings of the 2016 ACM Companion on Interactive
Surfaces and Spaces, New York, NY, USA, ACM (2016) 25-31

Chatty, S., Magnaudet, M., Prun, D., Conversy, S., Rey, S., Poirier, M.: Designing,
developing and verifying interactive components iteratively with djnn. In: proc. of
ERTS 2016, TOULOUSE, France (January 2016)

Antoine, P., Conversy, S.: Volta: the first all-electric conventional helicopter. In:
MEA 2017, More Electric Aircraft, Bordeaux, France (February 2017)

Chatty, S., Magnaudet, M., Prun, D.: Verification of properties of interactive
components from their executable code. In: Proc of EICS ’15, New York, NY,
USA, ACM (2015) 276-285

Matougui, M.E.A., Leriche, S.: Validation of cosmos dsl programs. The 2010
International Conference on Computer Engineering & Systems (2010) 307-313
Prun, D., Magnaudet, M., Chatty, S.: Towards support for verification of adapta-
tive systems with djnn. In: Proceedings of Cognitive 2015. (03 2015) 191-194
Zabolotny, W.M.: Automatic latency balancing in vhdl-implemented complex
pipelined systems. CoRR abs/1509.08111 (2015)

Casiez, G., Pietrzak, T., Marchal, D., Poulmane, S., Falce, M., Roussel, N.: Charac-
terizing latency in touch and button-equipped interactive systems. In: Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology,
New York, NY, USA, ACM (2017) 29-39

Puschner, P., Burns, A.: Guest editorial: A review of worst-case execution-time
analysis. 18 (May 2000) 115-128

Asavoae, M., Maiza, C., Raymond, P.: Program Semantics in Model-Based WCET
Analysis: A State of the Art Perspective. In Maiza, C., ed.: 13th International
Workshop on Worst-Case Execution Time Analysis. Volume 30., Dagstuhl, Ger-
many, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013) 32-41

