Sébastien Leriche

Stéphane Conversy

Celia Picard

Daniel Prun

Mathieu Magnaudet

Towards Handling Latency in Interactive Software

Usability of an interactive software can be highly impacted by the delays of propagation of data and events and by its variations, i.e. latency and jitter. The problem is striking for applications involving tactile interactions or augmented reality, where the shifts between interaction and representation can make the system unusable. For as much, latency is often taken into account only during the validation phase of the software by means of a value which constitutes an acceptable limit. In this short paper, we present and discuss an alternative approach: we want to handle the latency at all phases of the life cycle of the interactive software, from specification to runtime adaptation and formal validation for certification purposes. We plan to integrate and validate these ideas into Smala, our language dedicated to the development of highly interactive and visual user interfaces.

Introduction

An interactive software is a computer application which reacts, throughout its execution, to various sources of events. In particular, it produces a perceptible representation of its internal state [START_REF] Beaudouin-Lafon | Designing interaction, not interfaces[END_REF][START_REF] Myers | Survey on user interface programming[END_REF]. However, the usability of an interactive application can be appreciably impacted by the delays of propagation of data and events and by its variations, i.e. latency and jitter. The problem is striking for applications involving tactile interactions or augmented reality, where the shifts between interaction and representation can make the system unusable [START_REF] Mackenzie | Lag as a determinant of human performance in interactive systems[END_REF][START_REF] Ware | Reaching for objects in vr displays: Lag and frame rate[END_REF]. Yet, while latency constraints are expressed at specification, they are often taken into account only very late in the development processes, generally by experimental a posteriori measurements, when the system is fully implemented. For instance, in some air traffic control systems such as radar visualization or remote tower, latency in the visualization of aircrafts position (and the shifts between their real position) is evaluated during experiments. Instead of redesigning the software, this may conduct to dimension the spacing limits between aircrafts [START_REF] Cordeil | Immersive solutions for future air traffic control and management[END_REF], with direct consequences on the capacities of air traffic management.

More generally, when focusing on aeronautical software systems, the processes of certifications described in the DO-178C/ED-12C offer an important place to formal checking. We want to take the opportunity to use formal tools and techniques to handle latency in interactive software. We are particularly interested in the Smala language, dedicated to interactive systems. Smala1 is a language that has been designed to effectively support the development of reactive applications. Smala is built on the top of a set of C libraries named Djnn2 . Djnn provides a core library that implements the execution engine allowing to run a tree of components [START_REF] Chatty | Designing, developing and verifying interactive components iteratively with djnn[END_REF]. Once the tree is loaded and started, the core library starts an event loop that fairly manages the events coming from the environment. On arrival, events are dispatched to the tree components. The control structures contained in this tree specify an activation graph through which the events are propagated.

Djnn provides libraries with various components, ranging from components for arithmetic, logic, finite state machines to graphical shapes, style components, and geometric transformations. Three rendering engines are available, one based on the Qt toolkit, another one based on Cairo, and a third one based on OpenGL.

It is possible to build a tree of components by directly using these libraries and the C language. However the task is akin to those of writing an abstract syntax tree. Thus, we designed Smala so as to provide a dedicated syntax with specific symbols that helps to visualize the interaction between components. Smala comes with a compiler that transforms the Smala program into a program written in the C language.

Smala code for a chronometer is shown on Fig. 2 with an extract of generated code (C). Here, we load an SVG file containing graphical elements of the chronometer, that are associated to to dataflow elements. For instance, the graphical representation of the needle for the seconds is loaded from the SVG file, and composed with a rotation component. Then, the rotation angle is bound with the property containing the value of seconds from the chronometer. Thus, each time the value will vary, the needle will be redrawn with the corresponding angle. As an example, we completely developed the HMI of Volta, the first conventional all-electric helicopter [START_REF] Antoine | Volta: the first all-electric conventional helicopter[END_REF]. The HMI has been built concurrently by a programmer and a graphic designer, demonstrating another powerful aspect of our approach: the strict separation of concerns between the design of the visualization and the implementation of interactions.

3 Our approach to handle latency

Formal activities around Djnn/Smala

Although Smala is still under development, we already could experiment formal techniques for checking properties of Smala programs. For instance, we exploited the characteristics of the graph of activation [START_REF] Chatty | Verification of properties of interactive components from their executable code[END_REF]. This graph, deduced from the Smala code, provides all the possible activation relationships following the occurrence of an event.Thus, we managed to formally check attainability properties (i. e., an entry always ends up generating an expected exit or an alarm is always turned off in a certain configuration) or causal activation relationships (i. e., a displayed error message will never be covered by another).

In addition, with the experience gained from previous work on dedicated language and formal validation [START_REF] Matougui | Validation of cosmos dsl programs[END_REF], we experimented in [START_REF] Prun | Towards support for verification of adaptative systems with djnn[END_REF] the transformation of Smala code into Petri nets, with the idea to precisely define an operational semantics for Smala and to benefit from the associated formal tools and techniques. As a result, the semantics of Smala is currently under publication in a dedicated paper.

Our medium-term prospects concern the prolongation of the previous studies (based on the graph of activations) and the study of formal proof techniques applied to Smala code (translation into Caml and use of COQ, translation into Event-B)

Towards handling latency

We want to focus on software layers. Indeed, handling latency can be made at the hardware level with specific tools [START_REF] Zabolotny | Automatic latency balancing in vhdl-implemented complex pipelined systems[END_REF]. However, the end-to-end approaches existing today [START_REF] Casiez | Characterizing latency in touch and button-equipped interactive systems[END_REF] do not allow to understand the specific issues related to software architecture choices. They are only usable to measure the latency when the system is in its validation phase.

The classical formal approach to handle latency in software systems is to consider their Worst-Case Execution-Time (WCET) [START_REF] Puschner | Guest editorial: A review of worst-case execution-time analysis[END_REF]. WCET tools and techniques allow to verify timing properties. They are primarily made for real-time systems, and Smala programs are not. Nevertheless, since the control flow of Smala programs can be described as a tree, tree-based techniques for computing WCET could be applied. Moreover, the execution engine is being rewritten to comply with the last version of the operational semantics which is a good level to address latency issues [START_REF] Asavoae | Program Semantics in Model-Based WCET Analysis: A State of the Art Perspective[END_REF].

Relying on the operational semantics, we plan to add into Smala the reification of latency properties. This should allow the programmer to add runtime adaptations (e.g. simplification/enhancement of the visualization to comply with latency constraints) and to optimize the redrawing of the graphical scene.

At last, to limit the known impacts of the operating system on latency, we are experimenting some specific versions of Djnn that can be run on OS-less ('bare') systems. This approach should result in an autonomous and complete software platform to handle latency.

Future work

To achieve these goals, we aim at allowing the developer of interactive software to handle latency as a whole, during each phases of the software life cycle. Thus, this implies the conception of software tools for the measurement, visualization, specification, and formal checking of the different properties. These tools will make possible, during the design time, the objective evaluation of various software architecture solutions. At last, a methodology for designing interactive systems with latency constraints, based on these tools, should be designed.

Fig. 1 .

 1 Fig. 1. Tree of Djnn components for an interactive software

Fig. 2 .

 2 Fig. 2. Smala code, Djnn/C generated code, and execution result

http://smala.io

http://djnn.net