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A novel nonlinear filter for the state-space model based on aided Inertial Navigation

System, 1D Pitot static tube, angle-of-attack and angle-of-sideslip sensors is proposed. The

solution, based on Multiplicative Kalman filtering, estimates in real-time the orientation,

the velocity and the position of an Unmanned Aerial Vehicle along with sensor bias and

3D wind components. This paper describes and justifies the designed tightly coupled

estimation scheme with both theoretical and experimental considerations. We validate

then the whole approach for a mini UAV controlled through the well-known Paparazzi

autopilot system which we equip with a set of low-cost sensors (accelerometers, gyros,

GPS, magnetometer, barometer, 1D Pitot static tube and angular sensors), by successfully

comparing the estimates obtained from real flight data with the 3D wind ground truth

provided from a 60-m weather measurement tower.

Nomenclature

z state vector
q unit quaternion
R

q

direction cosine matrix parametrized by quaternion q
v UAV velocity in inertial frame
x UAV position in inertial frame
!

b

angular rate bias
a
b

acceleration bias in body frame
w wind velocity in inertial frame
v
a

airspeed in body frame
! biased angular velocity from gyro
a biased acceleration in body frame from accelerometer
↵ Angle-of-Attack (AoA)
� Angle-of-Sideslip (AoS)
g gravity field vector
b magnetic field vector
Q process noise covariance matrix
N measurement noise covariance matrix

I. Introduction

The knowledge of the instantaneous wind velocity constitutes a precious information for Unmanned Air-
craft Vehicles (UAVs), e.g., for atmospheric energy harvesting, wind disturbance rejection, target tracking,1–5

since wind significantly impacts flight performances, particularly for small and light vehicles. RIt may be
useful to utilize fleets of UAVs to map the wind, e.g., for meteorological purposes, gas mapping,6–9 with
several advantages over manned flight as low cost or simplicity of deployment. However, such mapping
procedures usually assume the local wind estimation, i.e., the real-time estimation at the current location of
the UAV, as an output of a yet established black-box, whereas it strongly a↵ects the mapping quality.
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To estimate the local wind onboard an aircraft, one method consists in comparing the aircraft dynamical
model and the wind velocity.10 Such techniques require accurately knowing the aircraft aerodynamic which
is a clear limitation for mini UAVs, especially when the assumed steady state conditions are violated. For
these reasons, we focus on the other main approach based on the wind triangle relationship which relates
the airspeed, the ground speed and the wind speed.11–13 With this approach, Langelaan et al. investigate
direct computations of the wind through simulation.13 Van den Kroonenberg et al.14 assume the horizontal
wind speed as constant and no vertical wind during one flight loop and proposes then an experimental
estimator through Kalman filtering. Similar estimators with no “flow sensor” have been tested,8,9 but an
accurate 3D wind estimation need additional sensors,15 e.g., Pitot tube, pressure strip or vanes.7 With
an added Pitot tube, Cho et al.16 design a relatively simple nonlinear Kalman filter for horizontal wind
estimation. Recent works17–19 expand upon this concept to include vertical wind, incorporate Angle-of-
Attack (AoA) and Angle-of-Sideslip (AoS) which both relate the aircraft body frame to the wind frame,
and then uses Kalman filters to estimate attitude, ground speed and wind components. Such techniques
require the capability to accurately determining attitude and speeds from various cheap sensors such as
Global Positioning System (GPS), Inertial Measurement Unit (IMU) and magnetometer which is related to
the UAV navigation problem, a well developed field20–24 in which, however, most existing works implicitly
assume that the aircraft is always pointing in the direction of its total velocity, i.e., its AoA and AoS are
negligible. Finally, validating such wind estimators in experimental flight is challenging due to the di�culty
in accurately measuring the wind. One can yet use ground weather station data, radiosondes and piloted
balloons, or SOnic Detection and Ranging,8,14–17 albeit only an approximation to the local wind at the
aircraft.

Our approach assumes the low-cost sensor suite for navigation, i.e., GPS, IMU, magnometer and barom-
eter, with additional 1D Pitot static tube and angle vanes. we mounted on our experimental drone. We opt
for a sensor fusion scheme where navigation and wind estimation are tightly coupled. The contributions of
the present paper are as follows

• As explained in the sequel, there are possible choices for the state variables. The one proposed here
has not been much used yet for tightly coupled navigation and wind estimation.

• The fusion is performed by an (quaternion based Multiplicative) extended Kalman filter (M-EKF).
Part of the initial nonlinear problem is linearized resorting to the virtual measurements technique,25,26

to handle our specific AoA and AoS measurements.

• The wind model is based on experimentally collected measurements of the wind.

• Monte-Carlo simulations using the software Paparazzi illustrate the good performances of the filter,
and shows it competes with wind estimators of previous literature.

• We present validation flight experimental results, where a 60-m measurement tower provides 3D wind
“ground truth”.

The rest of the paper is organized as follows. Section II defines and describes the considered model
followed by the di↵erent approaches to perform filtering. In Section III, we design a MEKF-Wind filter
for tightly coupled navigation and wind estimation. In Section IV parameter tuning is discussed, and
experimentally obtained wind statistics support the chosen wind stochastic model and allow determining its
noise amplitude. Section V illustrates the filter performances on realistic simulations. Section VI presents
then experimental results, compared to data provided from a 60-m measurement tower, and we finally draw
our conclusions in Section VII. Lower case non bold, lower case bold and upper case bold letters refer to,
respectively, scalars, vectors or quaternions, and matrices.

II. Quantities of Interest, Measurements, and Estimation Schemes

This section presents the considered estimation problem, describes the various measurements available
on our UAV, and then discusses various estimation schemes.
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A. Dynamical Model

Taking into account the wind velocity along with UAV navigation states, we define the dynamic model
as12,17

q̇ =
1

2
q ⇤ (! � !

b

+ n!) , (1)

v̇ = q ⇤ (a� a
b

+ n
a

) ⇤ q�1 + g, (2)

ẋ = v, (3)

!̇
b

= �!
b

/⌧! + n!b , (4)

ȧ
b

= �a
b

/⌧

a

+ n
ab , (5)

ẇ = n
w

, (6)

where q is the unit quaternion that encodes the rotation of the body w.r.t. the inertial frame, v and x are,
respectively, the UAV ground speed and position relative to the inertial frame, !

b

and a
b

are IMU bias,
w is the wind speed, inputs ! and a correspond, respectively, to biased noisy angular rate and body axis
acceleration which are provided from an IMU, and g denotes the gravity field vector. We benefit here from
the common quaternional form, whose basis properties, relations and advantages w.r.t. other representations
are given in Appendix A. (1)-(5) are the standard IMU-based navigation dynamic where we suppose the
biases follow a first order Gauss-Markov stochastic process in (4)-(5), with time constant ⌧! and ⌧

a

, see.27,28

our constant wind model model (6) is justified in Section IV. We finally define

n =
h

nT
! nT

a

nT
!b

nT
ab

nT
w

iT
, (7)

that reflects the thermo-mechanical white and flicker noises on low-cost IMU direct measurements, the noise
on low-cost IMU bias dynamics due to temperature e↵ects and calibration errors, and the noise on wind
dynamic.

B. Measurements

The UAV disposes of a large panel of low-cost sensors, giving our noisy measurements that we stack in

y =
h

yT
v

yT
x

yT
m

y

b

y

p

y

↵

y

�

iT
, (8)

where y
v

and y
x

correspond, respectively, to the GPS velocity and position measurements, y
m

comes from a
magnetometer and y

b

from a barometer. An 1D Pitot static tube obtains the measurement y
p

of the airspeed
in the forward u-direction since the tube is mounted on the UAV along the longitudinal axis, see Figure 1.
The vanes (or pressure strips) provide measurements of AoA ↵ and AoS � which are represented in Figure
2 and calculated, respectively, as12

↵ = tan�1

✓

w

a

u

a

◆

, (9)

� = sin�1

 

v

a

p

u

2
a

+ v

2
a

!

, (10)

where v
a

=
h

u

a

v

a

w

a

iT
denotes the airspeed and with � measured parallel to the aircraft w-axis and thus

does not contain a vertical airspeed component. The AoA represents the positive angle between the UAV
wings and the airspeed, which is needed to generate lift, when the AoS relates to the rotation of the aircraft
centerline from the airspeed, which decreases as the lateral acceleration increases during cornering, whereas
in steady and level flight, airspeed v

a

is commonly aligned with the u-axis, meaning � is null. The equations
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AoA vane

AoS vane

Pitot tube

Figure 1. At left, the “Zagi”, a fixed-wind UAV with an 1D Pitot static tube mounted along the longitudinal
axis. At right, a zoom of the 1D Pitot static tube with two vanes that measure, respectively, Angle-of-Attack
and Angle-of-Sideslip. The whole UAV and sensors are designed, manufactured and instrumented at the ENAC
UAV laboratory.

Angle-of-Attack ↵ definition

z

u

v

v
a

w

✓

�

↵

UAV profil

w

Angle-of-Sideslip � definition

u

v

v
a

w

x

 

�

�

v

Figure 2. The wind triangle relationship between ground speed v, airspeed v
a

and wind w, projected, respec-
tively, onto the vertical (at left) and horizontal (at right) planes, making in evidence the Angle-of-Attack ↵ and
the Angle-of-Sideslip �. The direction of the ground speed is specified using the course �, which represents
the angle between the projection of v onto the xy-plane and north (i.e., the direction of travel relative to the
Earth’s surface) and the flight path � which is the angle between the xy-plane and v. The pitch ✓ moves the
UAV nose up or down and heading (yaw)  is the direction that the UAV is pointed. In the absence of wind,
the di↵erence between course and heading, the so-called crab-angle, is the Angle-of-Sideslip.
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then read

y
v

= v + n
v

, (11)

y
x

= x+ n
x

, (12)

y
m

= q�1 ⇤ b ⇤ q+ n
m

(13)

y

b

= I
z

x+ n

b

, (14)

y

p

= I
u

v
a

+ n

p

, (15)

y

↵

= ↵+ n

↵

, (16)

y

�

= � + n

�

, (17)

where b denotes the magnetic field vector, the line vectors I
z

=
h

0 0 1
i

and I
u

=
h

1 0 0
i

select, respectively,

the third and first component of a vector and therefore extract the altitude in (14) and airspeed in the forward
u-direction in (15). We finally stack all the sensor noises in

n
y

=
h

nT
v

nT
x

nT
m

n

b

n

p

n

↵

n

�

iT
. (18)

These measurements (11)-(17) arrive in discrete time at di↵erent sampling rates, which are usually
much slower than the IMU measurement rate. The proposed filter in Section III matches particularly these
asynchronous measurements since each of them can be treated independently or combined, and a loss of on
of them (e.g., GPS) is straightforwardly handled by the filter.11

C. Estimation Schemes

There are various ways to tackle dynamical model (1)-(6) with measurement (8). Indeed, beyond the choice
of a nonlinear filter (many possibilities exist such as20–24), there are important choices to be made. This is
mainly due to the existence of algebraic equations that relate some variables, and particularly the so-called
wind triangle relationship11,12

v = q ⇤ v
a

⇤ q�1 +w, (19)

such that we should explicitly select two variables among v, v
a

and w, while the remaining variable are
implicitly defined. Let us consider in the sequel the two natural couples (v,w) and (v

a

,w) even if considering
(v,v

a

) is also theoretically valid. With one couple selected, we can perform the wind estimation in two
manners: treating the navigation problem first, which leads to a loosely coupled scheme; or in a tightly
coupled approach, i.e., opting for a scheme that incorporates both the navigation and wind estimations.
Thus, three main alternative approaches emerge, and we detail them in the rest of this section.

1. Loosely Coupled Navigation and Wind Estimation

Navigation estimator

Wind estimator

!, a

y
v

, y
x

, y
m

, y
b

y

p

, y
↵

, y
�

x̂, !̂
b

, â
b

q̂, v̂

ŵ

Figure 3. Loosely coupled approach. A first navigation estimator, typically an aided Inertial Navigation
System, obtains estimates of navigation states. The estimated quaternion q̂ and ground speed v̂ are then used
in a wind estimator building upon equation (19) to obtain the estimated wind ŵ.

This cascaded scheme consists of starting from the navigation estimator with dynamic (1)-(5) and mea-
surements (11)-(14), to then launch a second estimator to obtain wind estimates by using the wind dynamic
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(6), the wind triangle (19), and the measurements (15)-(17), as depicted in Figure 3. The second estimator
takes the required navigation estimates as input random variables with known mean and covariance to ob-
tain ŵ through, e.g., Kalman filtering.16,19,29 The wind estimation depends strongly of the accuracy of the
navigation estimates but have no impact on the navigation itself.

2. Tightly Coupled Navigation and Wind Estimation with v and w as State Variables

Navigation and
wind estimator

!, a

y
v

, y
x

, y
m

, y
b

y

p

, y
↵

, y
�

x̂, !̂
b

, â
b

q̂, v̂

ŵ

Figure 4. Tightly coupled approach. The only estimator obtains both navigation state and wind estimates,
from all the available measurements, introducing thus correlation between estimated variables.

It is also possible to couple the whole model (1)-(6) when considered the whole measurement (8). The
main interest of such approach compared to a cascaded scheme is the introduction of correlation between
the wind estimates and navigation estimates, such that the airspeed related measurements (15)-(17) serve
to improve the estimation of the navigation variables. We follow this approach in Section III, that are not
been yet considered to the best of our knowledge.

3. Tightly Coupled Navigation and Wind Estimation with v
a

and w as State Variables

The ideas are similar to the previous approach by substituting the airspeed v
a

in place of the ground speed
v in the state, an approach yet treated via Unscented Kalman Filter (UKF).15,17,18 We stress that for a
same type of filter, the results between this approach and the above di↵er since: i) linearity is introduced in
the 1D Pitot measurement (15) in place of GPS speed (11) which is rewritten as

y
v

= q ⇤ v
a

⇤ q�1 +w + n
v

; (20)

and ii) error definitions di↵er strongly with the previous approach. Indeed, if we define v
a

and w errors as
Gaussian, the error on v is not Gaussian and conversely.

III. Proposed MEKF-Wind Filter

This section describe the proposed filter, which introduces correlation between the UAV state variables
and wind estimates, via a tightly coupled scheme, see Section II.C.

A. Retained Final Model

We include both the ground speed and the wind in our state along with attitude, positiona, bias and wind,
leading to the definitions of the state vector as

z =
h

qT vT xT !T
b

aT
b

wT
iT

, (21)

and state dynamic given in (1)-(6). We assume all the measurements (11)-(17) are available in discrete time
and rewrite the 1D Pitot measurement (15) in function of the state variables as

y

p

= I
u

�

q�1 ⇤ (v �w) ⇤ q
�

+ n

p

. (22)

We choose to consider ground speed rather than airspeed since: i) it makes the retained model as an
augmented model of the initial navigation problem, from which many works have been yet consecrated and

aThe position itself is unneeded for the local wind estimation but requiring if we search to use the local estimation in a
mapping scheme.6
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thus we can inspire of them and easily observe the consequences of our wind estimation on the navigation (not
considering airspeed related measurements (15)-(17) lead directly to the original navigation problem); and ii)
it let the GPS speed measurement linear and not attitude dependent in contrast with (20), which preserves
a correct correction when attitude estimates are inaccurate. One could argue that the Pitot measurement
(22) becomes nonlinear but: (22) is a scalar measurement whereas GPS gives three speed measurements
(11); and we preserve linearity on the most confident measurement since in practice the noise on Pitot tube
is much higher than on the GPS.

B. Transformation of the Angle-of-Attack and Angle-of-Sideslip Measurements

This section represents a major originality of the proposed filter. Indeed, the raw angle measurements (16)-
(17) are strongly non linear w.r.t. the state, that can lead to degraded performances. A naive approach
to treat these measurements consists of considering the tangent of y

↵

and sinus of y
�

, but it preserves a
strong non-linearity. Inspired from works which convert range and angles in/from Cartesian coordinates for
chemical processes estimation,25 robotics,? or radar,30 we choose to transform these measurements in the
following way, thus improving the filter performances, see Section V for an illustration.

Let us consider the two modified measurements

ỹ

↵

= Cv
a

,

= C
�

q�1 ⇤ (v �w) ⇤ q
�

, (23)

ỹ

�

= vT
a

Bv
a

,

=
�

q�1 ⇤ (v �w) ⇤ q
�T

B
�

q�1 ⇤ (v �w) ⇤ q
�

, (24)

where C and B are defined, respectively, as

C =
h

sin (y
↵

) 0 � cos (y
↵

)
i

and (25)

B =

2

6

4

sin2 (y
�

) 0 0

0 � cos2 (y
�

) 0

0 0 0

3

7

5

. (26)

In the noise-free case, we have

ỹ

↵

= sin (↵)u
a

� cos (↵)w
a

,

= 0, (27)

ỹ

�

= sin2 (�)u2
a

� cos2 (�) v2
a

,

= sin2 (�)u2
a

�
�

1� sin2 (�)
�

v

2
a

,

= 0, (28)

and we treat these modified measurements in our following proposed filter.

C. Proposed Filter

We choose to derive a Multiplicative EKF (M-EKF),21,23 called MEKF-Wind, for the considered estimation
problem. The M-EKF is the standard algorithm in the inertial navigation systems industry. Albeit in-
creasingly replaced with the UKF, it remains computationally more e�cient,31 and the name Multiplicative

is coined as the quaternion-based error is computed using a quaternion product ⇤ instead of subtraction.
Specifically, the three-dimensional error vector ✏

q

obtained from the quaternion error after using a small
angle approximation is maintained in the error state, resulting in a minimal representation that is safe to
use in calculating the covariance. In the following, we make use a continuous-discrete representation11 for
our implementation of the MEKF-Wind.

The filter consists of two steps: propagation and update, which are summarized in Algorithm 1b. During
prediction (lines 1 and 2), the filter produces estimates of the current state variables, along with their

bA more sophisticated integration (line 1) with exact quaternion propagation or Runge-Kunta method can also be e↵ected.32

At the end of this state propagation, we additionally enforce to the quaternion estimate q̂ to have a unit norm.
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Algorithm 1: continuous-discrete MEKF-Wind

Input: initial state ẑ, initial covariance matrix P, IMU sampling time �t;

1 ẑ =

"

q̂
¯̂z

#

= ẑ+ ˙̂z�t, with equations (1)-(6) and zero noise ; // state propagation

2 P = P+
�

APAT +A
n

QAT
n

�

�

t

, with A and A
n

given in Appendix B ; // covariance propagation

if measurement ỹ has been received then
3 S = HPHT +H

n

NHT
n

; // consider only part of received measurement

4 K =

"

K⇤

K+

#

= PHTS�1 ; // gain matrix

5 ẑ+ =

"

(K⇤ (ỹ � h (ẑ))) ⇤ q̂
¯̂z+K+ (ỹ � h (ẑ))

#

; // state update

6 P+ = (I�KH)P ; // covariance update

Output: ẑ+,P+;

uncertainties, and we move the mathematical machinery to Appendix B. In the update step (lines 3 to 6),
the gain matrix K is divided into K⇤ for the quaternion error and K+ for the remaining state errors. The
previous treatment of the anglular measurements results in the definition of the transformed measurement
ỹ and transformed measurement function h (.), respectively, as

ỹ =
h

yT
v

yT
x

yT
m

y

b

y

p

�E {ỹ
↵

} �E {ỹ
�

}
iT

, (29)

h (z) =

2

6

6

6

6

6

6

6

6

6

6

4

v

x

q�1 ⇤ b ⇤ q
I
z

x

I
u

v
a

Cv
a

vT
a

Bv
a

3

7

7

7

7

7

7

7

7

7

7

5

, (30)

where C, B are given in (25)-(26) and let the observation matrix H be defined as

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 I 0 0 0 0

0 0 I
...

...
...

R̂T
q

(b)⇥
... 0

...
...

...

0 0 I
z

...
... 0

I
u

R̂T
q

(v̂ � ŵ)⇥ I
u

R̂T
q

0
...

... �I
u

R̂T
q

CR̂T
q

(v̂ � ŵ)⇥ CR̂T
q

...
...

... �CR̂T
q

2v̂
a

BR̂T
q

(v̂ � ŵ)⇥ 2v̂
a

BR̂T
q

0 0 0 �2v̂
a

BR̂T
q

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, (31)

with R̂
q

the (estimated) direction cosine matrix corresponding to the rotation operator q̂⇤ (.)⇤ q̂�1, (.)⇥ the
skew symmetric operator representing cross products as matrix multiplications, and where the measurement
transformation introduces the bias E {ỹ

↵

} and E {ỹ
�

}, which are null in first order approximation. Finally,
Q and N encodes, respectively, the covariances of the dynamic process noise n and measurement noise n

y

,
typically diagonal matrices, and H

n

is the Jacobian of ỹ w.r.t. the measurement noise defined as the diagonal
matrix

H
n

= diag

✓

1,1,1, 1, 1,
@ỹ

↵

@n

↵

,

@ỹ

�

@n

�

◆

, with (32)
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@ỹ

↵

@n

↵

= �
h

cos (↵) 0 sin (↵)
i

v̂
a

, (33)

@ỹ

�

@n

�

=
h

� sin (2�) 0 sin (2�)
i

diag (v̂
a

) v̂
a

, (34)

and where diag (.) converts its vector arguments to a diagonal matrix with the vectors aligned on the main
diagonal. We let the getting of bias and Jacobians of ỹ

↵

and ỹ

�

, leading to both H and H
n

, in Appendix C.

IV. Noise Tuning and Wind Statistics

We must provide our filter with some values about the noise covariances both for the dynamic and
measurement models, a↵ecting both filter convergence and performances. Let us divide the various noises into
three classes: i) navigation noise incorporating the IMU random process, IMU and navigation measurements
noises, i.e, n!b , nab , n!, na

, n
v

, n
x

, n
m

and n

b

; ii) airspeed sensor noise containing the noises n
p

, n
↵

and
n

�

of the airspeed related measurements (15)-(17); and iii) wind process noise n
w

. The two first classes
are discussed in the following subsection, the third one is based on real data and discussed in the following
subsection.

A. Sensor Noise Identification

We consider in this subsection the parameter tuning of the navigation noise and airspeed sensor noise.
Classical techniques and sensor characteristics yield the noise covariances for the IMU and measurements
(11)-(14), which can be done simultaneously to bias time constant identification.27,28 Concerning then the
airspeed related measurements (15)-(17), we obtain a first covariance of the static noise when the UAV is
motionless. We then have the noise due to non-perfect calibration in wind tunnel and inherent noise on the
instruments, that are inaccurate for small airspeed v

a

< 10m/s, i.e., before and in takeo↵. More precisely,
we consider only the airspeed related measurements (15)-(17) when the flight is yet established, which is
equivalent to put an infinite noise covariance before flight establishment, that additionally avoids trouble
due to wrong initialization.

B. Wind Statistics

We concentrate now on the justification of our wind dynamical model (6) and then propose a simple wind
noise tuning, by analyzing data provided by the Midi-Pyrénées Observatoryc.

measurement tower
UAV

Figure 5. 60-m measurement tower, equipped with CSAT3 and GILL sonic anemometers at 30m, 45m and
60m, which provide accurate 3D wind measurements at 10Hz sampling rate.

c
http://www.obs-mip.fr/
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1. Empirical Justification of the Wind Dynamic (6)

The Midi-Pyrénées Observatory land in Campistrousd disposes of a 60-m measurement tower which provides
wind measurements in a large flat area, see Figure 5. The wind sensors consist of sonic anemometers CSAT3
and GILL, which obtain accurately 3D wind estimates equivalent to a ground truth with high sampling rate
of 10Hz at three di↵erent altitudes: 30m, 45m and 60m. We plot data acquired on 27 April 2017, give a
half-hour zoom representing the wind variations for the time of a UAV flight in Figure and wind statistics
about these data in, respectively, Figure 6, Figure 7 and Table 1.
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Figure 6. Wind speed obtained by the measurement tower at 30m, 45m and 60m for each wind components,
as function of time, between 5 am (t = 5h) and 10 pm, on 27 April 2017, a relatively cloudy day. The correlation
of wind w.r.t. altitude appears evident, and we observe weak correlation between wind components.

From these data, we observe clearly weak correlation between each component of the wind in Figure 6
and in the right part of Table 1, i.e., each wind component follows a relatively independent dynamic, leading
to choosing a diagonal covariance of the wind noise process. We also notice a strong correlation of the wind
speed w.r.t. the altitude for w

x

and particularly for w
y

. However, defining a static wind profile or a Dryden
model13 appears challenging as the factors mapping the wind at di↵erent altitude vary, and this becomes
unfeasible for the very short period time of a flight33 as in Figure 7, therefore justifying our random process
model.
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Figure 7. Wind speed obtained by the measurement tower at 30m, 45m and 60m for each wind components,
as function of time, between 1 pm and one half past 1 pm, on 27 April 2017. We clearly see that one can not
correlate the measurements at di↵erent altitudes through linear regression.

dThe site is located in Campistrous, France, at N 43�7046400 E 0�2209800.
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altitude measurement 45m 60m

30m 0.93 0.94

45m - 0.96

wind component w

y

w

z

w

x

-0.14 0.31

w

y

- 0.13

Table 1. Correlation factors between the wind speed at di↵erent altitudes (at left) and di↵erent wind compo-
nents (at right), with high values w.r.t. the di↵erent altitudes and weak values w.r.t. the di↵erent components.

2. Tuning of Wind Process Noise Covariance

The wind model being (at least partially) justified, the parameters are still to be tuned, i.e. the covariance
of n

w

. Compared to the measurement tower, the UAV is moving. When the latter is slowly flying or
unmoving, it has di�culty to precisely estimate the airspeed and thus the wind, consequently we freeze
the wind dynamic with zero noise covariance, i.e., n

w

= 0, such that the wind converge to a static value
(which di↵ers from imposing w = 0). During flight, with n

w

6= 0, an instinctive tunning would to increase
the noise as the UAV speed increases since wind is also spatially distributed.33,34 However, this appears
complicated to handle, and we prefer to have two noise covariance values: one null when the airspeed related
measurements are inactive (i.e., before and during takeo↵, see Section IV.A); one non-null value otherwise,
and let a numerically and more sophisticated tuning for future research. A practical consequence of such
tunning is to have a wind fixed to its initial values until flight establishment (where there are no reason to
insert correlation between wind and another variables in the initial P).

V. Simulation Results

A. Simulation Setting

A simulation study is conducted to test the proposed filter when an explicit truth is available. We consider the
flight simulation environment proposed by the Paparazzie autopilot system35 to compare the three following
approaches that assumes the same dynamic (1)-(6): i) v

a

-UKF, an UKF which incorporates Euler angles
and the airspeed (19) in place of the quaternion and the ground speed, and considers the direct measurement
(8), which is similar to the filter of Rhudy et. al;17 ii), v-UKF, a novel UKF which incorporates Euler angles,
ground speed, and considers the proposed measurement (29); and iii) MEKF-Wind, which incorporates the
state vector (21) and considers the transformed measurement (29) where we set bias to zero, improving thus
time-e�ciency without decreasing performances in practical scenariosf.

0 50 100 150 200 250 0

2000

50

100

x (m)
y (m)

z
(m

)

Figure 8. Paparazzi simulation trajectory, starting close to the origin. Flight parameters have standard values,
constant wind speed is w

x

= 4 cos(30)m/s, w

y

= 4 sin(30)m/s and w

z

= 0.5m/s. The trajectory represents a
starting 300m ⇥ 200m-box survey of 150 s, with soaring, curves and straight lines.

The simulation flight consists of 150 s of a starting 300m⇥ 200m-box survey, where we combine standard
flight parameters with an artificial constant wind of 4m/s in xy-plan, 0.5m/s in the z-axis and with direction

e
http://wiki.paparazziuav.org/.
fIndeed, it appears in simulation that the unbiased measurements increase performances only with unrealistic weak noise.
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Parameter �!(rad/s
3
2 ) �

a

(m/s
5
2 ) �!b(rad/s

3
2 ) �

ab(m/s
5
2 ) �

w

(m/s
3
2 ) �

v

(m/s) �

x

(m)

Value 3 · 10−3 3 · 10−2 3 · 10−4 10−2 10−2 10−1 1

Parameter �

m

(T) �

b

(m) �

p

(m/s) �

↵

(rad) �

�

(rad) ⌧! (rad/s) ⌧

a

(m/s2)

Value 10−5 1 3 · 10−1 10−1 10−1 8 · 102 103

Table 2. Parameter values for the simulations, with high-moderate noise.

of 30� in xy-plan. The noises are assumed independent, zero mean and we define their standard deviation
to moderate-high realistic values given in Table 2 with the time constants. We then recover data from the
simulation system, whose resulting trajectory is displayed in Figure 8. We initialize the three filters with the
raw estimates corresponding of the first measurements, specifically for the wind we use a direct method.13

We set a moderate uncertainty for the wind covariance in P and a small uncertainty for the remaining state
to be coherent with the conditions before real takeo↵, i.e., being more confident for the UAV states than for
the wind velocity.

B. Simulation Results

We give these noisy measurements to the three filters and plot the root square error w.r.t. the wind speed
in Figure 9. We clearly observe the accuracy of MEKF-Wind and v-UKF compared to v

a

-UKF once flight
establishment, see Section II.C for justifications. The three filters keep a non null error since they suppose
wind is quick varying as in practice (i.e., a high value for n

w

) and noise is set moderate-high.
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�

ŵ
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/s
)

v

a

-UKF
v-UKF

MEKF-Wind

Figure 9. Root square error on the wind speed, as a function of time, with realistic noisy measurements.
MEKF-Wind obtain best results than v-UKF and v

a

-UKF once flight establishment.

We then run 200 Monte-Carlo simulations for this setting to compare the filter statistic performances,
which are indicated in Table 3. This confirms the superiority of the MEKF-Wind, which better estimates
attitude, position and wind speed, and outperforms v-UKF particularly for the attitude, that is certainly due
to its quaternional error representation. The bias errors are similar for the three filters and the Estimated-
STandard Deviation of MEKF-Wind are coherent with the Root Mean Square Error, which indicates that
the filter is not overconfident. An unscented version of the proposed filter, which makes use of an identical
quaternional error representation,24 would probably obtains similar results. However, one major advantage
of the MEKF-Wind over such unscented filters is its computational time-e�ciency, particularly important
with the relatively large size of the space-state.31

We finally stress that the initial uncertainty and noise covariance values a↵ects the convergence of the
estimates for all methods, which indicates the need of tuning numerically the filter parameters. However,
with di↵erent initializations and realistic covariances, the tendency and observations are identical as for the
indicated results.
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State component
RMSE Estimated-STD

MEKF v-UKF v
a

-UKF MEKF v-UKF v
a

-UKF

Euler angles (�) 2.0 5.5 6.0 2.5 1.7 1.7

v (m/s) 3.1 · 10−2 5.1 · 10−2 - 9.0 · 10−2 8.8 · 10−2 -

x (m) 6.3 · 10−2 1.0 · 10−1 1.2 · 10−1 5.1 · 10−1 5.1 · 10−1 5.1 · 10−1

!
b

(rad/s) 5.1 · 10−3 4.9 · 10−3 5.1 · 10−3 1.2 · 10−2 5.2 · 10−2 5.1 · 10−2

a
b

(m/s2) 8.0 · 10−2 8.0 · 10−2 8.1 · 10−2 2.0 · 10−2 2.1 · 10−2 2.0 · 10−2

w (m/s) 1.8 · 10−1 2.2 · 10−1 2.7 · 10−1 2.4 · 10−1 2.4 · 10−1 2.0 · 10−1

Table 3. Root Mean Square Error (RMSE) w.r.t. the state variables and Estimated-STandard Deviation
(Estimated-STD) given by the estimated covariance P. The values are averaged over 200 Monte-Carlo simula-
tions and Euler angles error is indicated rather than quaternion error. MEKF-Wind outperforms both v-UKF
and v

a

-UKF, with coherent standard deviation estimates.

measurement tower

starting point

Figure 10. Flight trajectory in the Midi-Pyrénées Observatory land (France), consisting of ovals around the
60-m measurement tower, during 13min. Particular intentions are made to obtain a trajectory close to the
measurement tower.

VI. Application on Flight Experiment

A. Experimental Setting

An experimental study is necessary for validating such wind estimation methods since the discrepancy
between real and simulation flights is particularly important for the wind behavior, which can includes,
e.g., gusts or thermal ascents.34 Specific interest is to obtain real-time wind data as close as the wind
experimented by the aircraft. Toward this aim, we conduct the flight experiment in the Midi-Pyrénées
Observatory, see Figure 10, where we yet obtain data from the 60-m measurement tower described at Section
IV. The validation data at altitudes 30mg are plotted in Figure 11 for the flight time and as remarked in
Section IV, since fitting a wind profile (e.g., a power law w.r.t. the altitude) for such very short-period time
is irrelevant, data acquired here are clearly accurate compared to, e.g., a simple portable ground weather
station.

ENAC UAV laboratoryh has developed a fixed-wind UAV so-called “Zagi”, which is a mini UAV of
wingspan 1.1m for 0.5 kg visible on Figure 1. Its onboard sensor consists of an Apogee v1.00 PCB flight
controller with the Paparazzi autopilot, GPS RTK and HMC5983 magnetometers. We mount a self-made
1D Pitot static tube, connected to HCLA12X5EB pressure sensor, on the nose of the aircraft along the lon-
gitudinal axis, which comports both AoA and AoS vanes, each associated with an analog-to-digital converter

gAnemometers at 45m and 60m were breakdown during flight. We schedule new experiments once sensors are fixed and
consider these new experiments flights in the final version of the paper.

h
http://www.enac.fr/en/uavs-systems.
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and the whole sensor suite is yet calibrated in wind tunnel. Data are finally logged on a micro SD card with
a light Real-Time Operating System called ChibiOS.

Flight experiments are realized on 6 June 2017, starting at 36 past 11 (am), the weather is cloudy and
wind is moderate-high, as confirmed by the measurement tower in Figure 11. We define the flight trajectory
as ovals around the measurement tower at stable altitude and search to keep close to the measurement power,
to then justifiably compare the wind estimates at the measurement tower and at the UAV locations.

B. Experimental Results
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Figure 11. Wind speed from the measurement tower at 30m and wind estimates of the MEKF-Wind, as
function of time. Null estimates at the two first minutes are a consequence of the tuning of noise parameters.

Giving the raw acquired measurements to the MEKF-wind, the filter replays the flight and obtains wind
estimates plotted in Figure 11. As we activate the airspeed measurements once takeo↵ is e↵ected (see Section
IV.B), we have null estimates at the two first minutes. We see that the wind estimates matches the wind
as measured by the measurement tower in mean, while none of these estimates closely match the “ground
truth”. This comes as no surprise since the measurement tower is measuring wind at a di↵erent locations,
and local turbulence could cause di↵erences between the wind speed measured at di↵erent points and the
values of the tuning parameters impact the dynamics of the wind estimates.
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Figure 12. At left, 1D Pitot tube measurement y

p

and estimated longitudinal airspeed û

a

, as function of time.
At right, estimated and measured Angle-of-Attack ↵ and Angle-of-Sideslip �. The estimates are coherent with
the measurements.

Another particular interesting aspect for the navigation is to compare the raw measurements about the
airspeed with their estimated values, as depicted in Figure 12. We clearly observe similar global shapes
between estimated and measured values, confirming the correct functioning of the filter.

VII. Conclusion & Perspectives

A novel tightly coupled estimator has been presented for the nonlinear state-space formulation of the local
wind estimation and UAV navigation problem. Based on the Mulpliticative Kalman filtering, the proposed
filter make use of the standard low-cost autopilot sensor suite (GPS, magnetometer, barometer, gyros and
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accelerometers) with additional 1D Pitot static tube, angle-of-attack and angle-of-sideslip sensors to estimate
attitude, ground speed, position, sensors bias and wind. Particularly, the filter transforms the angular
measurements, improving thus its accuracy and robustness, and simulations results illustrates the superiority
of the proposed filter, which is also computationally e�cient for future real onboard implementation. We
compare then results from experimental flight data of the proposed filter with ground truth of a 60-m
measurement tower, which validate the performances of the proposed approach.

Future works concern the definition of an adaptive wind noise covariance depending on the UAV speed
with specific attention to the numerical values and the direct inclusion of the proposed local wind estimation
in a mapping framework.
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A. Quaternions for Representing Rotations

A unit quaternion provides a convenient mathematical notation for representing orientations and rotations
of objects in three dimensions.36 Compared to Euler angles they are simpler to compose and avoid the
problem of gimbal lock. Compared to rotation matrices, they are more compact, more numerically stable
and more e�cient. Indeed, for any unit quaternion

q = q

r

+ q
i

= cos

✓

✓

2

◆

+ u sin (✓) , (35)

and for any vector v 2 R3 the action of the operator q ⇤ (.) ⇤ q�1 on v rotates the vector argument about
axis u = q

i

/kq
i

k through an angle ✓, from which we can deduce a direction cosine matrix R
q

and Euler
angles such that

q ⇤ v ⇤ q�1 = R
q

v. (36)

To let a quaternion, that is parameterized by a scalar and a three dimensional vector, operates on a vector

v 2 R3, note that v can be viewed as a pure quaternion whose real part is zero, i.e.,

"

0

v

#

. Thus, we can

compactly define the following (non commutative) quaternion product ⇤ as

q =

"

q

r

q
i

#

, p =

"

p

r

p
i

#

, q ⇤ p =

"

q

r

p

r

� qT
i

p
i

q

r

p
i

+ p

r

q
i

+ (p
i

)⇥ q
i

#

, (37)

where the skew symmetric operator (.)⇥ represents cross products as matrix multiplications.

B. MEKF-Wind Error and Transition Matrix Definitions

We develop here the machinery to obtain the state transition matrix A, and the Jacobian of the state
transition w.r.t. the process noise A

n

, which are needed to the propagation step of MEKF-Wind, see
Algorithm 1. According to the multiplicative error methodology20,21 we choose the following attitude error
✏
q

defined as

q =

"

0

✏
q

#

⇤ q̂, (38)

where (̂.) symbolizes estimated variables and which is after a small angular approximation equivalent to

R
q

=
⇣

I+ (✏
q

)⇥

⌘

R̂
q

, (39)

and we then define the remaining errors as

✏
v

= v � v̂, ✏
x

= x� x̂, ✏!b = !
b

� !̂
b

, ✏
ab = a

b

� â
b

and ✏
w

= w � ŵ. (40)

15 of 19

American Institute of Aeronautics and Astronautics



We thus derive the error dynamics using the nonlinear dynamics in (1)-(6), which are used to propagate
then the error covariance matrix P. The full error dynamic is given as

✏̇
q

= q ⇤ (�✏!b + n!) ⇤ q�1, (41)

✏̇
v

= �
�

q ⇤ (a� a
b

) ⇤ q�1
�

⇥ ✏
q

+ q ⇤ (✏
ab � n

a

) ⇤ q�1, (42)

✏̇
x

= ✏
v

, (43)

✏̇!b = �✏!b/⌧! + n!b , (44)

✏̇
ab = �✏

ab/⌧a + n
ab , (45)

✏̇
w

= n
w

, (46)

and we can derive from this model both the state transition matrix A and A
n

, respectively, as

A =

2

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 R̂
q

0 0

�
⇣

R̂
q

(a� â
b

)
⌘

⇥
0

... 0 �R̂
q

...

0 I
... 0 0

...
... 0

... �I/⌧! 0
...

...
...

... 0 �I/⌧
a

...

0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

5

and (47)

A
n

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R̂
q

0 0 0 0

0 R̂
q

...
...

...
... 0

...
...

...
...

... 0
...

...
...

... I 0
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...
... 0 I 0

0 0 0 0 I

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (48)

We thus are able to obtain the continuous dynamic of the covariance matrix P as

Ṗ = APAT +A
n

QAT
n

, (49)

that in discretized in Algorithm 1 and where Q is the covariance matrix of the process noise (7).

C. Expectations & Jacobians of the Transformed Measurements

We develop here the calculus giving the expectations and Jacobians of the transformed measurements

ỹ

↵

= Cv
a

,

= C
�

q�1 ⇤ (v �w) ⇤ q
�

and (50)

ỹ

�

= vT
a

Bv
a

,

=
�

q�1 ⇤ (v �w) ⇤ q
�T

B
�

q�1 ⇤ (v �w) ⇤ q
�

, (51)

with C and B defined, respectively, in (25) and (26). Specifically, when the noise encoded in y

↵

and y

�

is
present, these transformed measurements can be biased and we should theoretically evaluate the expected
bias E {y

↵

} and E {y
�

} to remove it, that gives us the full alternative measurement (29). Consider firstly
the measurement ỹ

↵

, we start from the Kalman filter assumptions, i.e., the state and measurement noise
n

↵

⇠ N (0,�
↵

) follow Gaussian independent distributions. Let us then derive the following formula of scalar
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expectations

E {cos (z)} = e�
�2

2 cos (ẑ) , (52)

E {sin (z)} = e�
�2

2 sin (ẑ) , (53)

E
�

cos2 (z)
 

=
1

2

⇣

1 + e��

2

cos (2ẑ)
⌘

, (54)

E
�

sin2 (z)
 

=
1

2

⇣

1� e��

2

cos (2ẑ)
⌘

, (55)

for z ⇠ N (ẑ,�), that we use in the sequel. For the expectation, since state error and noise are independent,
we separate the expectation in noise expectation and state error expectation as

E {ỹ
↵

} = E
z

�

E
n

{C}q�1 ⇤ (v �w) ⇤ q
 

,

= E
n

{C} E
z

�

q�1 ⇤ (v �w) ⇤ q
 

, (56)

with after using (52)-(53)

E
n

{C} = e�
�2
↵̂
2

h

sin (↵̂) 0 � cos (↵)
i

,

= e�
�2
↵̂
2 Ĉ, (57)

E
z

�

q�1 ⇤ (v �w) ⇤ q
 

= E
z

n⇣

I� (✏
q

)⇥

⌘

�

q̂�1 ⇤ (v̂ � ŵ + ✏
v

� ✏
w

) ⇤ q̂
�

o

,

= q̂�1 ⇤ (v̂ � ŵ) ⇤ q̂� E
z

n

(✏
q

)⇥
�

q̂�1 ⇤ (✏
v

� ✏
w

) ⇤ q̂
�

o

, (58)

= v̂
a

� p̃, with (59)

p̃ = q̂�1 ⇤ (P
qv

�P
qw

)�⇥ ⇤ q̂, (60)

and where we remove the first order term in (58) since random variables have zero mean, use then the
cross-covariances P

qv

and P
qw

, between ✏
q

and, respectively, ✏
v

and ✏
w

, and the counterpart of the cross
product for matrix (.)�⇥, defined as

P =

2

6

4

P11 P12 P13

P21 P22 P23

P31 P32 P33

3

7

5

, (P)�⇥ =

2

6

4

P32 � P23

P31 � P13

P12 � P21

3

7

5

. (61)

As a consequence, the expectation is the noise-free measurement multiplied by the factor e�
�2
↵
2 plus an

additional term, i.e., the expectation is given as

E {ỹ
↵

} = e�
�2
↵
2 Ĉ (v̂

a

+ p̃) ,

= e�
�2
↵
2

⇣

0 + Ĉp̃
⌘

,

= e�
�2
↵
2 Ĉp̃. (62)

We compute then the Jacobians w.r.t. the state and the noise, respectively, as

@ỹ

↵

@z
=
h

CR̂T
q

(v̂ � ŵ)⇥ CR̂T
q

0 · · · 0 �CR̂T
q

i

, (63)

@ỹ

↵

@n

↵

=
h

e�
�2
↵
2 sin (y

↵

) 0 �e�
�2
↵
2 cos (y

↵

)

i

v̂
a

and (64)

@ỹ

↵

@n
y

=
h

0 · · · 0 @ỹ↵

@n↵
0
i

. (65)

Similarly for ỹ
�

but more tricky, we start from the Kalman filter assumptions, with n

�

⇠ N (0,�
�

). For
the expectation, since state and noise are uncorrelated, we have

E {ỹ
�

} = E
z

n

�

q�1 ⇤ (v �w) ⇤ q
�T E

n

{B}
�

q�1 ⇤ (v �w) ⇤ q
�

o

. (66)
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Before developing this expectation with the error variables, we define

ṽ = v̂ � ŵ, (67)

✏
ṽ

= ✏
v

� ✏
w

and (68)

D = R̂E
n

{B} R̂T, (69)

leading the expectation about noise after using of (54) and (55) as

E
n� {B} =

2

6

4

1� e��

2
� cos (2y

�

) 0 0

0 �1� e��

2
� cos (2y

�

) 0

0 0 0

3

7

5

. (70)

We can then develop

E {ỹ
�

} = E
z

n

(ṽ + ✏
ṽ

)T
⇣

I+ (✏
q

)⇥

⌘

D
⇣

I� (✏
q

)⇥

⌘

(ṽ + ✏
ṽ

)
o

, (71)

= E
z

n⇣

ṽT � ṽT (✏
q

)⇥ + ✏T
ṽ

� ✏T
ṽ

(✏
q

)⇥

⌘

D
⇣

ṽ + (✏
q

)⇥ ṽ + ✏
ṽ

+ (✏
q

)⇥ ✏
ṽ

⌘o

, (72)

and preserve only zero, second and fourth order terms since random variables have zero mean, leading to

E {ỹ
�

} = E
z

⇢

ṽTDṽ + ṽTD (✏
q

)⇥ ✏
ṽ

� ṽT (✏
q

)⇥ D (✏
q

)⇥ ṽ � ṽT (✏
q

)⇥ D✏
ṽ

+ ✏T
ṽ

D (✏
q

)⇥ ṽ � ✏T
ṽ

(✏
q

)⇥ Dṽ � ✏T
ṽ

(✏
q

)⇥ D (✏
q

)⇥ ✏
ṽ

�

. (73)

We thus recognize the free-noise measurement

ṽTDṽ = v̂T
a

Bv̂
a

= 0, (74)

and cancel some parts of (73) with their minus transpose, to obtain

E {ỹ
�

} = E
z

n

�ṽT (✏
q

)⇥ D (✏
q

)⇥ ṽ � ✏T
ṽ

(✏
q

)⇥ D (✏
q

)⇥ ✏
ṽ

o

, (75)

= E
z

n

�✏T
q

(ṽ)⇥ D (ṽ)⇥ ✏
q

� ✏T
ṽ

(✏
q

)⇥ D (✏
q

)⇥ ✏
ṽ

o

, (76)

= �Tr
�

(ṽ)⇥ D (ṽ)⇥ P
qq

�

� E
z

n

✏T
ṽ

(✏
q

)⇥ D (✏
q

)⇥ ✏
ṽ

o

, (77)

' �Tr
�

(ṽ)⇥ D (ṽ)⇥ P
qq

�

� p̃TDp̃, (78)

with Tr (.) the trace operator and by considering the variance of the random variable (✏
q

)⇥ ✏
ṽ

as null (fourth
order approximation).

Finally, let us compute the Jacobians w.r.t. the state and the noise, respectively, as

@ỹ

�

@z
=
h

2v̂T
a

BR̂T
q

(v̂ � ŵ)⇥ 2v̂T
a

BR̂T
q

0 · · · 0 �2v̂T
a

BR̂T
q

i

, (79)

@ỹ

�

@n

�

=
h

� sin (2y
�

) 0 sin (2y
�

)
i

diag (v̂
a

) v̂
a

and (80)

@ỹ

�

@n
y

=
h

0 · · · 0 @ỹ�

@n�

i

. (81)
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