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Abstract—In air transportation, a huge amount of data is
continuously recorded such as radar tracks that may be used for
improving flight as well as airport safety. However, all known
statistical algorithms such as clustering procedures, even those
based on functional data, are unable to distinguish between a
safety critical flight and another one departing from standard
behavior, but otherwise safe. It is the case in airport safety when
radar measurements are used for detecting incidents on airport
surface. In this paper, we propose a change of paradigm by
switching from a functional data framework to a geometrical one
by representing curves as points in a shape manifold. In this way,
any intrinsic structure of the data that is amenable to geometry
can be directly encoded in the representation space. Based on
an extension of a classical distance between shapes, a new one is
defined, that explicitly takes into account the second derivative
and can be related to slippery. Its properties are investigated in
a first part, then some results on datasets of synthetic and real
trajectories are presented.

Index Terms—curve clustering, outlier detection, similarity
measure, shape manifold, functional data, air traffic manage-
ment, airport safety.

I. INTRODUCTION

IN the context of aviation safety, a crucial issue consists
in assessing runway adherence condition and detecting

incidents on airport surface by observing only the radar tracks
of landing aircraft, e.g. trajectory deviation and abnormal
deceleration may be good indicators of runway bad state.
Indeed, landing aircraft must brake in a quite short time,
putting a stringent condition on the adherence coefficient of
the runways. Bad weather conditions like rain, snow and icing
can dramatically lower it, increasing the landing distance and
making maneuvers more difficult to perform. Rubber deposited
by the wheels during braking may also impair the friction
coefficient of the runway making it more slippery.

To estimate the runway adherence condition, a direct mea-
surement of it on the pavement is usually performed: it implies
sending a vehicle with a dedicated tool, which will interfere
with the ongoing traffic. With the expected increase in air
traffic, this procedure is particularly restrictive: based on recent
studies, European air traffic was expected to grow, yielding an
increase of 1.2 million flights in 2023, 14% more than in 2016
[1]. In the context of the COVID-19 pandemic, the massive
drop in air traffic and the traffic evolution significantly have
reduced this problem. However, it still arises at hub airports

S. Puechmorel and F. Nicol are with Université de Toulouse and Ecole
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and this procedure has a significant operational cost and envi-
ronmental impact. Major framework programs such as SESAR
(Single European Sky Air traffic management Research) in
Europe aim to improve air traffic management (ATM) by
investigating innovative solutions on management and traffic
flow analysis. In particular, for assessing runway adherence
condition, we need for reliable, continuous and consistent tools
that not requiring runway closure. The objective is to develop
spatio-temporal similarity measures for trajectories that will
be used in clustering or outliers detection methods.

A. Motivations for Functional Data Analysis

The mathematical problem arising from the application
presented above falls within the general framework of func-
tional data statistics. Indeed, aircraft trajectories are functional
objects mapping time to position, even if we will most of the
time observe discretized samples of trajectories, such as radar
measurements.

In the functional data framework, the commonly used al-
gorithms developed for multivariate analysis are inoperative
and may induce some numerical instabilities. Several works
were dedicated to the extension of multivariate algorithms to
sample paths of Hilbert processes. As a starting point, data is
first expanded on a truncated Hilbert basis [2] then the vectors
of expansion coefficients enters a standard finite dimensional
analysis. A clever choice of the representation space and basis
allows to take into account the a priori knowledge about the
studied process. In [3], an EM functional clustering algorithm
is presented with adaptive basis in each group, yielding an
efficient numerical method to deal with this issue. Another
class of methods relies on a non-parametric approach [4],
[5]. A recent work [6] pertaining to this approach presents
a hierarchical clustering principle, with application to electric
power consumption.

In ATM, some works have already used functional data
statistics, such as functional principal component analysis
(FPCA), functional regression and random forest. FPCA is
performed on aircraft trajectories in [7], [8], yielding some
insights on the nowadays traffic and then allow to forecast
the expected one. Such a functional decomposition is used in
[9] for bundled simplification of 2D and 3D curve-sets. New
curves are next generated after deforming the cluster centroids
to manipulate the underlying data in a simple way while
preserving their statistical properties. The problem of short to
mid-term aircraft trajectory prediction is considered in [10].
This approach is based on a local linear functional regression
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using wavelet decomposition. In [11], random forests for func-
tional data are used for minimizing the risk of accidents and
identifying explanatory factors in the context of aviation safety.
In the closed context of road traffic, the derivative information
was used in a functional analysis of speed profiles of vehicles
[12], providing a functional modeling of space-speed profiles
of vehicles that leads to a complex nonparametric regression
problem.

A major asset of working with functional data framework is
the ease of adding a priori information by carefully selecting
the Hilbert space and basis. Unfortunately, the dimension of
the samples produced that way may be high, and varies with
the geometric features of the sample paths. In particular, the
presence of high curvature values will increase the number of
expansion coefficients needed to keep a good approximation
of the original function.

Moreover, the choice of the Lp metric as a measure of
similarity between trajectories may be problematic in many
situations and does not reflect the high internal structure of
aircraft trajectories. As noted in [13], this metric suffers from
several drawbacks, especially in registration of functional data
when functions are shifted, owing to time lags or general
differences in dynamics and alternative metrics should be
implemented in a functional data analysis.

For overcoming these difficulties, several methods are based
on warping distance such as DTW [14], LCSS [15], EDR [16]
and ERP [17]. Alternative distances focus on the shape of
trajectories, such as the Hausdorff distance [18], the Fréchet
distance [19] and the SSPD distance [20]. A comprehensive
review of these distances used in distance-based trajectory
clustering is given in [20].

B. The Riemannian framework

An alternative solution consists in switching from a func-
tional data framework to a geometrical one, by representing
trajectories in a Riemannian framework. Indeed, curves can
be made amenable to functional data statistics by representing
them as points on the so-called shape manifold, that is formally
defined as a quotient of the manifold of smooth immersions
from [0, 1] to Rn. It is not a Hilbert space, but it can be
provided with Riemannian metrics that allow geodesic distance
computation, although some care must be taken to avoid
degeneracy of the metric [21].

In the shape space literature, curves are considered as
geometric objects and are represented in the so-called shape
space, that is the set of immersions quotiented by the group of
smooth diffeomorphisms of the interval [0, 1]. An overview of
various notions of shape spaces is given in [22]. Three family
of metrics on shape space can be distinguished: the almost
local metrics, the Sobolev-type metrics and the right-invariant
metrics on the diffeomorphism group of the ambient space.
Note that this kind of metrics verify the reparametrization
invariance property.

More general almost local metrics and Sobolev-type inner
metrics on the space of plane curves were considered in [23]
and some algorithms [24] use a shape manifold representation
in order to derive a metric between sample paths. The special

case of order one Sobolev type metric is presented in [25]
and a similar approach takes into account a greater amount of
information on the space separating two curves by computing
the distance in the manifold itself rather than in one tangent
plane [26].

Having it at hand, statistical analysis of functional data such
as trajectories clustering may be performed in a standard way.
It worth mention that most of the time a mean of computing
the centroid of a set of curves is mandatory. In [13], elastic
metric for curves has been integrated into statistical analysis of
functional data. This so-called Elastic Functional Data Analy-
sis performs alignment, principal component analysis, and
modeling of multidimensional and unidimensional functions
using the square-root velocity framework developed in [25],
[27]. Nice libraries such as the R package fdasrvf have
been developed [28].

Considering methods falling in this category, it appears
that the requirements of the landing trajectory analysis are
not fulfilled: enforcing a full parametrization invariance as
in the case of shape-based approaches prevents the use of
longitudinal acceleration that enters the non-slip condition. On
the other side, Sobolev-like metrics are designed to be tailored
to specific needs. Motivated by a real use case where one wants
to assess runway adherence condition by observing only the
radar tracks of landing aircraft, we propose in this paper to use
a Riemannian framework for curves with velocity information.

C. Related works in Trajectory Clustering

The mathematical problem arising from the estimation of
the runway adherence condition falls within the general frame-
work of curve clustering. Several well established algorithms
may be used for performing clustering on a set of trajectories.

First, in sample-based approaches, time samples on trajec-
tories are used in a classical multivariate analysis. Due to the
huge number of points, a dimension reduction procedure must
be applied first. Random projections followed by a spectral
clustering was successfully applied in a study conducted by the
Mitre corporation on behalf of the Federal Aviation Authority
(FAA) [29]. The most important limitation of this approach
is that the shape of the trajectories is not taken into account
when applying the clustering procedure unless a resampling
procedure based on arclength is applied.

Secondly, density-based algorithms rely on a density map
on the state space and a definition of similarity measure. They
aim to attract trajectories towards areas of high density and
iterate the process until convergence. This kind of algorithms
are well suited for already structured graph structure, most
implementation derived from the original work presented in
[30]. The distance-based density-based algorithms developed
in [31], [32] are well adapted to road traffic as vehicles are
bound to follow predetermined segments but are unable to
work on an unknown airspace organization.

Due to the functional nature of trajectories, that are
basically mappings defined on a time interval, it seems more
appropriate to resort to techniques based on times series
as surveyed in [33], [34], or functional data statistics, with
standard references [2], [4]. Again, in both approaches, a
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distance between pairs of trajectories or, in a weaker form, a
measure of similarity must be available. The algorithms of the
first category are based on sequences, possibly in conjunction
with dynamic time warping [35], while in functional data
analysis, samples are assumed to come from an unknown
underlying function belonging to a given Hilbert space. Both
approaches yield similar end algorithms, since functional
data revert for implementation to usual finite dimensional
vectors of expansion coefficients on a suitable truncated
basis. For the same reason, model based clustering may be
used in the context of functional data even if no notion of
probability density exists in the original infinite dimensional
Hilbert space as mentioned in [5]. A nice example of a
model-based approach working on functional data is the R
package funHDDC [3], [36].

The purpose of this paper is to introduce a new kind of
Riemannian metric that is especially adapted to the clustering
of curves where the velocity is a discriminating feature. In
such a case, the original shape space approach cannot be
used since the parametrization invariance will wipe out the
velocity information. A partial parametrization invariance is
introduced, yielding a bundle shape space model on which
a relevant metric can be defined. The design of the metric
was based on the equations of motion and reflects the internal
structure of the data. The numerical implementation of the path
computation of the new metric is given. For simplicity, we will
use a discrete approximation of the total energy of the sampled
path rather than a practical computation algorithm based on
a shooting method. The minimal approximate energy will be
obtained by a standard optimization algorithm and will be next
used in the clustering phase.

The paper is organized as follows. In Section II, we formally
describe the theoretical framework and define an adapted
metric taking into account the velocity information. In Section
III, the numerical implementation of the new metric and the
K-medoids clustering method [37], [38] is described in a
general setting. This algorithm allows to implement another
metric than the usual Euclidean distance. Next, Section IV
illustrates the performance of clustering algorithms with the
new metric for low adherence detection on a set of simulated
and real aircraft trajectories. These results are also compared
with competing distances. Finally, some comments and future
works are drawn in Section V.

II. THEORETICAL FRAMEWORK

This section is dedicated to the definition of a relevant
metric for curves taking into account velocity information. The
framework presented here will overcome the limitations of the
shape approach through the use of a metric in which the slip
characteristic of the landing path is explicitly considered.

A. Slip detection

Landing aircraft may experience slip during deceleration
phase when the runway is in degraded conditions. It may
result from icing, snow, bad runway surface state but also from
pilot’s actions, namely a too high braking action or a sharp

turn. In this last case, it is not related to runway condition
and must not trigger a maintenance action from the airport
services.

Slip can be detected on-board by comparing wheel rotation
rate with aircraft velocity and computing the so-called wheel
slip factor:

λ =
ωw − ωa

max(ωw, ωa)
(1)

where ωw is the wheel angular velocity and ωa = Va/Rw is
the expected angular velocity that can be computed as the ratio
of the aircraft velocity to the wheel radius. Please note that on
the real vehicle, several wheels are used, and the λ coefficient
has to be understood as a mean value. Furthermore, due to
tire elasticity, λ is not zero even if there is no actual slip:
this is due to the fact that when a traction or a braking force
is applied, the rubber will stretch, resulting in the tire outer
part actually traveling more or less than expected from rigid
body dynamics. This information is not yet downlinked in real
time to ground centers and thus cannot be used in the intended
application. From the ground standpoint, λ cannot be observed
without on-board information, but some aspects of the landing
or taxiing aircraft behavior may still be inferred. It is assumed
in the sequel that Coulomb’s law for friction [39] is applicable,
so that the contact force Fc depends only on aircraft weight
and tire/runway conditions:

Fc ≤ µgM (2)

with M the aircraft mass, g the gravity of Earth and µ the
adhesion coefficient. Without slip, µ is equal to the static
friction coefficient µs and Fc can be increased until it reaches
the upper bound in (2). At that point, slip occurs and µ drops
to the value of the dynamic friction coefficient µd. The contact
force Fc remains constant until it falls below µdgM . In real
world experiments, this simple behavior is no longer valid and
one has to expression µ as a function of λ [40]. Within this
frame, the expression of the contact force is Fc = µ(λ)gM ,
which is valid for both non-slip and slip case. Furthermore, in
the case of aircraft, aerodynamics forces are exerted, with a
net result of a braking force Fa that adds to the actual brakes
action, but does not contribute to the friction analysis. Putting
things together, the equation of motion along the aircraft
trajectory γ can be expressed as:

γ̈(t) =
Fa(t)

M
+ µ(λ(t))g~u (3)

where ~u is a unit vector in the direction of the contact force
Fc. Without making additional assumptions, it is not possible
to use (3) for slip detection. However, if actions taken are
assumed to be optimal, then Fa and ~u will be collinear so
as to maximize the net braking effect. The expression of the
aircraft dynamics becomes:

γ̈(t) = (K(t) + µ(λ(t))g) ~u (4)

where the coefficient K(t) accounts for the aerodynamic
braking force intensity. As aircraft must loose speed fast, µ
will be close to the maximum at least during the landing and
the beginning of taxi. The same applies for K, as it will not
impair adherence. It can then be deduced that aircraft will try
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to keep the ratio between longitudinal and normal acceleration
as high as possible.

An observable measurement of slip condition can be de-
duced from the previous remark by considering the angle θ
between the acceleration and speed vectors:

sin(θ(s)) =
κ(s)‖Dsγ(s)‖2

‖Dssγ(s)‖
=

det (Dsγ(s), Dssγ(s))

‖Dsγ(s)‖‖Dssγ(s)‖
(5)

where γ is the aircraft trajectory and κ its curvature. In
the above expression and through all the document, the
symbol Ds stands for the partial derivative with respect to
variable s. Higher order derivatives are written similarly as
Ds1...s1,s2...s2,... by repeating the variable p times to indicate
a partial derivative of order p.

In good runway conditions, the longitudinal acceleration
will be high and nearly constant, at least in the first part of
the landing trajectory. As a consequence, one can expect θ to
be relatively small and be proportional to det (Dsγ,Dssγ).
Reciprocally, under slip conditions, a trade off has to be made
between path following and deceleration: the angle θ will thus
increases towards the limiting value ±π/2.

Please note that θ is not defined in the portions of the
trajectory where the acceleration or the velocity vanishes.
While the second situation is highly uncommon, as it will
indicate a stop during landing or taxiing, the first one can
be encountered when the aircraft is not braking nor turning.
In such parts of the trajectory, it is not possible to infer an
adherence condition, and curve comparison can be done only
on a geometrical basis. In the addressed application, aircraft
in the observed part of the landing trajectory are decelerating,
so that the above issue is not a concern.

B. An adapted metric in the space of trajectories

Recall that a smooth curve γ : [0, 1] → R2 will be an
immersion when the derivative Dsγ is everywhere non vani-
shing in ]0, 1[. The set of such curves will be denoted by
Imm([0, 1],R2). It has the structure of Banach manifold, its
tangent space at γ ∈ Imm([0, 1],R2) being the vector space
C∞([0, 1],R2). A tangent vector is thus a couple (γ, h) with
γ the base curve and h an element of C∞([0, 1],R2) that
is interpreted as an infinitesimal displacement field along γ.
This point can be formalized using the following notion of
admissible variation.

Definition 1. Let γ be a smooth loop. An admissible variation
of γ is a smooth mapping Φ: ]−ε, ε[×[0, 1]→ R2, ε > 0, such
that Φ(0, •) = γ(•).

An admissible variation defines a tangent vector
(γ,DtΦ|t=0). The extension to more general immersions is
quite straightforward [21]. In the same reference, the variation
formula is used to derive a Riemannian metric on the quotient
space Imm(S1,R2)/Diff([0, 1],R2). These notions can be
easily generalized to the case of open curves.

In the present work, a similar approach will be taken.
However, due to the fact that the slip condition must come into
play, it is not meaningful to keep invariance under change of
parametrization. Instead, a weaker invariance by affine change

of parametrization will be obtained at the end. Furthermore,
curves with vanishing second derivative must be excluded
since the slip angle θ in (5) is not defined at points where
Dssγ(s) = 0. The last condition boils down to the requirement
that the curve s ∈ [0, 1] 7→ (γ,Dsγ) be an immersion. The
space of such objects will be denoted by Imm∗([0, 1],R2).
An mentioned above, this is not an issue for the application,
due to the restriction of the braking part of the trajectory. In a
more general setting, it may be necessary to segment curves
into non vanishing second derivative parts and compare only
them.

The slip angle in (5) has a nice variational interpretation as
indicated in the next lemma.

Lemma 1. Let γ : [0, 1] → R2 be a smooth loop and Φ an
admissible variation of it. Let φ be a smooth path such that
φ(0) = γ(1), φ(1) = γ(0). Then:

DtA(0) =

∫ 1

0

det (DtΦ(0, s), DsΦ(0, s)) ds (6)

where A(t) is the net area enclosed by the loop Φ(t, •), φ for
t ∈]− ε, ε[.

Proof. For any t ∈] − ε, ε[, the loop Φ(t, •), φ is piecewise
smooth so that the net area A(t) can be computed using
Stoke’s formula:

A(t) =
1

2

∫ 1

0

det(Φ(t, s), DsΦ(t, s))ds (7)

+
1

2

∫ 1

0

det(φ(s), Dsφ(s))ds (8)

Taking the derivative with respect to t yields:

DtA(t) =
1

2

(∫ 1

0

det(DtΦ(t, s), DsΦ(t, s))ds (9)

+

∫ 1

0

det(Φ(t, s), DstΦ(t, s))ds

)
(10)

Recalling that the end points of Φ(t, •) are fixed, one can use
integration by parts to get:

DtA(t) =
1

2

(∫ 1

0

det(DtΦ(t, s), DsΦ(t, s))ds (11)

−
∫ 1

0

det(DsΦ(t, s), DtΦ(t, s))ds

)
(12)

and finally, using the alternating property of the determinant:

DtA(t) =

∫ 1

0

det(DtΦ(t, s), DsΦ(t, s))ds (13)

and the conclusion follows by letting t = 0.

Using Lemma 1, the integral :∫ 1

0

|sin(θ(s))| ‖Dsγ(s)‖ds = (14)∫ 1

0

|det (Dsγ(s), Dssγ(s))|
‖Dssγ(s)‖

ds

(15)

may be interpreted as the total infinitesimal area swept by the
curve γ when moved in the direction Dssγ.
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The integral in (14) is invariant under affine change of
parametrization. Given a curve γ defined on an arbitrary
interval [a, b] , it is thus possible to go back to fixed interval
[0, 1]. As a consequence, any curves will be assumed to be
defined on [0, 1]. Please note however that general invariance
under change of parametrization cannot be obtained, and will
not be meaningful as the information sought after is clearly
dependent on the velocity.

The slip angle θ can be obtained in a convenient way using
the fact that the curves take their values in R2 and can thus
also be considered as complex valued mappings. Within this
frame, it comes for the expression of the slip angle θ if curve
γ:

eiθ =
Dsγ

|Dsγ|
Dssγ

|Dssγ|
. (16)

Using the complex representation, the following proposition
gives access to the variation of the slip angle.

Proposition 1. Let Φ: ] − ε, ε[×[0, 1] to C be an admissible
variation of γ. Let θ(t, s) be the slip angle at s of the curve
s 7→ Φ(t, s). Then:

Dte
iθ =

1

|DsΦ|
DstΦ|N

DssΦ

|DssΦ|
N+

1

|DssΦ|
DsstΦ|Ñ

DsΦ

|DsΦ|
Ñ

where the notations N and |N (resp. Ñ and |Ñ ) denotes the
unit normal vector and the component normal to the curve
s 7→ Φ(t, s) (resp. s 7→ DsΦ(t, s)).

Proof. The proposition is a direct computation of the deriva-
tive. The only point to note is that:

Dt

(
DsΦ

|DsΦ|

)
=
DstΦ

|DsΦ|
− DsΦ

|DsΦ|
<
(
DstΦ.DsΦ

)
|DsΦ|2

(17)

=
1

|DsΦ|
DstΦ|N N (18)

and the equivalent derivation for DssΦ:

Dt

(
DssΦ

|DssΦ|

)
=

1

|DssΦ|
DstsΦ|Ñ Ñ .

Proposition 2. Under the same assumptions as in Proposi-
tion 1:

(Dtθ)
2 =

(
DstΦ|N
|DsΦ|

−
DsstΦ|Ñ
|DssΦ|

)2

Proof. Using the fact that |eiθ| = 1 and Proposition 1, it
comes:

(Dtθ)
2 =

1

|DsΦ|2
|DstΦ|N |2 +

1

|DssΦ|2
|DsstΦ|Ñ |

2

+ 2
1

|DsΦ||DssΦ|
<
(
DstΦ|N .T̃ .DsstΦ|ÑT

)
with:

T =
DsΦ

|DsΦ|
, T̃ =

DssΦ

|DssΦ|
.

Since the curve is planar, N = iT (resp. Ñ = iT̃ ).
This combined with the expression of the normal component

DstΦ|N = 〈DstΦ, N〉 (resp. DsstΦ|Ñ = 〈DsstΦ|Ñ , Ñ〉)
yields:

<
(
DstΦ|N .T̃ .DssDtΦ|ÑT

)
= −〈DstΦ, N〉〈DsstΦ|Ñ , Ñ〉

and the result follows.

An admissible variation Φ of a curve γ defines a tangent
vector to γ in the space Imm∗([0, 1],R2) by DtΦ|t=0.
Such a tangent vector is thus a couple (γ, u) where u ∈
C∞([0, 1],R2). The above expression for (Dtθ)

2 allows to
define a semi-norm in the tangent space to the curve γ by
integration along the curve.

Definition 2. Let (γ, u) be a tangent vector to γ. The semi-
norm M(γ,u) is defined by:

M2
(γ,u) =

∫ 1

0

(
Dsu|N
|Dsγ|

−
Dssu|Ñ
|Dssγ|

)2

ds

with N (resp. Ñ ) the normal vector to γ (resp. Dsγ).

Given two curves γ1, γ2, a path between them in
Imm∗([0, 1],R2) is smooth mapping Φ: [0, 1]× [0, 1]→ R2

such that:
• Φ(0, •) = γ1(•),Φ(1, •) = γ2(•)
• For all t in ]0, 1[, Φ(t, •) ∈ Imm∗([0, 1],R2).

Definition 3. Let Φ be a path between γ1 and γ2. Its θ-
deformation energy is defined as:

E(Φ) =

∫ 1

0

(
|DtΦ(t, 0)|2 + |DtΦ(t, 1)|2

)
dt

+

∫ 1

0

∫ 1

0

(
DstΦ|N
|DsΦ|

−
DsstΦ|Ñ
|DssΦ|

)2

ds dt.

The first term is needed as the second part involves only
derivatives of the curve and will not take endpoints into
account. The above definition of the energy is valid for curves
in Imm∗([0, 1],R2), but is not invariant by affine change of
parametrization. Furthermore, it is based on a semi-metric,
resulting in possible degeneracies. The path energy is thus
modified according to Definition 4.

Definition 4. Let Φ be a path between γ1 and γ2. Its total
deformation energy is defined as:

Ẽ(Φ) =

∫ 1

0

(
|DtΦ(t, 0)|2 + |DtΦ(t, 1)|2

)
dt

+

∫ 1

0

∫ 1

0

|DtΦ|2|DsΦ| ds dt

+ λ

∫ 1

0

∫ 1

0

(
DstΦ|N
|DsΦ|

−
DssDtΦ|Ñ
|DssΦ|

)2

|DsΦ| ds dt

where λ > 0 tunes the relative importance of shape and slip
angle.

The first double integral is a Sobolev Riemannian metric that
accounts for shape deformation. The free parameter λ must be
tuned in applications. The energy allows the computation of
geodesic path between curves.
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Definition 5. The geodesic path Φ0 between γ1 and γ2 is,
when it exists, defined by:

Φ0 = argminΦ∈IẼ(Φ)

where I is the set of paths from γ1 to γ2.

The energy of a geodesic path defines a similarity measure
between curves. It will be used in the sequel within a clustering
algorithm.

III. NUMERICAL IMPLEMENTATION

This section describes the numerical implementation of the
path computation of the new metric described in Section II-B.
Then, the clustering procedures will be presented.

A. Geodesic path computation

Two approaches can be used for computing a geodesic path
Φ0 minimizing the total energy. The first one relies on a
system of differential equations involving DtΦ that is solved
starting at t = 0 from the first curve. An iterative shooting
procedure reduces gradually the distance at t = 1 to the second
curve, yielding an approximate geodesic path. This algorithm
is appealing as it does not require an approximation to the
entire path Φ0, but just of the curve s 7→ Φ(t, s) for a fixed
t. Its two main drawbacks are first the need to establish the
equation of geodesics, that may be quite complicated, and
second the numerical instabilities in the shooting phase. It
will nevertheless be investigated in a future work. The second
approach is to approximate the full path Φ by its samples
Φij = Φ(xij), i = 0 . . . n, j = 0 . . .m on a grid defined by
the points xij = (tj , si). In the current implementation, the
grid is evenly spaced. A numerical differentiation procedure
is applied to obtain the derivatives Ds, Dss, Dt and takes
the form of matrices, still denoted with Ds, Dss, Dt, that are
applied to the matrix M = (Φij) of path sample points. Since
the derivative with respect to s must be applied columnwise,
the derivative DsΦ is approximated by Ds.M . Conversely,
derivation is performed rowwise for DtΦ, so that the approx-
imation is M.Dt. Finally, the first and the last column of Φ
are held constant, since they represent sampled version of the
endpoint curves γ1, γ2.

Using the discrete approximation, the total energy of the
sampled path described by the matrix M is a sum of three
terms, hereafter denoted by E1, E2, E3. Their respective ex-
pressions are given in equations

E1(M) =

m∑
j=0

|(M.Dt)0j |2 + |(M.Dt)nj |2 (19)

E2(M) =

m∑
j=0

n∑
i=0

|(M.Dt)ij |2|(Ds.M)ij | (20)

E3(M) =λ

m∑
j=0

n∑
i=0

(
(Ds.M.Dt|N )ij
|(Ds.M)ij |

(21)

−
(Dss.M.Dt|Ñ )ij

|(Dss.M)ij |

)2

|(Ds.M)ij |. (22)

The optimal approximate path is obtained by a standard
numerical optimization algorithm, chosen here to be LM-
BFGS [41] that is well suited to high dimensional problem.
Initializing Φ with a linear homotopy ensure convergence in a
few iterations on most problems. The minimal energy obtained
is used in the following clustering phase.

B. Clustering methods

K-medoids algorithm [37], [38] is an efficient clustering
technique that aims to partition unlabelled data into clusters.
Unlike the well known K-means algorithm [42] which is
sensitive to outliers, K-medoids algorithm is more robust
and uses an actual point in the cluster to represent it. As
this method produces realisctic cluster centers, it may be
preferred for aircraft trajectory clustering. The most benefit of
K-medoids algorithm compared to the K-means is that there
is no need to explicitly compute the cluster centers since we
just need to store the indices of the trajectories minimizing
the total distance to other trajectories in that cluster. Note that
K-medoids requires the use of a metric distance that satisfies
the triangular inequality. It may be a serious drawback for
distances that are not metrics. As recommanded in [20], a
hierarchical cluster analysis (HCA) should be prefered.

As a matter of fact, it is possible to perform the clustering
with a pairwise distance matrix as input data instead of the
raw data. Thereby, we can derive an algorithm with the metric
defined in Section II in order to classify a set of n spatiotempo-
ral trajectories {x1, . . . , xn}. Similarly to K-means and other
clustering techniques such as HCA, the number of clusters K
is assumed to be known. In practice, the knowledge of the
data can help the user to estimate the value of K. In the case
of aviation safety, one could choose K = 3 corresponding to
three levels of alerts: low, medium, high. A fourth cluster may
be added in the procedure for detecting outliers trajectories.
In general, the number of clusters is not known and has to
be computed from the data. In [43], the authors introduced
the Silhouette criterion as a graphical method for interpreting
and validating the results of a clustering algorithm. Broadly
speaking, the Silhouette score measures the tightness and the
separation of the clusters. More formally, for an observed
trajectory xi, it is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
,

where a(i) is the distance between xi and all other trajectories
in the same cluster and b(i) is the distance between xi and
all other trajectories in the next nearest cluster. The overall
Silhouette score, which ranges between -1 and 1, is then the
mean value of the score computed on each sample, i.e.

s =
1

n

n∑
i=1

s(i).

Hence, the number of clusters K can be chosen by maximizing
the Silhouette criterion. It can also be used as a validation
metric of a clustering method: the higher value of s is, the
better is the clustering. Note that the mean values of a(i) and
b(i) can be interpreted respectively as the intra-cluster variance
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and the inter-cluster variance. Knowing that, a higher value of
s indicates that the clusters are dense and well separated while
a lower value of s refers to an incorrect clustering. A score
around zero indicates overlapping clusters.

Note also that the K-medoids can be sensitive to the
initialization of the algorithm and may find a local minimum.
This is actually a classical drawback of the clustering methods.
A common solution is to repeat the clustering with different
initializations and to retain the best one with respect to the
Silhouette score.

IV. NUMERICAL EXPERIMENTS

In the following, the new metric defined in Section II is
called the slippery metric. The slippery metric described is
tailored to take into account information on acceleration and
should be able to detect abnormal deceleration levels that may
indicate a potential degraded runway condition. This metric
has an affine invariance property by change of parametrization,
speed and acceleration of trajectories remaining unchanged
except for a multiplicative constant. In this section, the
performance of this metric is compared with other existing
competitors: one geometric metric, the Square Root Velocity
(SRV) metric [25]–[27], and seven other distances described
in [20].

Geometric metrics are relevant for clustering trajectories
having different morphologies, and for which second-order
information is not required; this is the case when some aircraft
trajectories deviate from the nominal one. As noted in [44], the
SRV metric is invariant under change of parametrization: if the
two curves are reparametrized in the same way, the distance
does not change. However, if the curves are reparametrized in
different ways, the distance changes. Even if the SRV metric is
not tailored to take into account information on acceleration,
it might be able to detect parametrization differences between
curves in addition to changes in the shape. Usually, an optimal
matching procedure is used to produce a distance, that can
detect differences in the shapes of the curves irrespective of
their parametrization. This should not take into account the
velocity information and is not be suitable for slip detection.
In this section, we will consider both kinds of SRV metric: the
first one will be called the SRV metric before alignment and
the second one will be called the SRV metric after alignment.
We have used the algorithm developed in [45], implemented
in the Geomstats python package [44], [46].

In addition to the SRV metrics, [20] provides a compre-
hensive review of different distances used in the literature,
especially in the context of vehicle trajectory clustering. But
most of the used competitor distances are not metrics. For
this reason, in the following first subsection, we will perform
a hierarchical cluster analysis (HCA) in a validating step on
simulated datasets. In the second subsection, the performance
of the two SRV metrics and the slippery metric will be
compared by using a K-medoids clustering procedure to a real
dataset of landing aircraft tracks.

A. The simulation procedure
As already mentioned, it is virtually impossible to ensure

that an observed trajectory that deviates from the nominal one

is the result of a bad adherence condition. To perform such a
task, a physical measurement is mandatory and the only way to
correlate runway quality to landing tracks is to have recorded
trajectories right after or before a measurement.

A more tractable approach is to simulate landing and taxiing
in a realistic fashion, so that the detection performance of
the methods can be estimated. Very good models of wheeled
ground vehicles are available in the literature [40] and the case
of braking aircraft has been considered in [47]. For the purpose
of the study, a very detailed model is not needed, but a good
conformance to observations is required. The approach taken
was to use the model of Figure 1. The aircraft is controlled

Fig. 1: Aircraft physical model.

using the engine thrust and the front wheel steering angle.
The landing gear tires train is replaced by a single equivalent
tire. The simulation is performed by solving the equations
of motion using a Runge-Kutta 45 scheme with adaptive
step. The control loop consists of two Proportional-integrated-
derivative (PID) regulators: the inner acts on the steering angle
of the front wheel and corrects lateral deviations from the
intended path while the outer controls deceleration. When the
mobile is skating, the first control loop takes precedence and
consumes the apart of the available friction force to minimize
the lateral error. The remaining friction is transfered to the
outer loop to apply some deceleration. It is clear that this
process will increase the slip angle in a trajectory turn.

A simulator was coded in Java and applied to synthetic
tracks with tunable adherence coefficient. Since slippery can
be detected easily within the simulation loop, all output trajec-
tories are flagged as ”skating” or ”normal”. Two datasets were
generated from this simulator to compare the slippery metric
with all others competitors. In order to more precisely compare
the behavior of the SRV metrics and the slippery metrics, other
more tractable datasets were simulated following a circle shape
and different parametrizations of curves.
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B. The aircraft trajectory simulator datasets and comparison
with all competitors

1) Simulated trajectories: Landing and taxiing trajectories
are simulated following a circle representing the nominal tra-
jectory. The initial landing point is randomly disturbed as well
as the initial velocity. In this way, it may induce a skating at
the beginning of the landing trajectory which is then corrected
by the regulators as described above. Note that, following the
action of the PID regulators, simulated skating trajectories end
before the normal ones. Moreover, all the paths take the same
initial direction following the nominal trajectory as illustrated
in Figure 2. The dataset of simulated trajectories is composed
of 16 skating trajectories and 284 normal trajectories. As the
analysis of landing trajectories requires to take into account
information on acceleration, simulated trajectories have not
been normalized.

Fig. 2: Simulated trajectories: 284 normal trajectories (blue)
and 16 skating trajectories (red).

The slippery metric is compared with both SRV metrics and
the distances described in [20]: some warping-based distances
such as DTW [14], LCSS [15], EDR [16] and ERP [17], and
some shape-based distances, such as the SSPD distance [20],
the Hausdorff distance [18] and the Fréchet distance [19]. The
discrete Fréchet distance was preferred, as requiring a lower
computational cost. Because the discrete Fréchet distance, just
like SSPD, DTW, LCSS and EDR distances are not metric, a
HCA clustering method is then performed in order to detect
two clusters: the normal trajectories cluster and the skating
trajectories one. In this framework, complete, median, ward
and centroid linkage criteria have been compared. Finally,
following [20], the ward criterium has been chosen, usually
giving the best results and producing spherical clusters. Note
that the LCSS and EDR warping-based distances require to
set a spatial threshold that makes the distance robust to noise.
A high threshold value can produce all similar distances,

while by using a too low threshold, only very close curves
are considered similar. We set this threshold to 0.01 after
comparing different results.

TABLE I: number of skating and normal trajectories.

Metric Cluster 1 Cluster 2
skating normal skating normal

Slippery 0 284 16 0
SRV without alignment 0 284 16 0
SRV with alignment 0 284 16 0
ERP 0 284 16 0
DTW 0 100 16 184
EDR 10 284 6 0
LCSS 10 284 6 0
Discrete Fréchet 0 284 16 0
Hausdorff 0 284 16 0
SSPD 5 188 11 96

Table I displays the number of trajectories in each cluster
returned by the HCA procedure. The output trajectories are
then flagged as “skating” or “normal”. The slippery metric and
both SRV metrics, as well the ERP warping-based metric, the
Hausdorff and discrete Fréchet shape-based distances, perform
well and correctly detect the 16 skating trajectories cluster
and the 284 normal trajectories one. The DTW warping-based
distance produces one cluster containing only normal trajec-
tories and one cluster composed of all the skating trajectories,
but also a large number of normal trajectories. The EDR and
LCSS warping-based distances and the SSPD distance detect
one cluster with some skating trajectories, the others being
clustered with the normal trajectories.
Table II displays some evaluation measures for DTW, EDR,
LCSS and SSPD distances: the false negative rate (FNR), the
false positive rate (FPR) and some indices measuring how
similar the returned clusters are to the skating and normal
labels. FNR represents the miss rate, that is the rate of skating
trajectories in the cluster of returned normal trajectories corres-
ponding to an undetected skidding, distances with high value
miss rate are not suitable from a safety point of view. FPR
corresponds to the false alarm rate, that is the rate of normal
trajectories falsely detected as skating. A high FDR value
corresponds to a situation generating significant costs for ATM
as noted in Section I. The Matthews correlation coefficient
takes on a value between 0 and 1, with 0 meaning that the
two returned clusters are completely different from the skating
and normal clusters. Higher values indicate greater similarity
and an indicator of 1 means that the output trajectories are
correctly clustered as skating and normal.

TABLE II: clustering evaluation.

Metrics FNR FPR Matthews
DTW 0 0.92 0.168
EDR/LCSS 0.034 0 0.602
SSPD 0.259 0.90 0.164

Even if the DTW miss rate is 0, the DTW false alarm rate
is very high (92%), as the SSPD distance (90%). EDR and
LCSS both produce the lowest miss rate and false alarm rate
values, but the Matthews correlation coefficient indicates that
more than half of skidding trajectories are not detected by
using EDR and LCSS distances.
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As noted previously, skating trajectories can be distin-
guished from normal ones due to their end points. This
shape argument could explain why the SRV metrics and the
Hausdorff, discrete Fréchet and ERP distances work well for
clustering skid and non-skid situations. For this reason, we
have truncated the simulated trajectories, so that all trajectories
end almost at the same location. We assess clustering for ERP,
discrete Fréchet, Hausdorff distances, both SRV metrics and
the slippery one in Table III and Table IV .

TABLE III: number of skating and normal trajectories.

Metric Cluster 1 Cluster 2
skating normal skating normal

Slippery 0 284 16 0
SRV without alignment 0 284 16 0
SRV with alignment 0 284 16 0
ERP 1 145 15 139
Discrete Fréchet 1 145 15 139
Hausdorff 1 145 15 139

TABLE IV: clustering evaluation for the ERP, Hausdorff
and Discret Fréchet distances.

FNR FPR Matthews
0.007 0.96 0.21

Results in Table III show that the ERP metric, as well as the
Hausdorff and Discrete Fréchet distances, no longer correctly
detect the two skating and normal clusters. While the low
miss rate value shows that few skating trajectories are falsely
detected as normal, the false alarm rate value is very high.
Moreover, the Matthews correlation coefficient indicates that
the predicted clusters are not similar to the skating and normal
clusters.

Finally, only the slippery metric and both SRV metrics seem
to be able to correctly cluster trajectories in a skid and non-
skid situation. This result is surprising, particularly that of the
SRV with alignment, which is probably explained by a weak
numerical bias, detected by the HCA procedure. The result
from the SRV without alignment is coherent with the fact
that, before the optimal matching procedure, the differences in
parametrization may be detected, when differences in shapes
are especially not enough significant to hide this effect.

2) Slightly deformed simulated trajectories: In order to
assess the robustness of the results obtained by using the slip-
pery metric and the SRV metrics, we have slightly deformed
trajectories by using a random coefficient (around 1%) so
that simulated landing trajectories are now randomly flattened
following an ellipsoid and are more realistic.

When HCA is performed on the entire trajectories, both
SRV metrics and the slippery metric perform well. We then
focused on the beginning of the trajectories before the PID
regulators act skidding. Now, both SRV metrics can no longer
correctly detect the two clusters while the slippery metric can
do so. Results from Table V show that almost all skating
trajectories are clustered with normal ones. These two metrics
produce a very high false alarm rate (around 90%) and the low
Matthews correlation coefficient indicates that the clustering
algorithm does not correctly distribute the trajectories into
clusters. In Figure 3, we can visualize the clusters produced

TABLE V: number of skating and normal trajectories.

Metric Cluster 1 Cluster 2
skating normal skating normal

Slippery 0 284 16 0
SRV without alignment 2 186 14 198
SRV with alignment 3 213 13 71

TABLE VI: clustering evaluation.

Metrics FNR FPR Matthews
SRV without alignment 0.011 0.93 0.141
SRV with alignment 0.014 0.84 0.315
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Fig. 3: HCA with (a) the slippery metric, (b) the SRV metric
without alignment and (c) the SRV metric with alignment. Two
predicted clusters: cluster 1 (blue) and cluster 2 (red).

from HCA with the slippery metric and both SRV metrics.
When using the SRV metrics, almost all the skating trajectories
are clustered with the normal trajectories whose the starting
points have low values. It seems that normal trajectories are
distributed in the two predicted clusters in equal proportions
relatively to the starting point, the skating trajectories being
clustered in one of these clusters.

Finally, it seems that, among all the competitors, only the
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SRV metrics might be able to correctly detect the skidding
in certain situations. These results are quite surprising in
the case of deformed simulated trajectories. We suspect that
the differences in the shapes along the entire trajectories are
not sufficiently high to hide the parametrization differences
or a numerical bias. However, the datasets generated by the
simulator may eventually suffer from biases due to the action
of the PID regulators. This is the case of the end points of
trajectories, but other effects may be present.

C. Application to more tractable simulated datasets

In order to highlight the effect of shape differences, we
have compared results from the SRV metrics and the slippery
metric with more tractable datasets. In the following datasets,
we have considered two profiles of velocity along the curves: a
constant speed profile corresponding to skating and a braking
one at the beginning of the curves. The datasets of simulated
curves are composed of 30 curves, mixing the two profiles of
velocity in equal proportions.

1) Trajectories of the same shape: We first consider trajec-
tories following the shape of a circle with initial point being
randomly disturbed. Each curve i is a set of positions

traj(i) = (ai cos θ + ci, bi sin θ + ci), θ ∈ [0, π/2],

where ci is evenly distributed in an interval of amplitude α
and ai = bi = 1.
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Fig. 4: Simulated circle trajectories: 15 constant speed trajec-
tories (blue) and 15 braking trajectories (red).

The SRV metric is not sensitive to differences in tranlation
and should vanish. Surprisingly, the HCA procedure can detect
the two clusters of speed profile, even in the case of the SRV
without alignment. When examining the distance matrices
produced by the SRV metric with alignment, the distance
values of similar speed profile curves is around of 10e-14
and 10e-5 for different speed profile curves. These differences
seem negligible at first glance, however they are anyway
detected by a HCA procedure. In this case, the clustering result
is clearly due to a numerical bias. On the other hand, the SRV
metric without alignment produces similar distance values for
similar speed profile curves, but non negligible values for

different speed profile curves around 0.15. This result is less
surprising because, as noted in [44], the SRV metric may be
sensitive to differences in reparametrization.

2) Trajectories with deviations from the initial shape: We
consider the circle-shaped trajectories as in the previous exam-
ple. However, some of them exhibit a Gaussian-like deviation
from the nominal circle-shaped curve. This corresponds to the
shape of landing trajectories with lateral deviations from the
centreline. For each curve i, this deviation di can be inflated
by a multiplicative coefficient r as follows

di(t) = (r ∗ exp(−0.5 ∗ (t− 0.5)2/σ2), t ∈ [0, 1],

where t represents a time location and σ a fixed standard
deviation. Two situations were considered with different values
of the coefficient r : low-medium deviations (r = 1%, 5% and
10%) and medium-high deviations (r = 1%, 10% and 30%).
Again, for each scenario, the two speed profiles are equally
distributed into the three subgroups curves.
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Fig. 5: Simulated deviated trajectories: 15 constant speed
trajectories (blue) and 15 braking trajectories (red). Low
deviations (left) and high deviations (right).

Table VII shows that, with low-medium deviations, the
SRVF metric with alignment can no longer correctly detect the
two clusters. Both skating and braking trajectories are similarly
clustered into the predicted clusters in equal proportions.
Moreover, the miss rate (50%), the false alarm rate (50%)
and the zero Matthews correlation coefficient mean that the
clustering algorithm randomly distributes the trajectories into
clusters. Note that the SRVF metric without alignment can
detect skating and braking when deviations are relatively low.

TABLE VII: number of braking and skating curves for low-
medium deviations.

Metric Cluster 1 Cluster 2
skating braking skating braking

Slippery 0 15 15 0
SRV without alignment 0 15 15 0
SRV with alignment 10 10 5 5

Table VIII displays the results when the differences in
the shape are higher. The SRV metric without alignment
now favors shape detection to the detriment of speed profile
detection. In Figure 6, we can visualize that both SRV metrics
cluster the curves relatively to the shape differences while the
slippery metric performs well.
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TABLE VIII: number of braking and skating curves for
medium-high deviations.

Metric Cluster 1 Cluster 2
skating braking skating braking

Slippery 0 15 15 0
SRV without alignment 10 10 5 5
SRV with alignment 10 10 5 5
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Fig. 6: HCA with (a) the slippery metric, (b) the SRV metric
without and with alignment. Two predicted clusters: cluster 1
(blue) and cluster 2 (red).

3) Trajectories with slightly deformed deviations: Finally,
the previous datasets are slightly deformed by adding Gaussian
distributed noise N (0, ε = 0.05) along the curves. A smoo-
thing splines regression technique is next applied to recover
smooth trajectories. The resulting dataset is then composed of
slightly deformed curves relatively to the previous example.
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Fig. 7: Simulated slightly deformed deviated trajectories: 15
constant speed trajectories (blue) and 15 braking trajectories
(red). Low deviations (left) and high deviations (right).

Both SRV metrics are now unable to correctly cluster the
curves as skating and braking. Even if the evaluation criteria
are better for the SRV without alignment than for the SRV

with alignment, the false alarm rate remains important (20%).

TABLE IX: Low-medium deviations: number of braking and
skating curves for slightly deformed curves.

Metric Cluster 1 Cluster 2
skating braking skating braking

Slippery 0 15 15 0
SRV without alignment 0 11 15 4
SRV with alignment 7 8 8 7

TABLE X: clustering evaluation.

Metrics FNR FPR Matthews
SRV without alignment 0 0.2 0.76
SRV with alignment 0.47 0.47 0.07

Finally, with medium-high deviations, we obtain the
same results as those found in the previous examples: the
parametrization detection is hidden by the shape differences by
both SRV metrics while it is clearly identified by the slippery
metric.

TABLE XI: Medium-high deviations: number of braking and
skating curves for slightly deformed curves.

Metric Cluster 1 Cluster 2
skating braking skating braking

Slippery 0 15 15 0
SRV without alignment 10 10 5 5
SRV with alignment 10 10 5 5
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Fig. 8: HCA with (a) the slippery metric, (b) the SRV metric
without and with alignment. Two predicted clusters: cluster 1
(blue) and cluster 2 (red).

These results highlight those obtained with the aircraft
trajectory simulator datasets. When the curves have the same
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shape, both SRV metrics perform well, due to a numerical bias
for the SRV metric with alignment. When the curves have
different morphologies, the SRV with alignment behaves as
expected and detects only differences in shape. The numerical
bias seems to be hidden in this case. This observation does
not hold for the SRV without alignment, which depends on the
parametrization of the curves. Even if this metric is not tailored
to take into account information on acceleration, it is able to
perform well in certain situations when shape differences are
not high enough to hide differences in parametrization. As
an alternative, the slippery metric that is tailored to detect
the information on acceleration performs well in each studied
case.

D. Application to Radar tracks

In this section, we apply the K-medoids clustering method
to a database of radar tracks in order to detect bad runway
condition and skidding. Note that an HCA procedure was also
performed and analogous results were obtained.

1) Description of the data: The Radar tracks used here are
a set of landings coming from A-SMGCS1 which is a system
that provides air traffic controllers with services to maintain
airport safety and capacity. These data are generated by
sensor fusion of Primary Surveillance Radar (PSR), Secondary
Surveillance Radar (SSR) using onboard transponders and
multilateration Automatic Dependent Surveillance Broadcast
(ADS-B).

Each landing trajectory T is defined as a set of spatiotem-
poral data, i.e. includes GPS position xk, yk and the aircraft
speed vk:

T = (p1, . . . , pn)

= (γ(t1), . . . , γ(tn)),

where pk = (xk, yk, vk) and γ : [0, 1] −→ R3. Note
that deceleration values are derived from aircraft speed as
a preprocessing step. The dataset consists of 357 landing
trajectories.

We have chosen to focus on the runway exit curve only since
slippery is mainly visible in curves. Then, following experts, as
skidding is a loss of grip with the runway, a degraded runway
condition is defined as follows:
• The aircraft deviates from the centreline
• The deceleration value is greater than the runway grip

coefficient (which is low when the runway is slippery)
Following this definition, skidding is not only reduced to

a lateral deviation of the trajectory. The aircraft deceleration
value is indeed used as the indicator of the runway state. A low
deceleration level indicates that the runway does not respond
to the brakes.

2) Clustering-based bad runway condition detection: The
K-medoids clustering method detailed in Section III-B is
performed on the Radar tracks data. Two kind of metrics
are used: both SRV metrics [25], [26], i.e. without and with
alignment, which are not supposed to take into account the

1http://www.eurocontrol.int/articles/advanced-surface-movement-guidance-
and-control-systems-smgcs

deceleration of the aircraft and the slippery metric defined in
Section II.
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Fig. 9: K-Medoids clustering (SRV metric without alignment).

Figures 9 and 10 show that using both SRV metrics, the tra-
jectories are well clustered by the algorithm relatively to their
morphologies. Indeed, cluster 2 contains mostly trajectories
with a large lateral deviation, while cluster 3 corresponds to
aircraft trajectories following the runway centreline (reference
trajectory). Cluster 4 contains mostly standard trajectories even
if there is several trajectories with slight lateral deviations.
Cluster 1 corresponds to outliers trajectories. Note that, as
expected, the SRV metric with alignment is more efficient
for clustering trajectories morphologies than the SRV metric
without alignment. We have previously seen that the latter
metric may detect differences in parametrization that could
influence the clustering. On the other hand, these differences
in parametrization may be hidden by the shape differences and
produce false alarm situations. Moreover, as explained before,
if lateral deviations in landing trajectories correspond to ab-
normal behavior, it does not necessarily represent skidding. In
practice, the detection of bad runway conditions has to take
into account the deceleration profile (see Section II). It will be
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interesting to compare these results with the one obtained by
using the slippery metric that is built for taking into account
the second-order information.
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Fig. 10: K-Medoids clustering (SRV metric with alignment).

When adding the information of the deceleration in the met-
ric, the results are slightly different. Indeed, from a geometric
point of view, results are quite similar to the one described
with the SRVF metric. However, if cluster 2 contains the
most deviant trajectories, we observed one deviant trajectory
in cluster 4 (Figure 11).

In-depth examination shows that it cannot be considered as
a slipped trajectory. Indeed, Figure 12 compares this trajectory
and its deceleration profile with the medoid of cluster 2
(deviant trajectories). Again the blue trajectory deviates from
the red one but the deceleration profiles are significantly
different: the deceleration level of the blue profile is higher
than the red medoid deceleration profile. This means that the
runway is not slippery, since there is a sufficient grip to obtain
a good braking action. From an operational point of view, it
seems the aircraft speed was high when arriving on exiting
the runway which led on high braking.
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Fig. 11: K-Medoids clustering with the slippery metric.

Briefly speaking, unlike the SRV metric which is only
based on the geometric shape, the benefits of the metric with
deceleration is twofold: firstly, it detects lateral deviations, and
secondly, it removes false positives by taking into account the
deceleration part. Finally, an expert study shows that there was
3.7% of slippery alerts in the dataset, among which 92.3% are
in cluster 2 (red trajectories). This results confirms the good
performance of the proposed metric.

V. CONCLUSION AND FUTURE WORK

The ability to detect bad runway conditions without re-
sorting to intrusive on-site measurements will be of major
interest both for economic considerations and for passenger
experience. In the future, aircraft will be able to downlink their
flight and taxi parameters, but until then, only radar tracks may
be used. Clustering landing trajectories into skating and normal
ones falls within the frame of functional data. However, some
extra information must be added to really distinguish between
trajectories experiencing slipping and those resulting from late
breaking action of the pilot.
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Fig. 12: The most deviant trajectory of cluster 4 (blue), the medoid of cluster 2 (red) and their related deceleration profiles.

In this work, a new distance between curves especially
tailored for bad runway adherence conditions has been intro-
duced. Using the slip angle as a measure of skating, a deforma-
tion energy is built, which associates the square derivative of
the slip angle to an admissible variation of a trajectory. Using
the fact that all curves are planar, its expression can be reduced
to a simple semi-metric. Finally, its integration along a smooth
homotopy between two curves gives an energy. Minimizing it
among all possible such homotopies allows the computation
of a geodesic path, with associated minimal distance. Using
this new metric within a clustering algorithm yields a new
methods for clustering landing trajectories that outperforms
usual shape-based metrics on both simulated and real data. The
cost of distance evaluation is still compatible with offline use
of the procedure, in the order of ten minutes for 15,000 pairs
of trajectories. It a future implementation, parallel evaluation
of the distance matrix will be used, with an expected speed-up
close to the number of available compute nodes.

The metric introduced is of Finsler type. The investigation
of some properties of it, like its spray, was beyond the scope
of the present study which focused on practical applications.
It will be for further research.
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