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Abstract

In air transportation, a huge amount of data is continuously recorded such as
radar tracks that may be used for improving flight as well as airport safety.
However, all known statistical algorithms, even those based on functional data,
are unable to distinguish between a safety critical flight and another one depar-
ting from standard behavior, but otherwise safe. It is the case in airport safety
when radar measurements are used for detecting incidents on airport surface.
In this paper, we propose a change of paradigm by switching from a functional
data framework to a geometrical one by representing curves as points in a shape
manifold. In this way, any intrinsic structure of the data that is amenable to
geometry can be directly encoded in the representation space. Based on an
extension of a classical distance between shapes, a new one is defined, that
explicitly takes into account the second derivative and can be related to slippery.
Its properties are investigated in a first part, then some results on datasets of
synthetic and real trajectories are presented.

Keywords: curve clustering, outlier detection, similarity measure, shape
manifold, functional data analysis, air traffic management, airport safety.
PACS:

1. Introduction

Based on recent studies, European air traffic is expected to grow, yielding
an increase of 1.2 million flights in 2023, 14% more than in 2016 [1]. Major
framework programs such as SESAR (Single European Sky Air traffic manage-
ment Research) in Europe aim to improve air traffic management (ATM) by
investigating innovative solutions on management and traffic flow analysis. In
the context of aviation safety, a crucial issue consists in assessing runway ad-
herence condition and detecting incidents on airport surface by observing only
the radar tracks of landing aircraft, e.g. trajectory deviation and abnormal
deceleration may be good indicators of runway bad state. Indeed, landing air-
craft must brake in a quite short time, putting a stringent condition on the
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adherence coefficient of the runways. Bad weather conditions like rain, snow
and icing can dramatically lower it, increasing the landing distance and making
maneuvers more difficult to perform. Rubber deposited by the wheels during
braking may also impair the friction coefficient of the runway making it more
slippery. To estimate the runway adherence condition, a direct measurement
of it on the pavement is usually performed: it implies sending a vehicle with a
dedicated tool, which will interfere with the ongoing traffic. The objective is to
develop spatio-temporal similarity measures for trajectories that will be used in
clustering or outliers detection methods.

Aircraft trajectories are functional objects mapping time to position, even
if we will most of the time observe discretized samples of trajectories, such as
radar measurements. The mathematical problem arising from the application
presented above falls within the general framework of curve clustering, which
is quite common in functional data statistics. Several works were dedicated to
the extension of multivariate algorithms to sample paths of Hilbert processes.
As a starting point, data is first expanded on a truncated Hilbert basis [2]
then the vectors of expansion coefficients enters a standard finite dimensional
analysis. A clever choice of the representation space and basis allows to take
into account the a priori knowledge about the studied process. Unfortunately,
the dimension of the samples produced that way may be high, and varies with
the geometric features of the sample paths. In particular, the presence of high
curvature values will increase the number of expansion coefficients needed to
keep a good approximation of the original function. In [3], an EM functional
clustering algorithm is presented with adaptive basis in each group, yielding an
efficient numerical method to deal with this issue. Another class of methods
relies on a non-parametric approach [4, 5]. A recent work [6] pertaining to
this approach presents a hierarchical clustering principle, with application to
electric power consumption. Moreover, the choice of the Lp metric as a measure
of similarity between trajectories may be problematic in many situations and
does not reflect the high internal structure of aircraft trajectories.

For overcoming these difficulties, a solution consists in representing func-
tional data in a Riemannian framework. Indeed, curves can be made amenable
to functional data statistics by representing them as points on the so-called
shape manifold, that is formally defined as a quotient of the manifold of immer-
sions. It is not a Hilbert space, but it can be provided with Riemannian metrics
that allow geodesic distance computation, although some care must be taken
in order to avoid degeneracy of the metric [7]. In the shape space literature,
curves are considered as geometric objects and are represented in the so-called
shape space, that is the set of immersions quotiented by the group of smooth
diffeomorphisms. Some algorithms use a shape manifold [8] representation in
order to derive a metric between sample paths. Note that this kind of metric
verify the reparametrization invariance property. Having it at hand, clustering
may be performed in a standard way. It worth mention that most of the time
a mean of computing the centroid of a set of curves is mandatory.

Considering methods falling in this category, it appears that the require-
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ments of the landing trajectory analysis are not fulfilled: enforcing a full parame-
trization invariance as in the case of shape based approaches prevents the use of
longitudinal acceleration that enters the non-slip condition. On the other side,
Sobolev-like metrics are designed to be tailored to specific needs. Motivated by
a real use case where one wants to assess runway adherence condition by ob-
serving only the radar tracks of landing aircraft, we propose in this paper to use
a Riemannian framework for curves with velocity information. The purpose is
to introduce a new kind of Riemannian metric that is especially adapted to the
study of curves where the velocity is a discriminating feature. In such a case,
the original shape space approach cannot be used since the parametrization
invariance will wipe out the velocity information. A partial parametrization in-
variance is introduced, yielding a bundle shape space model on which a relevant
metric can be defined. The design of the metric was based on the equations of
motion and reflects the internal structure of the data. The equation of geodesics
will be given, along with a practical computation algorithm based on a shooting
method.

The paper is organized as follows. In Section 2, we formally describe the
theoretical framework and define an adapted metric taking into account the
velocity information. In Section 3, the numerical implementation of the new
metric and the K-medoids clustering method [9, 10] is described in a general
setting. This algorithm allows to implement another metric than the usual Eu-
clidean distance. Next, Section 4 illustrates the performance of the K-medoids
algorithm with the new metric for low adherence detection on a set of simulated
and real trajectories. These results are also compared with competing distances.
Finally, some comments and future works are drawn in Section 5.

2. Theoretical framework

This section is dedicated to the definition of a relevant metric for curves
taking into account velocity information. The framework presented here will
overcome the limitations of the shape approach through the use of a metric in
which the slip characteristic of the landing path is explicitly considered.

2.1. Slip detection

Landing aircraft may experience slip during deceleration phase when the
runway is in degraded conditions. It may result from icing, snow, bad runway
surface state but also from pilot’s actions, namely a too high braking action or
a sharp turn. In this last case, it is not related to runway condition and must
not trigger a maintenance action from the airport services.

Slip can be detected on-board by comparing wheel rotation rate with aircraft
velocity and computing the so-called wheel slip factor:

λ =
ωw − ωa

max(ωw, ωa)
(1)
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where ωw is the wheel angular velocity and ωa = Va/Rw is the expected angular
velocity that can be computed as the ratio of the aircraft velocity to the wheel
radius. Please note that on the real vehicle, several wheels are used, and the
λ coefficient has to be understood as a mean value. Furthermore, due to tire
elasticity, λ is not zero even if there is no actual slip: this is due to the fact
that when a traction or a braking force is applied, the rubber will stretch,
resulting in the tire outer part actually traveling more or less than expected
from rigid body dynamics. This information is not yet downlinked in real time
to ground centers and thus cannot be used in the intended application. From
the ground standpoint, λ cannot be observed without on-board information, but
some aspects of the landing or taxiing aircraft behavior may still be inferred.
It is assumed in the sequel that Coulomb’s law for friction [11] is applicable,
so that the contact force Fc depends only on aircraft weight and tire/runway
conditions:

Fc ≤ µgM (2)

with M the aircraft mass, g the gravity of Earth and µ the adhesion coefficient.
Without slip, µ is equal to the static friction coefficient µs and Fc can be in-
creased until it reaches the upper bound in 2. At that point, slip occurs and µ
drops to the value of the dynamic friction coefficient µd. Fc remains constant
until it falls below µdgM . In real world experiments, this simple behavior is no
longer valid and one has to expression µ as a function of λ [12]. Within this
frame, the expression of the contact force is Fc = µ(λ)gM , which is valid for
both non-slip and slip case. Furthermore, in the case of aircraft, aerodynamics
forces are exerted, with a net result of a braking force Fa that adds to the actual
brakes action, but does not contribute to the friction analysis. Putting things
together, the equation of motion along the aircraft trajectory γ can be expressed
as:

γ̈(t) =
Fa(t)

M
+ µ(λ(t))g~u (3)

where ~u is a unit vector in the direction of the contact force Fc. Without making
additional assumptions, it is not possible to use (3) for slip detection. However,
if actions taken are assumed to be optimal, then Fa and ~u will be collinear so
as to maximize the net braking effect. The expression of the aircraft dynamics
becomes:

γ̈(t) = (K(t) + µ(λ(t))g) ~u (4)

where the coefficient K(t) accounts for the aerodynamic braking force intensity.
As aircraft must loose speed fast, µ will be close to the maximum at least
during the landing and the beginning of taxi. The same applies for K, as it
will not impair adherence. It can then be deduced that aircraft will try to keep
the ratio between longitudinal and normal acceleration as high as possible. An
observable measurement of slip condition can be deduced from the previous
remark by considering the angle θ between the acceleration and speed vectors:

sin(θ(s)) =
κ(s)‖Dsγ(s)‖2

‖Dssγ(s)‖
=

det (Dsγ(s), Dssγ(s))

‖Dsγ(s)‖‖Dssγ‖
(5)
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where γ is the aircraft trajectory and κ its curvature. In the above expression
and through all the document, the symbol Ds stands for the partial derivative
with respect to variable s. Higher order derivatives are written similarly as
Ds1...s1,s2...s2,... by repeating the variable p times to indicate a partial derivative
of order p.

In good runway conditions, the longitudinal acceleration will be high and
nearly constant, at least in the first part of the landing trajectory. As a
consequence, one can expect θ to be relatively small and be proportional to
det (Dsγ,Dssγ). Reciprocally, under slip conditions, a trade off has to be made
between path following and deceleration: the angle θ will thus increases towards
the limiting value ±π/2.

Please note that θ is not defined in the portions of the trajectory where the
acceleration or the velocity vanish. While the second situation is highly uncom-
mon, as it will indicate a stop during landing or taxiing, the first one can be
encountered when the aircraft is not braking nor turning. In such parts of the
trajectory, it is not possible to infer an adherence condition, and curve com-
parison can be done only on a geometrical basis. In the addressed application,
aircraft in the observed part of the landing trajectory are decelerating, so that
the above issue is not a concern.

2.2. An adapted metric in the space of trajectories

Recall that a smooth curve γ : [0, 1] → R2 will be an immersion when the
derivative Dsγ is everywhere non vanishing in ]0, 1[. The set of such curves will
be denoted by Imm([0, 1],R2). It has the structure of Banach manifold, its
tangent space at γ ∈ Imm([0, 1],R2) being the vector space C∞([0, 1],R2). A
tangent vector is thus a couple (γ, h) with γ the base curve and h an element
of C∞([0, 1],R2) that is interpreted as an infinitesimal displacement field along
γ. This point can be formalized using the notion of admissible variation:

Definition 1. Let γ be a smooth curve. An admissible variation of γ is a
smooth mapping Φ: ] − ε, ε[→ R2, ε > 0, such that Φ(0, •) = γ(•) and ∀t ∈
]− ε, ε[,Φ(t, 0) = γ(0),Φ(t, 1) = γ(1).

An admissible variation defines a tangent vector (γ,DtΦ|t = 0) . The ex-
tension to more general immersions is quite straightforward [7]. In the same
reference, the variation formula is used to derive a Riemannian metric on the
quotient space Imm(S1,R2)/Diff([0, 1],R2).

In the present work, a similar approach will be taken. However, due to
the fact that the slip condition must come into play, it is not meaningful to
keep invariance under change of parametrization. Instead, a weaker invariance
by affine change of parametrization will be obtained at the end. Furthermore,
curves with vanishing second derivative must be excluded since the slip angle θ
in (5) is not defined at points where Dssγ(s) = 0. The last condition boils down
to the requirement that the curve s ∈ [0, 1] 7→ (γ,Dsγ) be an immersion. The
space of such objects will be denoted by Imm∗([0, 1],R2). An mentioned above,
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this is not an issue for the application, due to the restriction of the braking part
of the trajectory. In a more general setting, it may be necessary to segment
curves into non vanishing second derivative parts and compare only them.

The slip angle in (5) has a nice variational interpretation as indicated in the
next lemma.

Lemma 1. Let γ : [0, 1]→ R2 be a smooth path and Φ an admissible variation
of it. Let φ be a smooth path such that φ(0) = γ(1), φ(1) = γ(0). Then:

DtA(0) =

∫ 1

0

det (DtΦ(0, s), Ds(0, s)) ds (6)

where A(t) is the net area enclosed by the loop Φ(t, •), φ for t ∈]− ε, ε[.

Proof. For any t ∈]− ε, ε[ the loop Φ(t, •), φ is piecewise smooth so that the net
area A(t) can be computed using Stoke’s formula:

A(t) =
1

2

∫ 1

0

det(Φ(t, s), DsΦ(t, s)ds+
1

2

∫ 1

0

det(φ(s), Dsφ(s)ds (7)

Taking the derivative with respect to t yields:

DtA(t) =
1

2

(∫ 1

0

det(DtΦ(t, s), DsΦ(t, s)ds+

∫ 1

0

det(Φ(t, s), DstΦ(t, s)ds

)
.

(8)
Recalling that the end points of Φ(t, •) are fixed, one can use integration by
parts to get:

DtA(t) =
1

2

(∫ 1

0

det(DtΦ(t, s), DsΦ(t, s)ds+−
∫ 1

0

det(DsΦ(t, s), DtΦ(t, s)ds

)
(9)

and finally, using the alternating property of the determinant:

DtA(t) =

∫ 1

0

det(DtΦ(t, s), DsΦ(t, s)ds (10)

and the conclusion follows by letting t = 0.

Using Lemma 1, the integral :∫ 1

0

|det (Dsγ(s), Dssγ(s))|
‖Dsγ(s)‖‖Dssγ‖

‖Dsγ(s)‖ds (11)

may be interpreted as the total infinitesimal area swept by the curve γ when
moved in the direction Dssγ.

The integral in (11) is invariant under affine change of parametrization.
Given a curve γ defined on an arbitrary interval [a, b] , it is thus possible to go
back to fixed interval [0, 1]. As a consequence, any curves will be assumed to
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be defined on [0, 1]. Please note however that general invariance under change
of parametrization cannot be obtained, and will not be meaningful as the infor-
mation sought after is clearly dependent on the velocity.

The slip angle θ can be obtained in a convenient way using the fact that the
curves take their values in R2 and can thus also be considered as complex valued
mappings. Within this frame, it comes for the expression of the slip angle θ if
curve γ:

eiθ =
Dsγ

|Dsγ|
Dssγ

|Dssγ|
. (12)

Using the complex representation, the following proposition gives access to the
variation of the slip angle.

Proposition 1. Let Φ: ] − ε, ε[×[0, 1]toC be an admissible variation of γ. Let
θ(t, s) be the slip angle at s of the curve s 7→ Φ(t, s). Then:

Dte
iθ =

1

|DsΦ|
DsDtΦ|N

DssΦ

|DssΦ|
+

1

|DssΦ|
DssDtΦ|Ñ

DsΦ

|DsΦ|

where the notation |N (resp. |Ñ ) denotes the component normal to the curve
s 7→ Φ(t, s) (resp. s 7→ DsΦ(t, s)).

Proof. The proposition is a direct computation of the derivative. The only point
to note is that:

Dt

(
DsΦ

|DsΦ|

)
=
DsDtΦ

|DsΦ|
− DsΦ

|DsΦ|
<
(
DsDtΦ.DsΦ

)
|DsΦ|2

(13)

=
1

|DsΦ|
DsDtΦ|N

DssΦ

|DssΦ|
(14)

and the equivalent derivation for DssΦ.

Proposition 2. Under the same assumptions as in Proposition 1:

(Dtθ)
2 =

(
|DsDtΦ|N |
|DsΦ|

−
|DssDtΦ|Ñ |
|DssΦ|

)2

Proof. Using the fact that |eiθ| = 1 and Proposition 1, it comes:

(Dtθ)
2 =

1

|DsΦ|2
|DsDtΦ|N |2 +

1

|DssΦ|2
|DssDtΦÑ |

2

+ 2
1

|DsΦ||DssΦ|
<
(
DsDtΦ|N .T.DssDtΦ|Ñ T̃

)
with:

T =
DsΦ

|DsΦ|
, T̃ =

DssΦ

|DssΦ|
.
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Since the curve is planar, N = iT (resp. Ñ = iT̃ ). This combined with the ex-
pression of the normal componentDsDtΦ|N = |DsDtΦ|N |N (resp. DssDtΦ|Ñ =

|DssDtΦ|Ñ |Ñ) yields:

<
(
DsDtΦ|N .T.DssDtΦ|Ñ T̃

)
= −|DsDtΦ|N ||DssDtΦ|Ñ |

and the result follows.

An admissible variation Φ of a curve γ defines a tangent vector to γ in
the space Imm∗([0, 1],R2) by DtΦ|t=0. Such a tangent vector is thus a couple
(γ, u) where u ∈ C∞([0, 1],R2. The above expression for (Dtθ)

2 allows to define
a semi-norm in the tangent space to γ.

Definition 2. Let (γ, u) be a tangent vector to γ. The semi-norm Mγ(u) is
defined by:

M2
γ(u) =

∫ 1

0

(
|Dsu|N |
|Dsγ|

−
|Dssu|Ñ |
|Dssγ|

)2

ds

with N (resp. Ñ) the normal vector to γ (resp. Dsγ).

Given two curves γ1, γ2, a path between them in Imm∗([0, 1],R2) is smooth
mapping Φ: [0, 1]× [0, 1]→ R2 such that:

• Φ(0, •) = γ1(•),Φ(0, •) = γ2(•)

• For all t in ]0, 1[, Φ(t, •) ∈ Imm∗([0, 1],R2).

Definition 3. Let Φ be a path between γ1 and γ2. Its θ-deformation energy is
defined as:

E(Φ) =

∫ 1

0

|DtΦ(t, 0)|2 + |DtΦ(t, 1)|2dt

+

∫ 1

0

∫ 1

0

(
|DsDtΦ|N |
|DsΦ|

−
|DssDtΦ|Ñ |
|DssΦ|

)2

dsdt

The first term is needed as the second part involves only derivatives of the curve
and will not take endpoints into account. The above definition of the energy
is valid for curves in Imm∗([0, 1],R2), but is not invariant by affine change of
parametrization. Furthermore, it is based on a semi-metric, resulting in possible
degeneracies. The path energy is thus modified according to Definition 4.

Definition 4. Let Φ be a path between γ1 and γ2. Its total deformation energy
is defined as:

Ẽ(Φ) =

∫ 1

0

|DtΦ(t, 0)|2 + |DtΦ(t, 1)|2dt

+

∫ 1

0

∫ 1

0

|DsDtΦ|2|DsΦ|dsdt

+ λ

∫ 1

0

∫ 1

0

(
|DsDtΦ|N |
|DsΦ|

−
|DssDtΦ|Ñ |
|DssΦ|

)2

|DsΦ|dsdt
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where λ > 0 tunes the relative importance of shape and slip angle.

The first double integral is a Sobolev Riemannian metric that accounts for
shape deformation. The free parameter λ must be tuned in applications. The
energy allows the computation of geodesic path between curves.

Definition 5. The geodesic path Φ0 between γ1 and γ2 is, when it exists,
defined by:

Φ0 = argminΦ∈IẼ(Φ)

where I is the set of paths from γ1 to γ2.

The energy of a geodesic path defines a similarity measure between curves.
It will be used in the sequel within a clustering algorithm.

3. Numerical implementation

This section describes the numerical implementation of the path computa-
tion of the new metric described in Section 2.2. Then, the clustering procedure
will be presented.

3.1. Geodesic path computation

Two approaches can be used for computing a geodesic path Φ0 minimiz-
ing the total energy. The first one relies on a system of differential equations
involving DtΦ that is solved starting at t = 0 from the first curve. An itera-
tive shooting procedure reduces gradually the distance at t = 1 to the second
curve, yielding an approximate geodesic path. This algorithm is appealing as it
does not requires an approximation to the entire path Φ0, but just of the curve
s 7→ Φ(t, s) for a fixed t. Its two main drawbacks are first the need to establish
the equation of geodesics, that may be quite complicated, and second the nu-
merical instabilities in the shooting phase. It will nevertheless be investigated
in a future work.

The second approach is to approximate the full path Φ by its samples Φij =
Φ(xij), i = 0 . . . N, j = 0 . . .M on a grid defined by the points xij = (tj , si). In
the current implementation, the grid is evenly spaced. A numerical differenti-
ation procedure is applied to obtain the derivatives Ds, Dss, Dt and takes the
form of matrices DS,DSS,DT that are applied to the matrix M = (Φij) of path
sample points. Since the derivative with respect to s must be applied column-
wise, the derivative DsΦ is approximated by DS.M . Conversely, derivation is
performed rowwise for DtΦ, so that the approximation is M.Dt. Finally, the
first and the last column of Φ are held constant, since they represent sampled
version of the endpoint curves γ1, γ2.
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Using the discrete approximation, the total energy of the sampled path de-
scribed by matrix M is:

Ẽ(M) =

M∑
i=0

|(M.DT )0i|2 + |M.DTNi|2

+

M∑
i=0

N∑
j=0

|(DS.M.DT )ij |2|(DS.M)ij |

+ λ

M∑
i=0

N∑
j=0

(
|(DS.M.DT |N )ij |
|(DS.M)ij |

−
|(DSS.M.DT |Ñ )ij ||
|(DSS.M)ij |

)2

|(DS.M)ij |

The optimal approximate path is obtained by a standard numerical opti-
mization algorithm, chosen here to be LM-BFGS [13] that is well suited to high
dimensional problem. Initializing Φ with a linear homotopy ensure convergence
in a few iterations on most problems. The minimal energy obtained is used in
the following clustering phase.

3.2. K-medoids clustering

K-medoids algorithm [9, 10] is a clustering technique that aims to partition
unlabelled data into clusters. Unlike the well known K-means algorithm [14]
which is sensitive to outliers, K-medoids algorithm is more robust and use an
actual point in the cluster to represent it. As a matter of fact, it is possible to
perform the clustering with a pairwise distance matrix as input data instead of
the raw data. Thereby, we can derive the algorithm with the metric defined in
Section 2 in order to classify a set of n spatiotemporal trajectories {x1, . . . , xn}
(Algorithm 1).

The most benefit of K-medoids algorithm compared to the K-means is that
there is no need to explicity compute the cluster centers since we just need to
store the indices i?k. But similarly to K-means and other clustering techniques,
the number of clusters K is assumed to be known. In practice, the knowledge
of the data can help the user to estimate the value of K. In the case of aviation
safety, one could choose K = 3 corresponding to three levels of alerts: low,
medium, high.

In general, the number of clusters is not known and has to be computed
from the data. In [16], the authors introduced the Silhouette criterion as a
graphical method for interpreting a validating the results of a clustering algo-
rithm. Broadly speaking, the Silhouette score measures the tightness and the
separation of the clusters. More formally, for an observation xi, it is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
,

where a(i) is the distance between xi and all other points in the same cluster
and b(i) is the distance between xi and all other points in the next nearest

10



Algorithm 1 K-medoids algorithm, [15, Chap. 14]

Require: A sample of n trajectories {x1, . . . , xn} and the number of clusters
K.

1: repeat
2: For a given cluster assignment C find the observation in the cluster min-

imizing the total distance to other points in that cluster:

i?k = arg min
{i:C(i)=k}

∑
C(j)=k

d(xi, xj).

Then mk = xi?k , k = 1, . . . ,K are the current estimates of the cluster
centers.

3: Given a current set of cluster centers {m1, . . . ,mK}, minimize the total
error by assigning each observation to the closest (current cluster) center:

C(i) = arg min
1≤k≤K

d(xi,mk).

4: until the assignments do not change.

cluster. The overall Silhouette score, which ranges between -1 and 1, is then
the mean value of the score computed on each sample, i.e.

s =
1

n

n∑
i=1

s(i).

Hence, the number of clusters K can be chosen by maximizing the Silhouette
criterion. It can also be used as a validation metric of a clustering method: the
higher value of s is, the better is the clustering.

Note that the mean values of a(i) and b(i) can be interpreted respectively
as the intra-cluster variance and the inter-cluster variance. Knowing that, a
higher values of s indicates that the clusters are dense and well separated while
a lower value of s refers to an incorrect clustering. A score around zero indicates
overlapping clusters.

Note also that the K-medoids can be sensitive to the initialization of the
algorithm and may find a local minimum. This is actually a classical drawback
of the clustering methods. A common solution is to repeat the clustering with
different initializations and to retain the best one with respect to the Silhouette
score.

4. Numerical experiments

In this section, the performance of the algorithm is validated and compared
with other existing methods. The first subsection is dedicated to a dataset of
simulated data. In the second subsection, we apply clustering procedures to a
real dataset of landing aircraft tracks.
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4.1. Simulation procedure

As already mentioned, it is virtually impossible to ensure that an observed
trajectory that deviates from the nominal one is the result of a bad adherence
condition. To perform such a task, a physical measurement is mandatory and
the only way to correlate runway quality to landing tracks is to have recorded
trajectories right after or before a measurement.

A more tractable approach is to simulate landing and taxiing in a realistic
fashion, so that the detection performance of the methods can be estimated.
Very good models of wheeled ground vehicles are available in the literature [12]
and the case of braking aircraft has been considered in [17]. For the purpose of
the study, a very detailed model is not needed, but a good conformance to the
observations is required. The approach taken was to use the model of Figure 1.
The aircraft is controlled using the engine thrust and the front wheel steering

Figure 1: Aircraft physical model

angle. The landing gear tires train is replaced by a single equivalent tire. The
simulation is performed by solving the equations of motion using a runge-kutta
45 scheme with adaptive step. The control loop consists of two PID regulators:
the inner acts on the steering angle of the front wheel and corrects lateral
deviations from the intended path while the outer controls deceleration. When
the mobile is skating, the first control loop takes precedence and consumes the
apart of the available friction force to minimize the lateral error. The remaining
friction is transfered to the outer loop to apply some deceleration. It is clear
that this process will increase the slip angle when trajectory is turning.

A simulator was coded in Java and applied to synthetic tracks with tunable
adherence coefficient. Since slippery can be detected easily within the simulation
loop, all output trajectories are flagged as ”skating” or ”normal”.

12



4.2. Simulated data and comparison with competitors

Simulated trajectories

Landing and taxiing trajectories are simulated following a circle representing
the nominal trajectory. The initial landing point is randomly disturbed as well
as the initial velocity. In this way, it may induce a skating at the beginning of the
landing trajectory which is then corrected by the regulators as described above.
The dataset of simulated trajectories is composed of 16 skating trajectories and
284 normal trajectories.

The K-medoids clustering method described in Section 3.2 is performed on
a set of 300 simulated landing trajectories. Two geometric metrics have been
first used: the Mumford metric [7] and the slippery metric developed in Section
2.1. The first one is a geometric metric that is invariant by reparametrization
and relevant for clustering trajectories with different morphology; this is the
case when some aircraft trajectories deviate from the nominal one. However,
the Mumford metric does not take into account the second derivative of trajec-
tories. As an alternative, the slippery metric fits this requirement and should
be able to detect abnormal deceleration levels that may indicate a potential
degraded runway condition. Next, these two metrics are compared with com-
petitor metrics described in [18]: some warping based distances such as DTW
[19], LCSS [20], EDR [21] and ERP [22], and some shape-based distances, such
as the Hausdorff distance [23], the Fréchet distance [24] and the SSPD distance
[18]. The K-medoids clustering method is then performed in order to detect two
clusters: the normal trajectories cluster and the skating trajectories one.

Table 1: number of trajectories

Metric Cluster 1 Cluster 2
slippery 284 16
mumford 154 146
erp 284 16
dtw 143 157
edr 1 299
lcss 1 299
frechet 158 142
hausdorff 157 143
sspd 160 140

Table 1 displays the number of trajectories in each cluster. The three
shape based distances (Hausdorff, Fréchet and SSPD), the warping based dis-
tance DTW and the geometric Mumford metric produce two relatively balanced
classes. The two warping based distances EDR and LCSS badly perform: only
one single trajectory is clustered apart from the others. Finally, the geometric
slippery metric and the warping based distance ERP are the only one that could
be able to correctly detect the two skating and normal trajectories clusters.
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In Table 2, the output trajectories are flagged as ”skating” or ”normal” in
each cluster. We remark that the geometric slippery metric and the warping
based distance ERP perform well and are both be able to correctly detect the 16
skating trajectories cluster and the 284 normal trajectories one. The three shape
based distances (Hausdorff, Fréchet and SSPD) and the geometric Mumford
metric produce one cluster containing only normal trajectories. The second one
is composed of all the skating trajectories, but also of a large number of normal
trajectories: the false detection rate is high around 42%. Finally, by using the
last two metrics DTW and SSPD, the false detection rate increases up to 48%.

Table 2: number of skating and normal trajectories

Metric Cluster 1 Cluster 2
skating normal skating normal

slippery 0 284 16 0
mumford 0 154 16 130
erp 0 284 16 0
dtw 5 138 11 146
edr 0 1 16 283
lcss 0 1 16 283
frechet 0 158 16 126
hausdorff 0 157 16 127
sspd 14 146 2 138

Slightly deformed simulated trajectories

In order to assess the robustness of the results obtained by using the geo-
metric slippery metric and the shape based distance ERP, we have slightly
deformed trajectories by using a random coefficient (around 1%) so that landing
trajectories are now randomly flattened following an ellipsoid.

Table 3: number of trajectories

Metric Cluster 1 Cluster 2
geometric 284 16
erp 130 170

Table 4: number of skating and normal trajectories

Metric Cluster 1 Cluster 2
skating normal skating normal

geometric 0 284 16 0
erp 0 130 16 154

Table 3 and Table 4 show that the shape based distance ERP is no longer able
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to correctly detect the two clusters: the false detection rate now reaches more
than 50%. In Figures 2a and 2b, we can visualize the K-medoids clustering with
ERP distance and geometric slippery metric.

(a)

(b)

Figure 2: K-Medoids clustering with (a) ERP distance and (b) slippery metric.

4.3. Application to Radar tracks

In this section, we apply the K-medoids clustering method to a database of
radar tracks in order to detect bad runway condition and skid situations.
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Description of the data

The Radar tracks used here are a set of landings comming from A-SMGCS1

which is a system that propose to air traffic controllers services to maintain
airport safety and capacity. These data that are generated by sensor fusion of
Primary Surveillance Radar (PSR), Secondary Surveillance Radar (SSR) using
onboard transponders and multilateration Automatic Dependent Surveillance
Broadcast (ADS-B).

Each landing trajectory T is defined as a set of spatiotemporal data, i.e.
includes GPS position xk, yk and the aircraft speed vk:

T = (p1, . . . , pn)

= (γ(t1), . . . , γ(tn)),

where pk = (xk, yk, vk) and γ : [0, 1] −→ R3. Note that the deceleration values
is derived from the aircraft speed as a preprocessing step. The dataset consists
of 357 landing trajectories.

We have chosen to focus on the runway exit curve only since slippery is
mainly visible in curves. Then, following experts, as a skid situation is a loss of
grip with the runway, a degraded runway condition is defined as follows:

• The aircraft deviate from the centreline

• The deceleration value is greater than the runway grip coefficient (which
is low when the runway is slippery)

Following this definition, a skid situation is not only reduced to a lateral
deviation of the trajectory. The aircraft deceleration value is indeed used as
the indicator of the runway state. A low deceleration level indicates that the
runway does not respond to the brakes.

Clustering-based bad runway condition detection

The K-medoids clustering method detailed in Section 3.2 is performed on
the Radar tracks data. Two metrics are used: the Mumford metric [7], i.e.
without taking into account the deceleration of the aircraft and the slippery
metric defined in Section 2.

The Figure 3 shows that using the geometric metric (without the deceler-
ation part [7]), the trajectories are well clustered by the algorithm. Indeed,
the cluster 4 contains mostly trajectories with a large lateral deviation, while
the cluster 3 corresponds to aircraft trajectories following the runway centreline
(reference trajectory). Cluster 2 contains mostly standard trajectories even if
there is several trajectories with slight lateral deviations. Cluster 1 corresponds
to outliers trajectories.

1http://www.eurocontrol.int/articles/advanced-surface-movement-guidance-and-control-
systems-smgcs
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Moreover, as explained before, if lateral deviations in landing trajectories
correspond to abnormal behavior, it does not necessarily represent a skid sit-
uation. In practice, the detection of bad runway conditions has to take into
account the deceleration profile (see Section 2).

When adding the information of the deceleration in the metric, the results
are slightly different. Indeed, in a geometric point of view, results are quite
similar to the one described with the Mumford metric. However, if the cluster
2 contains the most deviant trajectories, we observed one deviant trajectory in
the cluster 4 (3a).

After a deep investigation, we found that this particular trajectory cannot
be considered as a slipped trajectory. Indeed, the figure 5 compares this tra-
jectory and its deceleration profile with the medoid of the cluster 2 (deviant
trajectories). Again the blue trajectory deviates from the red one but the de-
celeration profiles are significantly different: the deceleration level of the blue
profile is higher than the red medoid deceleration profile. It means that the
runway is not slippery since there is a sufficient grip to obtain a good braking
action. From an operational point of view, it seems the aircraft had a high
speed when arriving to the runway exit which led to a high braking.

Briefly speaking, unlike the Mumford metric which is only based on the
geometric shape, the benefits of the metric with deceleration is twofold: firstly,
it detects lateral deviations, and secondly, it removes false positives by taking
into account the deceleration part. Finally, an expert study shows that there
was 3.7% of slippery alerts in the dataset among which 92.3% are in the cluster
2 (red trajectories). This results confirms the good performance of the proposed
metric.

5. Conclusion and future work

The ability to detect bad runway condition without resorting to intrusive
on-site measurements will be of major interest both for economic considerations
and for passenger experience. In the future, aircraft will be able to downlink
their flight and taxi parameters, but until then, only radar tracks may be used.
Clustering landing trajectories into skating and normal ones falls within the
frame of functional data. However, some extra information must be added to
really distinguish between trajectories experiencing slipping and those resulting
from late breaking action of the pilot. In this work, a new distance between
curves especially tailored for runway bad adherence condition has been intro-
duced. Using the slip angle as a measure of skating, a deformation energy is
built, that associates to an admissible variation of a trajectory the square deriva-
tive of the slip angle. Using the fact that all curves are planar, its expression
can be reduced to a simple semi-metric. Finally, its integration along a smooth
homotopy between two curves gives an energy. Minimizing it among all possi-
ble such homotopies allows the computation of a geodesic path, with associated
minimal distance. Using this new metric within a clustering algorithm yields a
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(a)

(b)

Figure 3: K-Medoids clustering with Mumford metric [7].
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(a)

(b)

Figure 4: K-Medoids clustering with slippery metric (See Section 2).
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Figure 5: Comparison of the most deviant trajectory of the cluster 4 ant its related deceleration
profile (blue curves) with the medoid of the cluster 2 (red curves).

new methods for clustering landing trajectories that outperforms usual shape-
based metrics on both simulated and real data. The cost of distance evaluation
is still compatible with offline use of the procedure, in the order of ten minutes
for 15000 pairs of trajectories. It a future implementation, parallel evaluation of
the distance matrix will be used, with an expected speed-up close to the number
of available compute nodes.

The metric introduced is of Finsler type. The investigation of some proper-
ties of it, like its spray, was not in the scope of the present study that focused
on practical applications. It is deferred to future works on the topic.
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