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Abstract—Air traffic is generally characterized by simple
indicators like the number of aircraft flying over a given area or
the total distance flown during a time window. As an example,
these values may be used for estimating a rough number of
air traffic controllers needed in a given control center or for
performing economic studies. However, this approach is not
adapted to more complex situations such as those encountered
in airspace comparison or air traffic controllers training. An
innovative representation of the traffic data, relying on a sound
theoretical framework, is introduced in this work. It will pave
the way to a number of tools dedicated to traffic analysis. Based
on an extraction of local covariance, a grid with values in the
space of symmetric positive definite matrices is obtained. It can
serve as a basis of comparison or be subject to filtering and
selection to obtain a digest of a traffic situation suitable for
efficient complexity assessment.

Keywords—Air traffic complexity; spatial data; manifold val-
ued images; covariance function estimation; non-parametric
estimation.

I. INTRODUCTION

Key performance indicators (KPI) are of common use in air
transportation. However, they are designed mainly to address
global aspects of the systems and cannot address problems,
where it is mandatory to be able to distinguish between
traffic situations based on the structure of the trajectories.
As an example, the training of air traffic controllers relies
on carefully selected traffic patterns that are presented to
the trainees in an order of increasing perceived complexity.
Creating such scenarios is quite a lengthy process, involving
hundreds of hours of works by experienced controllers. On
the other hand, it is easy to start from real situations, with
known flight plans, and to use a traffic simulator to put the
trainees in a nearly operational setting. The drawback of this
approach is the need to evaluate the traffic patterns in order to
assess a complexity value for each of them. It has to be done
automatically, to avoid having to resort to human experts.

In a more operational context, nearly the same question
arises when trying to find the right number of controllers
needed at a give time to take care of the incoming flights
in their assigned airspace. Too many controllers induces an
extra cost and too few put a high pressure on the operators,
with possible detrimental effects on flight safety. Assessing the
right level of complexity of the expected traffic may greatly
improve over the current state of the art that simply estimates
the number of aircraft that will be present. Once again, it

is mainly a matter of finding an adequate traffic complexity
indicator [1] [2].

A lot of work was dedicated to the issue of air traffic
complexity measurement. Unfortunately, no really satisfactory
solution exists, as the problem itself is ill posed: depending on
the point of view, the complexity may be a concept roughly
equivalent to the cognitive workload or, on the contrary, be
based on purely structural features, without any reference
to the way it will be used. One of the most widely used
complexity measures is the dynamic density [3], that com-
bines several potential indicators, like number of maneuvering
aircraft, number of level changes, convergence and so on. All
these values are used as inputs of a multivariate linear model,
or in recent implementations, of a neural network. The tuning
of the free parameters of the predictors is made using examples
coming from an expertized database of traffic situations. While
being quite efficient for assessing complexity values in an
operational context, the method has two important drawbacks:

o The tuning procedure requires a sufficient number of
expertized samples. A costly experiment involving several
air traffic controllers must be set up.

¢ The indicator is valid only in a specific area of the
airspace. Adaptation to other countries or even control
centers requires a re-tuning that is almost as complicated
as the first one.

The last point is a severe flaw if one wants to use dynamic
complexity in the context of air traffic databases, as a world
covering has to be obtained first. Even for country sized
databases, some geographical tuning has to be added.

Another way to deal with complexity is through purely
geometrical indicators [4] [5]. Within this frame, there is no
reference to a perceived complexity but only to structural
features. An obvious benefit is that the same metric may
be used everywhere, without needing a specific tuning. It is
also the weak point of the method as the relation with the
controllers workload is not direct.

The present article introduces the theoretical material un-
derlying a new approach to complexity assessment and more
generally to traffic characterization, based on a representation
of traffic situations as images whose pixels are covariance
matrices. The idea underlying it is that local disorder is an
indicator of complexity that captures most of the elementary
metrics entering the dynamic density. This is a work in



progress that will ultimately allow the use of deep learning
on such pseudo-images in conjunction with an expertized
database to produce a complexity metric with low tuning
requirements. A by product is the ability to compute distances
between traffic situations, allowing for efficient indexing in
dedicated databases. The rest of the paper is structured as
follows. In Section II, the traffic is modeled after a Gaussian
random field, whose covariance function is estimated on two
dimensional grid. In Section III, tools dedicated to the pro-
cessing of such grids of symmetric positive definite matrices
are introduced. Finally, in Section IV, a conclusion is drawn,
introducing the next generation of algorithms able to exploit
this novel representation.

II. TRAFFIC REPRESENTATION

The first stage in the computation of the complexity index
is the processing of traffic samples in order to summarize
their local features. It is done by estimating a local covariance
matrix at each point of an evenly spaced grid. While aircraft
positions are actually points in R3, the altitude plays a special
role and is not presented on controllers displays. The choice
made in the present work is to use a planar representation,
disregarding the altitude, which is in compliance with the
operational setting. From here on, all the derivations will be
made using aircraft positions in R2.

All samples are assumed to be dated positions (¢, x) where
t is the sampling time and z € R? is the sample position.
Finally, a dataset is simply a sequence (¢;,%;)i=1..n Of
samples collected in a given time interval and spatial area.
Please note that samples will not be distinguished by the
trajectory they belong to, so that different flight patterns may
generate exactly the same dataset. This is a limitation of the
present work that will be addressed in a future extension of
the method.

A. A Gaussian field model

Collected samples without taking time into consideration
may be viewed as realizations of an underlying spatial stochas-
tic process X with values in R2. Such a process is called
a Gaussian vector field when for any collection of points
(x1,...,xp), the joint distribution of the random variables
(X(21),...,X(xp)) is Gaussian. Such a process is charac-
terized by its mean and covariance functions:

p(x) = E[X(2)] (D
Clz,y) = E[(X(z) — p(2))(X(y) —u®)'] @

In practice, p and C' must be estimated from a dataset of
couples (x;,v;);=1..n Where v; is the observed vector value
at position z;. Available methods fall into two categories:
parametric and non parametric. In the parametric approach, p
and C are approximated by members of a family of functions
depending on a finite number of free parameters that are tuned
to best match the observations. A usual choice is to use finite
cubic splines expansions whose coefficients are identified by a

least square fitting. The efficiency of parametric estimation is
heavily dependent on the actual mean and covariance functions
and may be computationally expensive for large datasets. In
the non parametric approach, a different methodology is used:
the samples themselves act as coefficients of an expansion
involving so-called kernel functions. Apart from the obvious
benefit of avoiding a costly least square procedure, most
of the kernels used in practice are compactly supported, so
that evaluating an approximate mean and covariance at a
given location requires far less terms that the number of
samples. Due to its simplicity and the previous property, a
non parametric estimation was selected to process the traffic.

B. Mean and covariance matrix estimation

The key ingredient in non parametric estimation is the kernel
function, that is a smooth enough mapping K : R? — R™ that
integrates to 1.

It is usually more tractable to restrict kernels to a smaller
class:

Definition 1. A radial kernel is a mapping K : R? — R¥ that
is of the form K(x) = K(||x||) and such that :

K(x)dz =1
R2

From here on, only radial kernels will be used.

Kernels are most of the time at least continuous. Further-
more, as mentioned above, compactly supported function will
save a lot of computation in the evaluations and it is thus
advisable to use kernels pertaining to this class. Classical
examples are the multivariate Epanechnikov kernel [6] and
its higher regularity versions which are widely used in the
non-parametric estimation community:

2

Ke(w) = = (1= l=[*) 3)
3

Ka(w) = = (1 - [l2]*)} *
4

Ks(w) = — (1= [le]?) 5)

Given a radial kernel K and a positive real number h, the

scaled kernel K3, is defined to be:
1 x

< (5) ©
h is termed as the bandwidth of the kernel and controls the
degree of smoothing introduced by the kernel and its support.
It has to be tuned with respect to the dataset to obtain the best
compromise between smoothing and accuracy. A kernel esti-
mator of the covariance function C' of a stationary stochastic
process X can be found in [7]. Using a straightforward exten-
sion, a kernel estimator for the correlation function of a locally
stationary random field is given in [8]. Finally, a weighed
maximum likelihood approach is taken in [9], for computing
at any location « the mean () and variance C(z, z) = X(z)
of a Gaussian random field. This last work can easily be

Kp(z) =



generalized to yield an estimate for the covariance function,
under normality assumption for the random field X. Given
a dataset (x;,v;);=1..n, where the sampling positions x; are
assumed to be distinct, the weighted joint log likelihood of
the couples (x;,v;), (z;,v;),j # ¢ at locations z,y is given,
for a fixed kernel bandwidth h, by:

L(z,y) =
TR
~3 SO VESTH @, ) Vi K (|l — 2l) Kn (25 — yll)
i=1 j=1
1 N
+ 5 log (=)D D0 Kn (i — ) Kn (Jlz; — yll)
i=1 j=1N
+ A
where:

Vij = (vi — m(x),v; —m(y))

m(x) is the mean of X (z) and X(x,y) is the variance matrix
of the Gaussian vector (X (z), X (y)). The term A accounts for
the log of the normalizing constant occurring in the expression
of the multidimensional normal distribution and will play no
role in the sequel. Please note that the kernel was selected to
be a product of elementary kernels.

The differential of the log likelihood with respect to the
mean value can be computed as:

Dot (ViE T @) K (i — 2 ]) K (lag = l) - ()
i

The first order optimality condition yields for the non-
parametric estimate for the mean function:

) — St viFa (e = ]}
S K (e = i)

A similar derivation can be made to obtain the differential with
respect to the X matrix, using the two identities below:

®)

dy~t = -—xlgzy!
dlog (|7!|) = —trasx™!

9
(10)

The non-parametric estimator for 3(x, y) is then:

S(a,y) = Yicy Z;\le Cij(z, ) Kn (lzi — =) Kn (|25 — yl|)
| S S Ko (i — 2l) Ko (l; — o)
(11)

with:
A v; —m(x) v; — m(x)
Ci‘ Z, = ~ ~
o= (0700 ) (o)
Using the definition 8 of 77, it appears that i(m,y) is block

diagonal:
»(z)
( by (12)

&<
~—
N——

with: N
_ iz Cua(@) K (|2 — )
S K (||l — x])

This estimator is similar to the one in [8], and is of Nadaraya-
Watson [10] type. It enjoys asymptotic normality. The reason
for the vanishing of the off diagonal blocks is a consequence
of the special shape of the kernel that implicitly approximates
the joint distribution of X (x) and X (y) by product laws.

(z) (13)

C. Computation of the mean and covariance functions

In order to allow further treatments, mean and covariance
functions will be evaluated only at points located on an evenly
spaced two dimensional grid whose points are located at
coordinates:

Pnm = (m0+n6x7y0+m6y)
ne{-L,...,.L},me{-M,... .M}

where 0,,0, are respective step sizes along z and y axis.
In the expressions 8,13 of the mean and covariance func-
tions evaluated at grid point p,,,, the kernel appears as
Ky, (||zi — pml||). If the grid is fine enough, one can ap-
proximate it by K}, (||pri — Prnml|) Where py; is the grid point
closest to z;. Using coordinates, we have:

Ko (st = pamll) = K (1/(n = 1262 + (m — 1)26?)
(14)
Values depends only on the difference between the grid
points indices and are thus independent on the location py;.
Furthermore, since K is assumed to have compact support,
the same is true for K, so that K <\/(n — k)24 (m—1)?
will vanish when indices differences exceed a given threshold.
Gathering things together, all non-zero values of the kernel
can be tabulated on a grid of size (2P + 1) x (2Q + 1)

if the support of the kernel K, is contained in the square
[_P(szvpém} X [_Q(Sya@(sy}

Kn(i,§) = K, ( n282 + (m)zag)
ne{-P,....,P},me{-Q,...,Q}

All the entries in the equation 15 can be scaled so that they
sum to 1: this saves the division by the sum of kernel values.
Simultaneous evaluation of the mean at all grid points can
then be made in an efficient manner using Algorithm 1. Once
the mean has been computed, the covariance is estimated the
same way (see Algorithm 2).

15)
(16)

When the grid is not fine enough to replace the true sample
location by a grid point, a trick based on bilinear interpolation
can be used. Using again the equation 15 and the closest grid
point pg,;, to x;, the true sample position x; will be located
within a cell as indicated in Figure 1. The kernel value can be
approximated as:

dx dy

dz  d
Kk, )+ Lo+ Wpp &89,

5 5, 8,0, 1n
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gorithm 1 Mean kernel estimate

1
2
3
4
5:
6
7
8
9

: for i <+ 0,2L;5 +— 0,2% M do

m(i,7) < 0

: end for

: for k< 0,N — 1 do

(k,1) « ClosestGridPoint(x;)

for i < —P,P;j + —Q,Q do

ifk+i1>0Ak+1¢<2L then
ifl+7>0A1+j5<2M then

: m(k + 4,1 + j) < m(k + i1+ j) +

Kh(i’j)vi/N

10: end if
11 end if
12: end for
13: end for
Algorithm 2 Covariance kernel estimate
1: for i < 0,2L;5 <+ 0,2 M do
2 C(i,j) <0
3: end for
4: for k< 0,N —1 do
5: (k,1) + ClosestGridPoint(x;)
6 for i +— —P, P;j + —Q,Q do
7 ifk+i>0Ak+i<2L then
8 ifl+j5>0A1014+7 <2M then
9: A+ (v; = m(k, 1)) (v; — m(k, 1))t
10: Ck+il+j5) « Clk+il+3)+
K (i, j).A/N
11: end if
12: end if
13: end for
14: end for

p(k,l5) p(kal>)

dyi ®

pliah) - <> p(kalq)
dx

Fig. 1. Bilinear interpolation

with:

a = Kh(kg, ll) — Kh(kl,ll)
b= Ky (k1,l2) — Kp(kq,11)
c= Kp(ka,l2) + Kp(k1,11) — Kp(ko, 1) — Kp(k1,12)

Gathering terms by tabulated values yields a kernel value:

Kp(k1,11) (1 — 55 — 5y + Sg5y) (18)
+ Kp(k2, 1) (55 — SuSy) (19)
+ Kp(k1,12) (s — $z8y) (20)
+ Kp(ka,l2)s45y 2n
where:
dx dy
sT = 5 sy = g

It is thus possible to compute the mean and co-
variance functions on a coarser grid using Algorithms
1 and 2 by applying them on the four locations
(k1,11), (k2,11), (k1,12), (ke,l2), with an observed value mul-
tiplied by their respective coefficients (1 — s, — s, + 525y),
(Sz — SuSy),(Sy — SuSy), Kp (K2, 12)845y.

The overall complexity of the algorithm is linear in the
number of grid points and in the number of samples. It is
similar to filtering an image and can be implemented the
same way on modern Graphics Processing Units (GPU). Please
note also that for kernels with large supports, a fast Fourier
transform may be used at the expense of a slight increase in
the complexity order that will be balance by the constant term
due to the support size.

III. PROCESSING TOOLS

The preceding phase allows the computation of a traffic
pattern digest as a two dimensional grid of Symmetric Positive
Definite (SPD) matrices. It may be used as is for building
an index in a database, using the same procedure as for
images. However, the geometry underlying the space of 2 x 2
positive definite matrices is not euclidean, but hyperbolic. The
proposed index is an adaptation of images distances, using
hyperbolic geometry.

A. The Riemannian structure of symmetric positive definite
matrices

The purpose of this part is to introduce at a basic level the
tools used to build the index. Results are given without proofs,
the interested reader may refer to [11] for a more in-depth
exposition.

Proposition 1. The space of n x n SPD matrices, denoted
by SPD(n), may be endowed with a Riemannian manifold
structure with metric at point A given by the differential:

ds* = tr (A"'dA) (22)



Proposition 2. Let A, B be SPD matrices. It exists a unique
minimizing geodesic joining them in SPD(n). It is given in
parametrized form by:

y:tel0,1] — AY? (exptlog (A_l/QBA_1/2)) AY/?
(23)

Proposition 2 yields the geodesic distance between any two

matrices A, B from SPD(n) as d(A, B) = \/trlog*(A—1B.

It can be expressed as d(A, B) = /3.7 log® \; with \;,i =

1...n the eigenvalues of A~1B.

The geodesic distance between matrices from SPD(2) may
be used to compute a distance between grids produced by the
traffic processing phase in a very simple way, as indicated in
Algorithm 3.

Algorithm 3 Distance between grids

A, B are P x @ grids of SPD(2) matrices.
dsq =20
for i< 0,P—1;5+0,Q —1do

dsq < dsq + trlog®(A(i, §) "' B(i, )
end for

d(A, B) = Vdsq

AN

Please note that this distance is based on a point-wise
comparison and is very similar to the L? distance used for
images. It has a higher cost of evaluation due to the distance
computation in SPD(2) that involves an matrix inverse, prod-
uct and logarithm. However, it is not as critical in SPD(2)
than it may be in a general SPD(n), since eigenvalues and
eigenvectors can be computed in closed form (this is true also
in SPD(3) and SPD(4), with more complex expressions).
Furthermore, grid distance computation is easy to parallelize
on modern graphics hardware since it involves independent
operations on small matrices. As an example, computing the
distance between two grids of size 100 x 100 on a TitanX
pascal card from Nvidia takes around 100us.

B. Grid filtering

In the traffic processing phase, grids have sizes ranging
from 100 x 100 to 300 x 300. Due to the processing cost
incurred by the SPD(2) setting, it is advisable in many cases,
and especially if one wants to use the grids as index in a
traffic database, to reduce the size of grids to more tractable
dimensions, say 10x 10 to 50 x 50. This has to be done without
wiping out the salients features of the traffic captured by the
original grid. In the spirit of what is done in the first layers
of an image processing deep network, it is proposed to apply
in sequence a filtering and a selection process on the original
grid.

Definition 2. Let A;,i = 1...n be a sequence of elements
of SPD(n), wy,...w, be a sequence of real numbers and
B be an element of SPD(n). The log-euclidean weighted

combination (LWC) at B of the (A;)i=1..n with weights
(w;)i=1..n is the matrix:

BY? exp (Z w; log (Bl/2AiBl/2>> B/? 24)
i=1

The LWC may be used to compute a filtered version of a
grid using the same procedure as for an image. The process
is given in Algorithm 4 that yields the filtered grid as B.

Algorithm 4 Grid filtering

1: Aisa P x @ grid of SPD(2) matrices.

2: w;,t=1...9 is a sequence of real numbers
3:fori«+ 0,P—1;j+0,Q —1do
4
5

(C1,...Cy) are the adjacent cells to A(i, 7) and itself.
B(i,j) «+ LWC(Cy,..
1...9 at A(i, 5).
6: end for

., Cg) with weight w;,i =

The filtering process on SPD(2) grids behaves roughly like
in image processing: when the weights are real numbers in the
interval [0, 1] that sum to 1, then a weighted mean is produced.
It tends to smooth out the grid, making spatially close matrices
more similar. On the opposite, when weights sum to 0, the
equivalent of a high pass filter is produced, that emphases
sharp variations. Please note that the size of the grids after
filtering is unaltered.

The second processing phase is simplification to reduce grid
size. The main idea is to replace a block of grid cells by a
single one using a digest. An obvious approach is to replace
a block by its mean, that can be obtained from LWC by using
equal positive weights 1/n if n is the number of cells in the
block. A major drawback is that the important information
tends to be lost, with matrices going close to multiples of
the identity in many cases. Another way of dealing with the
problem is to introduce an order on SPD(2) and to select the
largest (resp. lowest) element in the block. This procedure has
two benefits:

o The selected matrix is an element of the original grid.
e As in deep learning networks, it will select the most
representative elements.

After some experiments on simulated matrix images, the order
chosen is a lexicographic one, the first comparison being made
on the determinant of the matrices and the second on the trace.
After the selection phase, the size of the grid is reduced by the
ratio of the number of elements considered in a block. In the
current implementation, it is 3 x 3, thus shrinking the grid by a
factor 3 in each dimension. The filtering/selection phases may
be chained in order to get smaller grids. As for the distance
computation, it is quite easy to implement the process on a
GPU, all operations being independent.

IV. CONCLUSION AND FUTURE WORK

The work presented here is still in early stage of develop-
ment. Only theoretical concepts and computer implementation



of the traffic processing, filtering and selection phases are
completed or nearly completed. Testing on real data is yet
to be done, and a complete complexity computation metric
has to be built. The next steps are:

o Constitution of a traffic database from surveillance
(Radar) and ADS-B data. This work has been launched,
and data collection is in progress.

o Complexity index coding. Although most of the software
bricks needed are available or close to release, it remains
to implement the overall process. A weight adjustment
procedure is lacking for the filtering phase: it is the topic
of a more theoretical work and involves some Lie group
techniques.

« Evaluation against existing indicators and expert advices.

Based on the experience gathered on the topic, it is expected
that the new approach presented here will outperform the
current state-of-the-art metrics. Furthermore, thanks to the
ability to compute the distance between two grids of SPD(2)
elements, it offers the unique opportunity to derive an index
for a traffic situation database that will be an invaluable tool
for practitioners in the field of air traffic management.
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