
HAL Id: hal-01799109
https://enac.hal.science/hal-01799109v1

Submitted on 24 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Curves Similarity Based on Higher Order Derivatives
Florence Nicol, Stéphane Puechmorel

To cite this version:
Florence Nicol, Stéphane Puechmorel. Curves Similarity Based on Higher Order Derivatives. ALL-
DATA 2017, The Third International Conference on Big Data, Small Data, Linked Data and Open
Data, Apr 2017, Venice, Italy. pp.3-8/ISBN: 978-1-61208-552-4. �hal-01799109�

https://enac.hal.science/hal-01799109v1
https://hal.archives-ouvertes.fr


Curves Similarity Based on Higher Order Derivatives

Florence Nicol†, Stephane Puechmorel‡

Ecole Nationale de l’Aviation Civile
Email: †nicol@recherche.enac.fr, ‡stephane.puechmore@enac.fr

Abstract—In many applications, data originate from the ob-
servation of a phenomenon depending on time. Trajectories
of mobiles fall within this category and receive an increasing
attention as many connected objects have the ability to broadcast
their positions. When the raw location is the value of interest,
several statistical procedures exist to deal with analysis of
trajectories. Depending on whether the geometrical shape or the
time to position relation is relevant, one will use a parametrization
invariant distance or a simple L2 metric to assess the similarity
between any two trajectories. However, it is sometimes advisable
to use higher order information like velocity or acceleration, while
retaining some kind of geometrical invariance. The purpose of
the present work is to introduce a framework especially adapted
to such a situation.

keywords—bundle metric, curve manifold, shape space.

I. INTRODUCTION

In many applications, the data of interest are measured
values through time of a system in evolution. It is often
the result of the observation of a physical phenomenon,
obeying an underlying dynamics that may be unknown. As
an extension, images can be modeled pretty much the same
way, using two coordinates instead of a single time axis. Most
algorithms designed to deal with such data rely on a sampled
representation that is amenable to multivariate statistics.

Another approach was taken in the functional statistics
framework, where the basic objects are mappings from a time
interval to a given state space. Unfortunately, very little is
known about probabilities in infinite dimension spaces, and
one has to revert to finite dimensional representations during
the implementation phase.

Several works were dedicated to the extension of classical
multivariate algorithms to sample paths of Hilbert processes.
As a starting point, data is first expanded on a truncated Hilbert
basis [1], then, the vectors of expansion coefficients enter a
standard finite dimensional analysis. A clever choice of the
representation space and basis allows to take into account
the prior knowledge about the studied process. Unfortunately,
the dimension of the samples produced that way may be
high, and varies with the geometric features of the sample
paths. In particular, the presence of high curvature values
will increase the number of expansion coefficients needed
to keep a good approximation of the original function. In
[2], an expectation maximization (EM) functional clustering
algorithm is presented with an adaptive basis in each group,
yielding an efficient numerical method to deal with this issue.

Another class of methods relies on a non-parametric ap-
proach [3][4]. A recent work [5] pertaining to this approach

presents a hierarchical clustering principle, with application to
electric power consumption.

Finally, some algorithms use a shape manifold [6] repre-
sentation in order to derive a metric between sample paths.
This last class of methods has distinguished benefits, like the
ability to focus only on the shape of the curves and forget
about a specific parametrization. The major drawback is a high
computational cost, that may preclude its use on large data
sets. While basically designed for using the first derivatives, it
is possible to consider higher order information, although the
notion of parametrization invariance becomes less intuitive.

The purpose of the present work is to introduce a framework
in which the higher order derivatives are explicitly taken into
account, but with a well controlled notion of invariance. It was
motivated by an application in civil aviation, that is the assess-
ment of runway adherence using only radar tracks of landing
and taxiing aircraft. In this context, a full parametrization
invariance is not advisable, as it will remove an important part
of the relevant information. On the other side, a raw Sobolev
distance between curves will be fooled by the diversity of
aircraft and will induce false alarms.

In section (II), a general approach to the question of curve
similarity is addressed. The main idea is to split between the
observation and the geometrical object on which it lies, yield-
ing a metric that gather in a controlled way the contribution
of the underlying shape and the extra information borne by
the measured data. Starting with a model of curves based on
differential geometry, the data can be thought as a section of
a vector bundle with base space the curve. Using a riemanian
metric on it will be the key to obtain a measure of similarity
between any two samples, in the spirit of the works dedicated
to distances between shapes [6].

In section (III), the application of the general framework to
the case of landing aircraft tracks will be discussed. Finally, a
conclusion will be drawn, with a view towards future work on
application on real and simulated data prior to an operational
use.

II. DISTANCE BETWEEN BUNDLES

A. Problem statement

The purpose of this section is to introduce a suitable state
space for representing data that has both geometrical and cin-
ematic features. It was motivated by the application that will
be described later, where tracks of landing and taxiing aircraft
must be clustered into homogeneous groups distinguished by



Figure 1. Runway clearing trajectories

the adherence of the runway. An example of a nominal (lower)
and an abnormal (upper) track is given in Figure 1. The shape
of the upper track is clearly different from the nominal one,
and will not belong to the same cluster if one use a algorithm
based for example on curvature. However, the divergence from
the nominal curve may be due to low adherence condition or
to a late turn. Only the first case must trigger a corrective
action, that for the present situation is quite constraining: the
runway has to be closed for the duration needed to perform an
on-site adherence measurement. Using tangential acceleration
will add a very discriminating feature since for the same
shape, a high value means a high braking force, thus rejecting
the hypothesis of low adherence. However, comparing raw
velocity and acceleration induces two new issues:
• The aircraft type and airline procedures are varying, so

that a shape comparison must be performed to minimize
this effect;

• The time span of the trajectories is not the same. A
registration procedure is needed, and it is a quite difficult
problem to solve.

To summarize, neither parametrization invariant nor time de-
pendent distances are fully satisfying. It is thus advisable to
split the similarity computation into a purely geometrical part
and a remainder that is not explained by shape variations.

All curves will be assumed to be smooth, that is indefi-
nitely differentiable. This is not a real constraint in practical
applications.

B. Curves as manifolds

In almost all applications, a curve is understood as a
mapping γ from a real interval [a, b] to a state space, generally
Rp. Furthermore, only curves with nowhere vanishing first
derivative will be considered to avoid possible singularities.
In practice, this condition is never an issue. This is the
standard framework in which functional data statistics takes
place, and is well suited to problems where the information
is contained in the mapping. As an example, if one wants to
analyze the delays occurring in road or air traffic, the time
to position mapping is the most relevant data. However, it is
quite common to encounter cases where the shape of the image
γ([a, b]) holds the discriminating features. It obviously the
case in image recognition algorithms, but also in spectrometric
data [3], in biometric measurements (electroencephalogram,

electrocardiogram) and generally speaking in all areas where
the information will not change if the parametrization of the
curves is changed. In the sequel, such a situation will be
referred to as geometric data analysis (GDA).

The easiest approach to GDA is to let all curves be
parametrized by arclength, which is defined as:

s : t ∈ [a, b]→
∫ t

a

‖γ′(t)‖dt

The arclength has domain [0, l(γ)] with l(γ) the length of the
curve. It comes at once that:

ds

dt
= ‖γ′(t)‖

so that taking the derivative with respect to s of a function of
t can be done easily using the formula:

Ds =
1

‖γ′(t)‖
Dt

The arclength is related only to the shape of the image
of γ. In fact, let u ∈ [c, d] such that t = φ(u) with φ a
strictly increasing smooth diffeomorphism from [c, d] to [a, b],
it comes:

s(u) =

∫ u

c

‖Duγ(t(u))‖du =

∫ u

c

‖γ′(t(u))‖ dt
du
du =∫ t

a

‖γ′(t)‖dt (1)

Many important features of the curve are naturally expressed
with arclength: Dsγ(s) yields the unit tangent vector Tγ(s)
while ‖Dssγ(s)‖ is the curvature at s.

For curve similarity computations, the drawback of the
arclength is that its domain depends on the length of the curve
and varies with the curves. A scaled version η with domain
[0, 1] is more convenient:

η = s/l(γ)

An obvious benefit of using η as a reference parametrization is
that it solves the so-called registration problem, that consists
of finding a common domain for all the functional samples
[7]. It worth notice that in a sampled context, it is equivalent
to have evenly spaced landmarks on the image of γ, as in [8].

It is worth noticing that the geometry of smooth curves with
values in Rp is entirely defined by the so-called Frenet frame
(u1, . . . up) and its associated curvatures (κ1, . . . , κp−1). For
the sake of completeness, the procedure for finding them is
given by

u1(t) = γ′(t)/‖γ′(t)‖ (2)

ũi(t) = γ(i)(t)−
i−1∑
j=1

〈γ(i)(t), uj(t)〉uj(t), i = 2 . . . p (3)

ui(t) = ũi(t)/‖ũi‖, i = 2 . . . p (4)

κi(t) =
〈u′i(t), ui+1(t)〉
‖γ′(t)‖

, i = 1 . . . p− 1 (5)



It is clear from the construction that changing the curve
parametrization will keep the Frenet frame and the curvatures
invariant: all information related to velocity, tangential accel-
eration and so on will be lost. In many applications, this is a
major issue.

From a mathematical standpoint, one possible geometric
model for a curve is a one dimensional riemanian manifold.
It will be assumed in the sequel that the reader is familiar
with the basic concepts of differential geometry that may be
found in any textbook on the subject [9]. For shape analysis
and recognition, one deals almost always with closed curves,
that comply with the usual notion of manifold. However, when
dealing with paths with distinct endpoints, the right model is
a manifold with boundary. In the sequel, all curves will be
represented that way.

Any real interval [a, b] has the structure of a trivial one
dimensional manifold with boundary {a, b}. Tangent vectors
are couples (t, u) where t is the basepoint in [a, b] and u
is a one dimensional vector, that can be represented as a real
number. One can think of a tangent vector (t, u) as the velocity
at t of a point moving along the interval [a, b]. Boundary
conditions impose u(a) > 0, u(b) < 0 . A vector field defined
on it is just a smooth mapping u : t ∈ [a, b] 7→ R such that
all derivatives admit a limit to the right (resp. to the left) at
a (resp. b). These limits will define the field at the boundary,
and are not required to comply with the conditions satisfied
by tangent vectors.

A curve γ : [a, b] → Rp with nowhere vanishing derivative
is an immersion from the manifold ]a, b[ to Rp that can be
extended to [a, b]. As such, it inherits a metric from the local
embedding in Rp by letting, for any t ∈]a, b[ and real numbers
u, v, interpreted as tangent vectors:

gt(u, v) = ‖γ′(t)‖2uv

The Levi-Civita connection on ]a, b[ is given by:

∇∂tu = ∂tu+
1

‖γ′(t)‖2
〈γ′(t), γ′′(t)〉u

The first term corresponds to the intrinsic variation with
respect to the parameter t, while the second is the part of
the tangential acceleration coming from the geometry of the
immersion. When the immersion parameter is chosen to be
the arclength, the second term in the right hand vanishes as
Dsγ is the unit tangent vector at s and Dssγ is orthogonal to
it. The Levi-Civita connection reduces thus to derivative with
respect to arclength. The same applies for the scaled arclength
η.

While curvature is a very important information for curves,
it is a characteristic of the immersion and not an intrinsic
feature of the trivial manifold [a, b]. It can be recovered
from the immersed normal bundle N , whose elements are
couples (t, v) with t ∈]a, b[ and v ⊥ γ′(t). It is a vector
bundle with base manifold [a, b] and typical fiber Rp−1, and
its sections can be easily recovered using the Frenet frame
u1(t), . . . , up(t) introduced earlier, as any vector normal to
γ′(t) lies in span(u2(t), . . . , up(t). A section of N is then a

smooth mapping s : [a, b] → Rp−1, with s(t) the coordinates
on the frame (u2(t), . . . , up(t)).

The immersed normal bundle is the prototype of objects
bearing vector information along a curve, and fulfilling the re-
quirement of partial geometrical invariance mentioned earlier.
For a single curve γ : [a, b]→ Rp, one can attach a vector v(θ)
for each θ ∈ [a, b] that is interpreted as a sample at position
γ(θ). Going back to the case of landing tracks, one can think
of this vector information as the couple velocity/acceleration
v(θ) = (u(γ(θ)), Dtu(γ(θ)). It is important to note that the
shape parameter θ is not related to time t, that is used to
compute velocity and acceleration: at a given θ, u(θ), Dt(θ)
are the respective velocity and acceleration sampled at position
γ(θ) on the trajectory. Different aircraft following the same
curve but with different braking profiles will have different
samples v(θ). Within the immersed bundle, they will be
described by different sections. However, the geometric object
underlying the sections, that is the base immersion γ will
remain the same. When we let it vary, it appears that data
can be compared at two well defined levels: the first one
is the geometry and arises from the difference between the
base immersions and the second is related to the sections
themselves.

In a general setting, a immersed vector bundle will be
defined as a vector bundle with base manifold [a, b] , typ-
ical fiber Rn and whose sections are of the form s(t) =
v(γ(t)), t ∈ [a, b], with γ : [a, b] → Rp an immersion. As
above, the geometry is encoded in γ, while the non-geometric
information is described by the section.

The ability to deal with similarity between such objects
relies on a notion of distance between them, that will be now
introduced.

C. Distance between bundle sections

In order to simplify the derivations, all curves will be
assumed to be immersions from [0, 1] to Rp, using the η
parameter. The derivation of a distance between immersed
bundles sections will closely follow the principle underlying
the construction of geometric distances between curves, as
presented in [10]. Let E0, E1 be immersed vector bundles
on respective immersions γ0, γ1 with values in Rp and with
typical fibers Rn. Let s0, s1 be sections respectively of E0, E1,
that will represent the vector samples along the respective
curves γ0, γ1. An immersed path between s0 and s1 is a
smooth mapping φ : [0, 1]× [0, 1]→ Rp × Rn such that:

• For all s ∈ [0, 1], the mapping t ∈ [0, 1] 7→ φ(s, t) is a
smooth section the trivial bundle Rp ×Rn 7→π Rp;

• For all s ∈ [0, 1], π ◦ φ(s, •) is a smooth immersion in
Rp;

• For all t ∈ [0, 1], φ(0, t) = s0(t), φ(1, t) = s1(t).

For a given s ∈ [0, 1], the mapping t ∈ [0, 1]→ π ◦ φ(s, t)
defines an immersion from [0, 1] → Rp that interpolates
between γ1, γ2 in the sense of [10][6]. This immersion defines
in turn an immersed bundle, with typical fiber Rn. It will
be referred to as Es in the sequel. Finally, if a metric gs is



available on each of the member of the family Et, it is possible
to compute for a given φ a path length:

l(φ) =

∫ 1

0

∫ 1

0

gs

(
∂φ

∂s
,
∂φ

∂s

)1/2

dsdt (6)

Having this measure at hand, the distance between s0 and
s1 is defined the infimum of the values l(φ) over all the
admissible paths φ.

For clustering applications, it may be convenient to use the
energy of a path φ that is defined to be:

E(φ) =

∫ 1

0

∫ 1

0

gs

(
∂φ

∂s
,
∂φ

∂s

)
dsdt

Paths minimizing the energy are the same as those minimizing
the length. Since it saves a square root in the computation, the
minimization is easier. However, if a distance is really needed
at the end, it is enough to compute l(φ) on the minimizing
path obtained. The way the interpolating bundles Es can
be constructed will be deferred to a future work; however,
normal bundles (or closely related ones) are quite natural in
applications. It was the choice made for the classification of
landing aircraft tracks.

A second question is the choice of the metrics gs. While
out of the scope of the present paper, a requirement is that
the family be smooth and natural in the sense of [11]. For
the application, an ad-hoc metric will be derived in the next
section.

III. A WORKED EXAMPLE: SKID DETECTION

A. Problem statement

The problem of early detection of runway bad adherence has
a great importance in airport operational management. When
the runway or the taxiways are in bad condition, the only reli-
able procedure used nowadays is a direct measurement using
an especially designed vehicle. Unfortunately, the runway has
to be closed for the duration of the operation, which has a high
cost both from the economic and traffic management point of
view. Attempts where made to infer adherence from clustering
of landing trajectories obtained by the surface surveillance
means (radars), but due to the diversity of aircraft and airline
procedures, a registration must be applied to curves, which
is quite awkward to design. Since both the geometry of the
landing trajectories and the deceleration law are important
to make the right decision, the above theoretical framework
seems to be ideally suited. As the phenomenon of interest
stems from contact mechanics, it is worth starting with the
underlying physics to derive a suited bundle metric.

B. From contact mechanics to curve similarity

Landing aircraft may experience slip during deceleration
phase when the runway is in degraded conditions. It may
result from icing, snow, bad runway surface state but also from
pilot’s actions, namely a too strong braking action or sharp
turn. In this last case, it is not related to runway condition

and must not trigger a maintenance action from the airport
services.

Slip can be detected on-board by comparing wheel rotation
rate with aircraft velocity and computing the so-called wheel
slip factor:

λ =
ωw − ωa

max(ωw, ωa)
(7)

where ωw is the wheel angular velocity and ωa = Va/Rw is
the expected angular velocity that can be computed as the ratio
of the aircraft velocity to the wheel radius. Please note that on
the real vehicle, several wheels are used, and the λ coefficient
has to be understood as a mean value. Furthermore, due to
tire elasticity, λ is not zero even if there is no actual slip:
this is due to the fact that when a traction or a braking force
is applied, the rubber will stretch, resulting in the tire outer
part actually traveling more or less than expected from rigid
body dynamics. This information is not yet downlinked in real
time to ground centers and thus cannot be used in the intended
application. From the ground standpoint, λ cannot be observed
without on-board information, but some aspects of the landing
or taxiing aircraft behavior may still be inferred. It is assumed
in the sequel that Coulomb’s law for friction [12] is applicable,
so that the contact force Fc depends only on aircraft weight
and tire/runway conditions:

Fc ≤ µgM (8)

with M the aircraft mass, g the gravity of the Earth and
µ the adhesion coefficient. Without slip, µ is equal to the
static friction coefficient µs and Fc can be increased until it
reaches the upper bound in (8). At that point, slip occurs and
µ drops to the value of the dynamic friction coefficient µd.
Fc remains constant until it falls below µdgM . In real world
experiments, this simple behavior is no longer valid and one
has to express µ as a function of λ, which can be found in
[13]. Within this frame, the expression of the contact force is
Fc = µ(λ)gM , which is valid for both non-slip and slip case.
Furthermore, in the case of aircraft, aerodynamics forces are
exerted, with a net result of a braking force Fa that adds to
the actual brakes action, but does not contribute to the friction
analysis. Putting things together, the equation of motion along
the aircraft trajectory γ can be expressed as:

γ̈(t) =
Fa(t)

M
+ µ(λ(t))g~u (9)

where ~u is a unit vector in the direction of the contact force
Fc. Without making additional assumptions, it is not possible
to use (9) for slip detection. However, if actions taken are
assumed to be optimal, then Fa and ~u will be collinear so
as to maximize the net braking effect. The expression of the
aircraft dynamics becomes:

γ̈(t) = (K(t) + µ(λ(t)g) ~u (10)

where the coefficient K(t) accounts for the aerodynamic
braking force intensity. As aircraft must loose speed fast, µ
will be close to the maximum at least during the landing and
the beginning of taxi. The same applies for K, as it will



not impair adherence. It can then be deduced that aircraft
will try to keep the ratio between longitudinal and normal
acceleration as high as possible. An observable measurement
of slip condition will then be given by:

θ = arctan

(
κ‖Dtγ‖3

〈Dttγ,Dtγ〉

)
(11)

where γ is the aircraft trajectory and κ its curvature. It can
further reduced to:

θ = arctan

(
det (Dtγ,Dttγ)

〈Dttγ,Dtγ〉

)
(12)

using the well known property κ = det (Dtγ,Dttγ) /‖Dtγ‖3.
In good runway conditions, the longitudinal acceleration

will be high and nearly constant, at least in the first part of
the landing trajectory. As a consequence, one can expect θ
to be relatively small and be proportional to det (Dtγ,Dttγ).
Reciprocally, under slip conditions, a trade off has to be made
between path following and deceleration: the angle θ will thus
increase towards the limiting value ±π/2.

From the above discussion, it appears that θ makes sense
as a weighting factor for curve comparisons.

C. An adapted metric

In the sequel, the symbol Dt will stand for the partial
derivative with respect to variable t. Higher order derivatives
with respect to variables t1 . . . tN will be written similarly
as Dt1t2...tN . Please note that the same variable may occur
several times.

A smooth planar curve γ : [0, 1]→ R2 will be an immersion
when the derivative Dsγ is everywhere non vanishing in ]0, 1[.
The set of such curves will be denoted by Imm([0, 1],R2).
Taking γ ∈ Imm([0, 1],R2), its length is:

l(γ) =

∫ 1

0

‖Dtγ(t)‖dt (13)

It is invariant under parametrization change γ → γ ◦ φ with
φ : [0, 1] → [0, 1] a smooth diffeomorphism. Given a path
Φ: [−ε, ε] → Imm([0, 1],R2) that can be seen as a smooth
mapping Φ: [−ε, ε]× [0, 1]→ R2, the variation of l(Φ(0, •))
can be computed :

Ds|s=0l(Φ(s, •)) = 〈DsΦ(0, 1), T (1)〉 − 〈DsΦ(0, 0), T (0)〉

(14)

+

∫ 1

0

〈DsΦ(0, t), κ(t)‖DtΦ(0, t)‖2N(t)〉dt

(15)

with T (t), N(t) the respective unit tangent and normal vectors
to the curve t 7→ Φ(0, t) and κ(t) its unsigned curvature. The
extension to more general immersions is quite straightforward
[10]. In the same reference, the variation formula (14) is
used to derive a riemanian metric on the quotient space
Imm(S1,R2)/Diff([0, 1],R2).

In the present work, a similar approach will be taken.
However, due to the fact that the slip condition must come into

play as a weighting factor, it is not possible to keep invariance
under change of parametrization. Furthermore, curves with
vanishing second derivative must be excluded since the slip
angle θ 11 is not defined at points where Dttγ(t) = 0. The
last condition boils down to the requirement that the curve
t ∈ [0, 1] 7→ (γ,Dtγ) be an immersion. The space of such
objects will be denoted by Imm([0, 1],R4).

As an arc tangent appears in the definition of θ, it is more
convenient to use instead sin(θ) that has a simpler expression
but otherwise similar behavior:

sin(θ(t)) =
κ(t)‖Dtγ(t)‖2

‖Dttγ(t)‖
=

det (Dtγ(t), Dttγ(s))

‖Dtγ(t)‖‖Dttγ‖
(16)

Definition 1. Let γ be a smooth curve. An admissible variation
of γ is a smooth mapping Φ: ] − ε, ε[→ R2, ε > 0, such that
Φ(0, •) = γ(•) and ∀s ∈] − ε, ε[,Φ(s, 0) = γ(0),Φ(s, 1) =
γ(1).

An admissible variation defines a tangent vector at γ: it is
the smooth vector field t ∈ [0, 1] 7→ DsΦ(0, t).

The expression (16) has a nice variational interpretation as
indicated in the next lemma.

Lemma 1. Let γ : [0, 1] → R2 be a smooth path and Φ an
admissible variation of it. Let φ be a smooth path such that
φ(0) = γ(1), φ(1) = γ(0). Then:

DsA(0) =

∫ 1

0

det (DsΦ(0, t), Dt(0, t)) dt (17)

where A(s) is the net area enclosed by the loop Φ(s, •), φ for
s ∈]− ε, ε[.

Using lemma 1, the integral :∫ 1

0

|det (Dtγ(t), Dttγ(s))|
‖Dtγ(t)‖‖Dttγ‖

‖Dtγ(t)‖dt (18)

may be interpreted as the total infinitesimal area swept by the
curve γ when moved in the direction Dttγ. This quantity is
global indication of the slipping experienced along the path γ.

Turning back to bundles, if γ : [0, 1] → R2 is the im-
mersion describing the geometry of the problem (with the η
parametrization) and v(η), v′(η) the respective velocity and
acceleration at position γ(η), the above metric can be adapted
to yield a bundle metric. Without going into derivation detail,
it can be expressed as:

g((u(η), u′(η)), (v(η), v′(η)) = 〈u(η)N , v(η)N 〉 (1+κ2(η))

+ det (Dηγ(t), Dηηγ(s)) (19)

Looking at the expression (19) reveals a sum of a geometric
distance between immersions in the sense of Mumford-Michor
and a proper vector variation. This bundle metric is injected
in the procedure for computing distances between immersed
bundles sections (6) to yield the desired similarity measure
that discriminates skid conditions.



IV. CONCLUSION AND FUTURE WORK

While quite developed from the theoretical standpoint, the
work is still ongoing to assess performance in operational
environment on real data. Unfortunately, there is no access
to data correlated to adherence condition, as this information
can only be obtained from direct measurements and is not
communicated by airports authorities. The option taken was
to develop a realistic taxi and landing simulator, that has been
recently completed and will be released in open source. With
the help of this tool, slipping and non-slipping trajectories
can be simulated and the performance of the classification
procedure assessed. On available landing data, and using
an upper bound estimate of the distance based on a linear
homotopy as an admissible path, promising results have been
obtained. However, they cannot be matched against adherence
conditions due to the aforementioned data availability issue. It
is nevertheless expected, based on this experiment, that even
the simplest linear homotopy procedure will outperform all
the state-of-the-art algorithms investigated so far.
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