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Abstract—Aircraft optimal trajectory planning in the pres-
ence of wind is a critical issue for airlines to save fuel.
Planning is difficult due to the uncertainties linked to wind.
Based on wind predictions, airlines have to compute trajectory
planning for their aircraft in an efficient way. Such planning
has to propose robust solutions which take into account wind
variability.

In this paper, we propose a robust wind optimal trajectory
design algorithm based on two phases. The first phase consid-
ers the wind map predictions and computes for each of them
the associated wind optimal trajectory also called geodesic.
Such geodesics are computed with a Bellman algorithm on a
grid covering an elliptical shape projected on the sphere.

The second phase of the algorithm extract the most ro-
bust geodesic trajectories by the mean of a new trajectory
clustering algorithm. This clustering algorithm is based on a
new mathematical distance involving continuous deformation
approach applied to north Atlantic flights .

I. INTRODUCTION

With improvement of the environmental awareness, air-
lines have paid attention to reduce fuel consumption during
daily flight operations. Airlines pursue to minimize the
adverse effects of headwinds, or maximize the beneficial
effect of tailwinds when planning flight trajectories. Ac-
cording to the jet stream profile of the world, it is easy
to notice that the jet streams are in the east-west direction
instead of the north-south direction. Therefore, the flights
of east-west routes are affected more by en-route winds
than the flights of north-south routes. In order to achieve
the best flight performance in terms of the flight time and
the fuel consumption, airlines may adjust the flight trajec-
tories based on en-route wind profiles. Consequently, it is
necessary to consider en-route wind effects when planning
flight trajectories. However, it is difficult to identify the
most suitable trajectory in a complex wind field mainly
because such field is not easy to estimate [17], [25], [8],
[9], [26]. The wind directions and strength are varying in
different regions, at different altitudes and different times.

I'This paper is an invited paper as a DASC best student paper.

Even though the problem is complex to solve, it may benefit
airlines in terms of fuel cost and on-time performance.

Planning optimal trajectories is a rich and dynamic
research domain with many application areas like robotics,
space or aviation [6], [2], [3]. Depending on the problems’
needs, the issues are different in nature and so are the
techniques used to solve them. Here, we are interested
in finding the global optimal path in presence of currents
in a two dimensional space. Several methods, such as
Dijkstra algorithm [10] or A* algorithm [20], discretize
the domain and work on the generated network to find
the optimal path. These algorithms are very efficient but
the computed solution is restricted to the network. Some
others algorithms work on the continuous space. Those
algorithms are based on front propagation methods such
as Level Set methods, Fast Marching methods and Ordered
Upwind methods. These different algorithms are developed
by Sethian in [13]. In [5], Petres adapts the Fast Marching
Method to path planning for Autonomous Underwater Vehi-
cles taking into account underwater currents. However, his
algorithm cannot be applied to vehicles featuring behaviors
more complex than a linear reaction to currents. In [15],
Alton uses the Ordered Upwind algorithm with the Semi-
Lagrangian method to generate optimal trajectories. In [3]
a straightforward wind computation approach is presented,
which relies on the difference between the predicted motion
of the aircraft and the real motion measured by sensors.
This wind estimation is fully tactical.

However, trajectory uncertainties (related to weather con-
ditions) can not be completely eliminated; therefore, there
are discrepancies between actual and projected trajectories.

Usually, aircraft trajectories are optimized in order to
minimize some criteria : fuel, time, etc... When such
planning is done in presence of wind one must take also
into account the robustness of the planned trajectory. As a
matter of fact airlines prefer to fly less efficient trajectories
in terms of fuel but with a higher robustness.

In this paper, we address this robust trajectory planning
in presence of wind with some uncertainties.



Weather forecast usually propose several possible situa-
tion by producing Ensemble Prediction. Ensemble Predic-
tion Systems (EPS) are an approach to weather forecasting
that has been adopted by the Numerical Weather Prediction
centers in order to characterize and quantify the uncertainty
inherent to prediction [14]. This prediction technique in-
volves generating a representative sample of the possible
future states of the atmosphere. This collection of individual
forecasts, called members, is generated by modifying the
initial conditions and/or the meteorological model equations
or parameters [1], [4].

The paper is organized as follow. The first part describes
the algorithm to design aircraft optimal trajectory in the
presence of wind. The second part presents the clustering
algorithm with a focus on a new mathematical distance
between trajectories. The third part gives some results of
the application of our algorithm to the oceanic airspace in
order to generates robust aircraft optimal trajectories in the
presence of wind.

II. WIND OPTIMAL TRAJECTORY COMPUTATION
A. Wind Grid Computation and Interpolation

We consider a 3-degree of freedom point-mass model
of a fixed-wing aircraft flying though the North Atlantic
Ocean. As an assumption, only cruise part of the flight is
considered not only for the simplicity purposes but also
because the cruise part is the majority of the flight. Ad-
ditionally, we assume that the aircraft is flying at constant
flight level. In this paper, we do not take temperature issue
into account. As a result, we note that based on those
assumptions, more complex problems can be simulated by
applying this methodology easily.

We compute the optimal trajectory based on the wind
predictions with a classical Bellman algorithm. In order to
use Bellman algorithm to solve the problem, we need first
to build a wind grid which stores wind data information.

1) Generate the wind grid: We generate a grid of
size N x M nodes on he North Atlantic Ocean. The area
from latitude 30 to latitude 70 and from longitude -90 to
longitude 10 is taken into account. Each integer latitude and
longitude point is regarded as a node. In order to generate
smooth trajectories, we divide each latitude and longitude
into 10 boxes. As a result, a 400 x 1000 grid table is
generated.

2) Wind data interpolation: Note that, the wind data
only contain the information at integer latitude and longi-
tude node and we need to have the information at all nodes.
We use Shepard’s Method[7] to do such interpolation.

Let F(P) be a function of the point P = (x,y) defined for all
P in the real plane R?, the value at point P is the weighted
average of the values at nearby 4 data point P;, P», P; and
Py(integer node). Denote the value of F' at P; by F; and
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Fig. 1: Metric interpolation
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Fig. 2: Graph used for the wind optimal trajectory design.

d; be the distance between P; and the generic point P in
R?(See Fig 1). The result was established by the function :
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B. Bellman Algorithm

In order to generate wind optimal trajectories, we start
building a graph G = {A(, L} based on the wind grid (see
Fig 2), for which the set Al represents the nodes and L the
links.

Each node stores the following information : Latitude ¢,
longitude A, altitude z, the east wind component Wg and
the north wind component Wy. Based on those initial data
coming from the wind grid, we compute also the wind norm

(W] = }/Wg—f—W,% at each node and the associated wind
bearing Oy (see Fig 3a).

The graph is structured into layers (see Fig 2), to improve
the performance of the Bellman algorithm. As a matter of
fact, thanks to this structure, only one Bellman algorithm
iteration is needed to find the minimum path.
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(a) Wind information contained (b) Information contained in
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Fig. 3: Information in nodes and links.
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Fig. 4: The Cartesian coordinates

Each node has also a list of successive neighbors which
are represented by the blue links on Fig 2. Each node
(except the extreme north and extreme south) has some
neighbors in the north direction and in the south direction
(in our case, two in the north and two in the south). Such
limitation will ensure smooth trajectory, avoiding sharp
turns. Each link [ € £ = (A}, A[) connects one origin node
N, and one destination node Ny. The grand circle distance
of link /, d; is given by the following formula :

d :R.arcsin{”ﬁd Aﬁ{;||} 2)

where B, = (X5,Y0,20)" By = (x4,ya,z4)T are the Cartesian
coordinates of the nodes N, and Ny, A is the vector product
and R is the radius of the earth. For a given node P (see
Fig 4), the Cartesian coordinates are given by the following
formula :

x = R.cos(0) xcos(A)
P=1{ y=R.cos(d)*sin(}) 3)
z=R.sin(A)

where A is the latitude and ¢ is the longitude.
Each link contains also its associated bearing (see Fig 3b)
0, which is given by the following formula :

0;(N,,Ny) = arctan (2)

y= Sin(AK)'COS(q)d) 4)
x =c0s(d,). sin(dg) — sin(d, ). cos(dy). cos(Ay)
Ay =hi—N

Based on the previous equation, one can now compute
the tail wind on each extremities of the link [ (TW,, and
TWia) :

TW, = ||W,]||.cos(8; — 8w, ) TW,; = ||Wy||.cos (8, —Ow,)
&)
Those two tail winds are then averaged and associated
to each link :
TWo+TW,
W, = % (6)
This last tail wind will be used for the cost associated to
each link in the shortest path computation.

To compute the wind optimal trajectory, we will consider
for each link, the time needed by aircraft to connect node
N, to node N;. This time #; is given by :

T +TW,

where 7 is the true airspeed of the aircraft.

Having a graph with layer structure, a Bellman-Ford
algorithm has been implemented for finding the shortest
path between a node at the extreme left (N,) and all the
nodes at the extreme right (N;). The algorithm is organized
into three steps :

STEP 1: Initialization This step initializes distances
(dist) from source to all vertices as infinite and distance
to source itself as 0.

STEP 2 : Propagation The source node is first consid-
ered and its associated neighboring links.

Starting from the source node Np = src (first column)
and for each link associated to N, the algorithm marks the
neighboring nodes of Ny = src with the following rule ;

o if dist[Ng] > dist[N,] + d; then update dist[N;] =

dist[N4] = dist[N,] +d; (keep in node N; the node N,
which has been use for this update

]

(7

Shift to the next column (column 2) and apply the same rule
to all nodes which have been updated in order to propagate
the distance update to the third column. This process is
repeated until the propagation reach the last column (on
the right).

STEP 3 : Path building To compute the shortest path
for the source node src to any destination nodes on the
right (dest), first select a destination node among the nodes
belonging to the last column (column number K). Select the
node Nk_i in column K — 1 which has updated the dest
node in column K. Then, select the node Nx_» in column
K —2 which has updated the node Ng_; in column K — 1
and so on until the source node is reached in this back
propagation process.

For each weather sample, such minimum time path algo-
rithm is computed in order to create a set of trajectories that
has to be clustered. To compute those trajectory clusters, a
distance beetween trajectories has first to be defined.

III. TRAJECTORY CLUSTERING ALGORITHM

In order to group trajectories into clusters, one must first
establish a mathematical distance between such mathemat-
ical objects.

A. Mathematical Distance between Trajectories

In a vector space, distances are very well defined.

For two points P| = (x1,y;)” and P, = (x2,y2)” in a plane
(see Fig 5), the distance between them can be computed
with the classical formula of the euclidean distance (see
Fig 5).
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Fig. 5: On the left, two points P, and P, has been drawn
for which the classical Euclidean distance is shown in red.
On the right, two trajectories are drawn (y;, ¥2) for which
a mathematical distance has to be determined.

What is the distance, if now the points 131 and ﬁg are
replaced by two trajectories y; and Y, ? Trajectories are
infinite dimension mathematical objects which are not easy
to manipulate. One of the main results of this paper is the
establishment of such mathematical distance.

1) Current Trajectory Distances: An aircraft trajectory
is a time sequence of coordinates representing the aircraft
path over a period of time and may be represented by a N-
uple T = {(X] y V1,21 atl)a (x25y25127t2)3 ) (xvaszNvtN)}
where N is the duration.

The simplest metric used for computing the distance
between a pair of trajectories is the mean of coordinate
distances.

Note that, the mean of distance metric makes three
critical assumptions :

1) the durations of both trajectories are the same :N¢ =
N =N

2) the coordinates are synchronized t¢ = t?

3) the time sampling rate is constant #;;, | —f, =1, | — 1,

It is evident that the mean of distance is very sensitive to

the partial mismatches and cannot deal with the distortions

in time.

To provide more descriptive information, the second
order statistics such as median, variance, minimum and
maximum distance may be incorporated.

Although these statistics supply extra information, they
inherit (even amplify) the shortcomings of the ordinary
mean of distance metric m;. None of the above metrics is
sufficient enough by itself to make an accurate assessment
of the similarity.

Another possible candidate for the distance between two
trajectories y; and > will simply be to take the supremum
norm dw(Y1,Y2) (see Fig 6).

d; ~ area
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Fig. 6: Supremum norm distance
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Fig. 7: Different trajectories with same sup distance. The
sup norm between the green trajectory and the red trajectory
is the same as the one computed between the green and the
blue trajectories; meaning the such sup norm consider 7;
and 7y, at the same distance from Y3 event if y; and 7y, are
very different.

of R, the supremum is well defined. However, this metric
is not sensitive to global properties of curves. In the Fig 7,
the curves y; and Y, are at the same distance from Y3 but
have very different shapes.

From an operational point of view, ¥, is just a shifted
copy of y3 while vy, will probably not be realistic.

For trajectories 7y;,Y, with the same origin-destination
pairs, Y1 —7Y» can be defined as a compactly supported map-
ping and an area distance between trajectories (d2(Y1,Y2))
can be defined (see Fig 6).

This distance can handle more complex trajectories,
however it is sensitive to entanglements of the trajectory,
discards the time continuity, and fails to distinguish two
trajectories in opposite directions. Furthermore, it can not
be extended to the third dimension.

In order to introduce our new mathematical distance be-
tween trajectories, one must first give some representation
definitions.

2) Representation: Since objects of interest are aircraft
trajectories, we need to find an adapted framework in which
computations may be made on trajectories as a whole.
There are basically two ways of understanding what a
trajectory is :

o The time/position approach for wich time is included
in the representation. In this case, a trajectory can be
represented as a mapping from a bounded interval of R
(the life time of the trajectory) to R3 or R® depending
on whether speed is part of the data or not. Since
there is an explicit dependence on time, there is a
need to calibrate trajectories with time shifts for all
applications involving trajectory comparison. We will
see in the following that there is a mean of reducing
the problem by calibrating automatically the origin of
time.

o The shape approach for which only the path is con-
sidered without time. Here, trajectories are understood
as paths and time is not directly relevant (from a
more formal point of view, we take the quotient of
the trajectories understood as mappings by the group
of diffeomorphisms acting on time), so that we may
assume that the underlying life time of trajectories is



always the interval [0,1]. This framework is adpated
for dealing with major flows estimation.

3) Trajectories as mappings: We will assume in the
following that trajectories are given as mappings from a
compact interval of R to R3. The case of mappings from
R to R® (that is with explicit speed, for example as given
by radar tracking filter [8], [9]) can be derived with minor
changes and thus will not be addressed here. Since physical
trajectories are smooth unless there is a perturbing noise, we
made the choice to take all trajectories as smooth mappings
from a compact interval of R to R3.

The first point to deal with is the necessary calibration of
the origin of time for trajectories comparison. Remember-
ing that there is an explicit dependence on time, one cannot
just time shift one trajectory in time in order to make it
coincident with another in order to compare them : this will
result in forgetting distortions in time, that is trajectories
with the same range (as mappings) but different positions
at different times may become equal.

Since we choose to compare trajectories as mappings,
a good candidate for computing the distance will be to
integrate over time (like for the area distance) and to
evaluate a mean error instead of the raw sum of squares :

1 T
artn P =55 [ IO -roPd  ®)

with 7 > 0. This formula defines a semi-distance between
trajectories y; and ;.

The previous family of semi-distances has nice features
because of the scaling ability, but since it is not a single
metric, it is difficult to use standard algorithms based on
distances (for example, classification algorithms). There is
thus a need for another definition of proximity between
trajectories that will yield a single value while capturing
interesting global characteristics.

B. New Distance Definition Based on Homotopy

Before introducing our homotopic distance between tra-
jectories one must introduce how do we cope with time
difference between trajectories.

1) Parametrization invariance: The parametrization in-
variance is a very importante feature: the shape of an object
is independent on the way its contour is followed. In its
seminal paper, Kendall introduced the notion of shape man-
ifold [16]: the originality of its work was the use of a differ-
ential geometry setting to implicitly enforce the invariance
with respect to shape-preserving transformations. Curves
were represented as finite sequences of distinguished points,
called landmarks. Some related algorithms were eventually
designed for air traffic analysis applications. In a study
conducted by the Mitre corporation on behalf of the Federal
Aviation Authority (FAA) [11], a spectral clustering algo-
rithm was applied to sampled trajectories. Only the distance

between landmarks was used, no invariance under euclidean
transformations were imposed. Due to the high computa-
tional complexity, a random projection was first applied to
the data in order to reduce the dimension of the samples.
The most important limitation of this approach is that the
shape of the trajectories is not taken into account when
applying the clustering procedure unless a re-sampling
procedure based on arc-length is applied: changing the time
parametrization of the flight paths will induce a change
in the classification. Methods based on times series as
surveyed in [18], [24] are appealing, but are inadequate
for the present application. Finally, functional data statistics
[12], [22] provides a powerful framework, still lacking
the re-parametrization invariance. In this section, flight
paths will be modeled as points in an infinite dimensional
riemanian manifold. In such space, each point is considered
as a full trajectory. An intrinsic notion of distance exists in
this setting and is defined as the infimum of the length of
the paths connecting two points. Having this at hand allows
the use of standard, distance based algorithms like k-means,
k-mediods or hierarchical clustering.

2) Trajectories registration: A flight path may be mod-
eled as a smooth curve y: [a,b] — R* that maps a time to
a position (at each time one can determine the associated
position). Two distinct trajectories 7y;,Y> are most of the
time defined on different time intervals, say [a1,b;] (resp.
[a2,b;]) for vy (resp. ¥2), making the comparison between
them quite awkward. This issue is well known in the field
of functional data statistics as the registration problem.
In a formal sense, it amounts to find a pair (¢1,¢,) of
strictly increasing diffeomorphisms ¢;: [0,1] — [a1,b1],
02: [0, 1] — [a2,b2] such that the transformed curves y; o1,
Y2002, defined on the common interval [0, 1], are as similar
as possible. The special problem instance:

1
min [ 10010) ~1o002(0)ds ©)

gives the Fréchet distance between v;,Y>. Computing the
optimal ¢1,¢, is a difficult task, unless the curves are
assumed to be polygonal. Furthermore, as mentioned in
[22], the registration procedure may remove some important
features from the data: the extra degree of freedom provided
by the so-called warping functions ¢;,¢, may have the
detrimental effect of registering curves that does not need
it [23]. A discrete relative to the Fréchet distance is known
as dynamic time warping and may be used to compare
sampled sequences. Nevertheless, it suffers from the same
drawback (two trajectories having different time sampling
will be condidered as different which is not relevent for our
application).
3) Distance based on Homotopy between Trajectories:

In order to compute the distance between two trajectories
(71,Y2), a time regularization is first applied to trajecto-
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ries. Then, an homotopy & between 7vi,y, is built for
which its associate energy is computed for extracting a
distance metric (such distance has been developed by
S.Puechmorel [21]).

Let a be the origin of the trajectory y. We have : y(¢) =
a+ [3Y(s)ds ,s0 a couple (a,Y) (€ W) with ¥ compactly
supported defines a trajectory.

An homotopy between (a,Y,) and (b,v,) is a continuous
mapping ®@: [0,1] — W such that ®(0) = (a,v;), ®(1) =
(b,Y,). Intuitively, an homotopy is a continuous deforma-
tion between two trajectories (see Fig 8).

The deformation energy between y; and 7, is linked to
the distance between those trajectories and can be computed
with the energy of the homotopy between y; and 7V, :

E(qn):/()l(' 2+/R

where % is the normal vector (see Fig 8).

In order to compute such energy, a grid on the homotopy
connecting Y; to Y is built, as shown on Fig 9.

%
du

Miuls)
du

2
H%(s)”ds) du
(10)

Fig. 9: Structure of the grid used for homotopy energy
minimization. Each red point has 2D coordinates (x,y) for
which an optimization algorithm is used for searching the
z coordinates which minimize the energy of the homotopy
connecting y; to Y».

The optimization algorithm is searching for the z coordi-
nate of each grid point in order to minimize E(®). One can
show that such problem is convex (from the optimization
theory point of view) and gradient like method can be used
to find the associated minimum (quadratic programming
has been used to solved this problem efficiently).

(a) On this metric space each (b) In this example the algo-
trajectory is represented by a rithm find eleven clusters with
point (blue point). different features.

Fig. 10: Trajectory clustering algorithm representation

This distance can now be used in any distance-based
clustering algorithm.

C. Clustering Algorithm

We consider a set of trajectories computed by the Bell-
man algorithm for each wind sample map. Having defined
a distance between trajectories, one can gather together
such trajectories in order to create clusters by using an
adaptive clustering algorithm (hierarchical clustering). Such
a clustering algorithm aims to partition the trajectory set
into K clusters. To reach this goal, trajectories are consider
as points in the associated metric space (see Fig 10a).

This algorithm uses two parameters, d,;;, and dpax, to
respectively fuse clusters and create new clusters. Initially,
each trajectory is considered as the centroid of a cluster.
We then apply the three following principles one after the
other:

« if two centroids are at a distance lower than d,;,, we
fuse them into a single cluster, of which the resulting
centroid is the barycenter of the two initial centroids.

e a new individual is aggregated to a cluster if its
distance from the closest centroid is lower than d,,,,
and in this case we compute the new global centroid.

« Otherwise, create a new cluster containing the single
trajectory.

The number of clusters is also a result of the algorithm.

An example of clustering result is given on Fig 10b.

For each cluster ¢, one can compute also the following

features :

o Number of trajectories in the cluster N,;

o Mean trajectory which is the cluster centroid (y.);

« Dispersion of the cluster;

The overall processing on the trajectory clustering algo-
rithm is summarized by the Fig 11

IV. RESULTS

First we have consider two wind samples over the
Atlantic ocean from two different days (January 09, 2016
and February, 14 2016). The first sample has few wind
dispersion compared to the second one. An example of such
map is given on Fig 12.
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Fig. 12: Example of wind distribution over the Atlantic
ocean

Those two days present different wind dispersion data
with 34 wind samples at each point of the wind grid which
(resolution : 1 degree).

Based on those wind data, we have applied the algorithm
in order to compute the wind optimal route between two
points. The origin has been settled at P,=(lat, long): (A=30,
06=-90) and the destination at ﬁd(lat, long): (A=60, 6=10).
The first data sample presents less dispersion and may
result in more robust planing. The Bellman algorithm has
been applied 34 times between points P, and P; and has
generated 34 trajectories that have been represented on
Fig 13.

Those trajectories have been clustered by using the new
distance that has been developed in section III-B. Two
clusters have been extracted as it can be seen on Fig 14.
The first cluster has 30 trajectories and the second one 4
trajectories. The trajectories belonging to the first cluster
are more robust and may be considered as the most robust
wind optimal trajectories between B, and P;. Fortunately,
the best trajectory in terms of flight duration belongs also
to cluster 1 (Flight time 11h34’; to compute this flight time,

~
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Fig. 13: Wind optimal trajectories for the first wind sample
set (January 09, 2016). Each black curve corresponds to an
optimal trajectory computed by the Bellman algorithm for
each wind sample.
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Fig. 14: Clusters produced for the first wind sample set.
Two clusters have been extracted for which the most
representative is represented in red. This cluster has 28
representatives and the other one has only 6. This red
cluster is then considered as the most robust trajectory.

a True Air Speed of 450kts has been considered). The best
trajectory in cluster 2 has a flight time of 11h47’.

The second wind sample data from February, 14 2016
is more critical with more dispersion in the wind data and
the trajectories produced by the Bellman algorithm are also
more spread (see Fig 15).

Those trajectories have been also clustered and the
associated cluster are represented on Fig 16. In this case,
nine clusters have been extracted with a maximum of five
representatives. In this case, there is not a big difference
between cluster in terms of representative number, and we
can say that the associated robustness is the same.

V. CONCLUSION

This paper has introduced a new approach for designing
robust wind optimal trajectory. A methodology for com-
puting tail wind on each link on a grid network over the
Atlantic ocean has been introduced. First, wind has been
interpolated on a more accurate grid, then tailwind formula
on each link has been established and tail wind on each
link has been computed. Based on this network an efficient
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Fig. 15: Wind optimal trajectories for the second wind sam-
ple set (February, 14 2016).In this set, it can be noticed that
optimal trajectories produced by the Bellman algorithm,
present more dispersion.
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Fig. 16: Clusters produced for the second wind sample set.
In this case, due to trajectories dispersion, nine clusters
have been identified with near the same number of rep-
resentatives(between 1 and three). The cluster with three
representative (in red) may not be considered as robust and
in this situation, it is very difficult to select one cluster
among the others.

adaptation of the Bellman algorithm has been proposed
thanks to the layers structure of the associated graph. In
order to cluster trajectories produced by Bellman algorithm
a hierarchical clustering algorithm has been developed and
a new exact mathematical distance between trajectories has
been introduced. Those algorithm have been successfully
applied to real wind data in order to identify robust wind
optimal trajectories.

As a future work, we will compare the associated per-
formances of trajectories in terms of flight time and fuel
consumption.
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