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 Introduction 

The affordable prices of modern eye tracking devices 

and the maturity of analytical methods have made gaze 

recordings a standard source of information when study-

ing human-computer interaction, user behavior or cogni-

tion (Duchowski, 2002; Jacob & Karn, 2003). Gaze posi-

tions are computed at high speed (up to 2 kHz) with addi-

tional data dimension like pupil diameter; and are further 

processed to analyze the behavior of users. This analysis 

can be supported by a statistical comparison of numerous 

metrics derived from eye movements (e.g. fixation dura-

tion, saccade amplitude etc.) or static, dynamic and inter-

active visualizations. Gaze record processing in the data 

space (Holmqvist et al., 2011) is more popular than pro-

cessing in the image space and displaying the data using 

visual simplification techniques. However, interest has 

recently grown in image-based techniques due to their 

fast computation and their efficiency to support a visual 

analysis (Hurter, 2015). 

Raw eye tracking data is complex, and, therefore, 

needs to be simplified for a visual analysis to support an 

efficient exploration of visual patterns. A heat or saliency 

map (Špakov & Miniotas, 2007) – a conventional visuali-

zation of fixation distribution – allows an analyst to in-

stantly perceive what elements of the scene were focused 

on. Gaze plots – classic scanpath visualizations – repre-

sent fixation points as circles with the diameter propor-

tional to fixations duration and connected with straight 

lines. However, in general, such visualizations rapidly 

become cluttered after a dozen drawn saccades. There-

fore, scanpath analysis and comparison, a cumbersome 

task, is often solved at a higher level (Le Meur & Bacci-

no, 2013) implying analyst-defined areas of interests 

(AOIs) and visual analysis using infographics such as line 

and bar charts, scatter plots, timeline visualizations, his-

tograms etc. (Blascheck et al., 2014). Nevertheless, to the 

best of our knowledge, there does not yet exist a com-

monly accepted visualization technique for scanpaths in 

an intermediate state between raw data and high-level 

representation.  
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Among techniques for visual simplifications of 

graphs, edge bundling (Lhuillier et al., 2017a) has exhib-

ited a high potential to support gaze analysis 

(Peysakhovich et al., 2015; van der Zwan et al., 2016; 

Lhuillier et al., 2017b; Hurter et al., 2014). Considering a 

recorded gaze path as a sequence of points (i.e. fixations) 

connected by lines (i.e. saccades), the resulting visualiza-

tion of these data corresponds to a set of tangled lines. 

Edge bundling techniques aggregate these lines into bun-

dles using a compatibility criterion which is often defined 

as the line vicinity: close lines are aggregated to create an 

aggregated path. 

 A recent review of state-of-the-art eye-tracking data 

visualizations (Blascheck et al., 2014) revealed that, in 

spite of an important number of high-quality visualization 

techniques available to eye tracking practitioners, there is 

still a lack of efficient point-based scanpath visualiza-

tions. For example, Hurter et al. (2014) proposed apply-

ing edge bundling to eye traces. Peysakhovich et al. 

(2015) noted the importance of the saccade direction and 

developed an edge bundling framework that allows to 

take account of the orientation of edges.  Based on these 

ideas, in this paper, we present a new rationale for scan-

path visualizations using visual aggregation techniques 

that make it possible to reduce visual clutter and provide 

a mathematical base for scanpath comparison. The paper 

is structured as follows: after a brief review of previous 

work on eye-tracking visualizations, we explain our de-

sign rationale consisting of four steps: fixation detection, 

fixation clustering, saccade bundling, and generation of 

flow direction maps; then we explain a set of examples 

where the visual aggregation techniques help to extract 

meaningful information. Finally, we present an example 

for comparing the scanpaths of two participants using a 

similarity map. This work contributes to the state-of-the-

art eye tracking visualizations techniques describing in 

detail how to reduce clutter in visual scanpath visualiza-

tions. 

Figure 1. Different representations and maps of the raw data. 
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Previous work 

Fixation patterns can be transformed into transitions 

between meaningful semantically different AOIs that can 

be analyzed using graphs, trees, or matrices (Blascheck et 

al., 2016). The sequences of annotated fixations can be 

further compared using string edit metrics (Levenstein, 

1966; Le Meur & Baccino, 2013; Eraslan et al., 2015), or 

represented as a dotplot to discover scanpath patterns 

using linear regression and hierarchical clustering (Gold-

berg & Helfman, 2010a). The string-based scanpath 

comparison can also be performed without an a priori 

AOI definition by regrouping fixations into clusters au-

tomatically (Duchowski et al., 2010; Santella & De Car-

lo, 2004). 

Various visualizations exist to support the exploration 

of the gaze data such as color bands (Burch et al., 2016), 

eye movements plots (Burch, 2017), radial AOI transition 

graphs (Blascheck et al., 2017), saccade plots (Burch et 

al., 2014), AOI rivers (Burch et al., 2013), or interactive 

systems (Raschke et al., 2014, Netzel et al., 2016). 

Scanpaths can also be broken down into individual 

saccades that can be compactly represented as radial plots 

(Goldberg & Helfman, 2010b), or compared numerically 

using vector-based alignment and statistical comparison 

of an average saccade (Jarodzka et al., 2010). 

Methodology 

In this section, we describe the pipeline for the gener-

ation of a scanpath visualization using visual aggregation 

techniques. First, fixations and saccades are extracted 

from the gaze recording. Then, fixations are clustered and 

saccades are bundled together. Finally, the analysis of 

gaze data is performed using a flow visualization map. 

Fixation detection 

A typical gaze recording consists of horizontal and 

vertical coordinates varying over time. In order to apply 

an edge bundling technique, we have to define the control 

points – the start and end points of trails that are not af-

fected by the edge aggregation. The trivial choice for the 

gaze data are fixations. Fixations can be detected from 

the raw data using dispersion or velocity thresholds (An-

dersson et al., 2017; Nyström & Holmqvist, 2010; Sal-

vucci & Goldberg, 2000). The consecutive fixations are 

connected with straight lines that represent saccades. 

Hence, in terms of graph theory, eye movement data can 

be represented as a directed graph where fixations are 

vertices and saccades are edges (see Figure 1, raw data). 

Note that throughout this paper we call this representation 

(fixations connected with saccades) “raw data” – raw 

meaning relative to the application of the visual aggrega-

tion techniques – the focus of this work. 

Fixation clustering 

When we fixate the exact same object multiple times, 

the detected fixation points are rarely at the exact same 

position due to the inaccuracy of video-based eye track-

ing systems and the size of the fovea. Therefore, while 

semantically equal, the spread of the fixation points pro-

duces unnecessary visual clutter. Fixation clustering 

algorithms can reduce the clutter by aggregating adjoin-

ing fixations. In this work, we propose applying the 

Figure 2. Clustering of fixations using the mean-shift algorithm (i = #iterations). 
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mean-shift algorithm (Comaniciu & Meer, 2002). This 

uses kernel density estimation to generate a density map; 

the points are then iteratively shifted to their densest 

neighborhood. The density map of fixations is equal to a 

saliency map (Figure 1, bottom left), i.e. for N fixations at 

positions {𝑥𝑛, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅} the density map is defined by 

𝜌(𝑥) = 𝐾(𝑥) ∗ ∑ 𝛿(𝑥 − 𝑥𝑛
𝑁
𝑛=1 ), 

where 𝐾(∙) is a bivariate radial kernel and 𝛿 is the Kron-

ecker symbol. In this work, we implemented maps with a 

resolution of 420 × 420 and a kernel width of 31. One 

map pixel corresponds to a 4 × 4 pixel square on the 

screen. In each iteration, points are shifted towards the 

locally densest area, and the density map is then recom-

puted. To compute this gradient, we use a neighborhood 

width of 40.  We performed 10 clustering iterations for 

all paper illustrations. Figure 2 illustrates a few interme-

diate results of the fixation clustering. The parameters 

(number of iterations, kernel size, map resolution etc.) 

have been chosen empirically. Some parameters are relat-

ed, for example, the kernel size and the gradient size 

(gradient should be higher than the kernel size), and some 

parameters must be adapted according to the recorded 

data (for instance, the map resolution can be decreased if 

the viewed objects are placed far enough from each oth-

er). For consistency and comparison purposes, we fixed 

the same parameters for every generated image. 

Saccade bundling 

Diminishing the dispersion of fixation points around a 

focused location reduces visual clutter. It also facilitates 

the use of the edge bundling technique by moving the 

control points closer to each other (which are not affected 

by the edge aggregation). Edge bundling techniques re-

Figure 3.  Bundling of saccades using the Attribute-Drive Edge Bundling algorithm (i = #iterations). 

Line width can be set proportional to the edge density. 
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group the close edges and draw them in bundles. Visual 

suppression during saccades (i.e. the absence of infor-

mation encoding; Matin, 1974) supports such an ap-

proach. The lines that represent the saccades do not carry 

any information apart from connecting the subsequent 

fixations. Many edge bundling algorithms exist; few, 

however, handle the orientation of the edge (saccades). In 

this work, we use the Attribute-Driven Edge Bundling 

(ADEB) framework (Peysakhovich et al., 2015).  This is 

an extension of the Kernel Density Estimation Edge Bun-

dling (KDEEB) method (Hurter et al., 2012), which ap-

plies the mean-shift algorithm to resampled edges. In 

comparison to previous work (Peysakhovich et al., 2015), 

we provide additional uses of the ADEB framework and 

open eye tracking datasets for which this technique helps 

to understand recorded data. Furthermore, we have taken 

Peysakhovich et al.’s work further by using the underly-

ing computed gradient map (flow direction map) present-

ed in the next section. 

The method is similar to the procedure described in 

the Section “Fixation clustering”, except for resampling 

the lines (saccades) that connect fixation points and com-

puting the density map taking into account all these 

resampled points (see Figure 1, bottom, Fixation density 

map vs. Saccade density map). ADEB also introduced the 

flow direction maps – vector fields generated similar to 

density maps by weighting a unit vector tangent to the 

saccade curve with a bivariate radial kernel. Given the 𝑁 

fixations, the resampling of the 𝑁 − 1 saccades gives the 

points {𝑠𝑚 , 𝑚 = 1, 𝑀𝑛
̅̅ ̅̅ ̅̅ ̅}, where 𝑀𝑛 is the number of 

points composing the n-th saccade. Thus, the flow direc-

tion map is defined by 

𝜃(𝑥) = 𝐾(𝑥) ∗ ∑ ∑ (𝑠𝑚+1 − 𝑠𝑚) ∙ 𝛿(𝑥 − 𝑠𝑚

𝑀𝑛−1

𝑚=1

)

𝑁−1

𝑛=1

, 

𝑠𝑚+1 − 𝑠𝑚 being an estimate of the tangent vector to the 

saccade curve at the sampling point 𝑠𝑚. In the presence 

of a dominant local direction, the directional component 

is significant, otherwise, the vector sum of the directions 

is relatively small (Figure 1, bottom right). At each point, 

a local subspace of compatible directions is defined as the 

cosine similarity between the edge direction and the flow 

direction at this point, i.e. it is defined by a maximum 

allowed angle between two vectors. The gradient of ad-

vection is not computed across all points in the neighbor-

hood as in standard mean-shift, but across the sub-

neighborhood that is compatible directionally. We used 

the same parameters for the map size, kernel width and 

neighborhood width as for fixation clustering, and 60° for 

the compatibility criteria.  

ADEB introduced a compatibility criterion which is 

based on the edges proximity and direction: close edges 

of the same direction are aggregated. However, other 

factors can be considered, for example, the temporal 

dimension, or the length of the saccade. We illustrate the 

use of these different factors in the art perception exam-

ple.  

We performed 20 saccade bundling iterations for all 

paper illustrations. Figure 3 shows a few iterations of the 

saccades bundling. Similar to the number of fixation 

clustering iterations, the number of bundling iterations for 

the saccades was chosen arbitrarily but seemed appropri-

ate for the goal of this work. Performing more iterations 

would simply refine the flow direction maps further and 

shift the compatible saccades closer together. 

Flow direction map visualization 

The flow direction map is implemented as two float-

ing-point textures corresponding to horizontal and verti-

cal components (Figure 4). In the ADEB framework 

(Peysakhovich et al., 2015) these textures are used only 

to define the edge compatibility criterion. However, the 

visual analysis of the flow direction map can round off 

the exploration of the bundled saccades traces to identify 

the clearly visible saccade patterns. Comparing, for in-

stance, the maps before (Figure 1, bottom right) and after 

Figure 4.  Visualization of the horizontal (on the 

left) and vertical (on the right) components of the 

flow direction map of the square scanpath after 

fixation clustering and saccades bundling. 
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Figure 5. A) Visualization of the flow direction map for the square scanpath dataset using the oriented 

line integral convolution algorithm. In the top row, three input textures of decreasing density are shown. 

In the bottom row, the corresponding OLIC visualizations are depicted. B) For each pixel, a noise tex-

ture is filtered using a convolutional kernel according to the flow direction map. 
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(Figure 4) applying the saccade bundling algorithm 

shows how the vertical and horizontal paired transitions 

become clearly visible. Nevertheless, while exploring two 

separate components can be intuitive when the flows are 

parallel to the components (i.e. purely vertical or horizon-

tal, as in the square scanpath dataset), it is more trouble-

some in cases of diagonal or circular flows where both 

components are non-null. In the scientific visualization 

domain a variety of methods exist that can depict a vector 

field in a single 2D image (Post et al., 2002). Flow visual-

ization techniques include direct flow visualizations using 

arrow glyphs, geometric flow visualizations using 

streamlines, feature-based flow visualizations using topo-

logical information, and dense, texture-based flow visual-

izations using repetition of a texture according to the 

local flow vector (Laramee et al., 2004). The texture-

based flow visualization is among the most versatile and 

effective methods, and is easy to implement. 

In this work, we use the Line Integral Convolution 

(LIC) algorithm (Cabral & Leedom, 1993) which filters 

an input texture along streamlines using a one-

dimensional convolutional kernel (for instance, a simple 

constant or Gaussian kernel). Using white noise textures 

as an input (Figure 5A, top row), LIC visualizes vector 

fields where ink droplets follow the flow direction. The 

intensity 𝐼(𝑥) of a pixel at location x is calculated by 

𝐼(𝑥) = ∑ 𝑘(𝑦 − 𝑥)𝑇(𝑠(𝑦))

𝑥+𝐿

𝑦=𝑥−𝐿

, 

where 𝑘(∙) is the convolution kernel, 𝑇(∙) is the input 

noise texture, and 𝑠(∙) is the function that parametrizes 

the streamlines of the flow direction map. To each pixel 

at position y it associates one of the surrounding pixels 

according to the direction vector at that location (Figure  

5B). 

By using a sparse noise texture and ramp-like kernel 

function as an input, Oriented LIC (OLIC, Wegenkittl et 

al., 1997) enables visual separation of streamlines with 

the same direction but opposite orientation in static imag-

es. The ramp-like kernel function makes the ink intensity 

vary according to the streamline, indicating the direction 

of the flow (Figure 5A, bottom row). By phase-shifting 

the kernel, these textures can be animated to indicate the 

flow direction more clearly. 

 

Illustrations Datasets 

We considered three use cases: a square scanpath, a 

visual search task and an art perception task. A partici-

pant’s gaze position was recorded at 500 Hz with a re-

mote SMI RED eye tracker (SensoMotoric Instruments 

GmbH, Germany). A 9-point calibration was performed 

in the beginning of the acquisition. The calibration was 

validated with four additional fixation points until the 

precision was below 1°. The participants had a viewing 

distance of approximately 60 cm from the 22-inch LCD 

monitor with 1680 × 1250 pixels screen resolution. The 

fixations and saccades were detected using the Event 

Detector 3.0.20 by SMI using default settings. The soft-

ware that generated the illustrations using the described 

visual aggregations algorithms was implemented in C#. 

All the datasets, containing x and y coordinates of the 

start and end fixation points of each saccade and their 

timestamp, are available in supplementary files. 

Square scanpath. In this example, the participant 

followed a small black circle on the screen for one 

minute. The circle moved from corner to corner of the 

square, each side of which has a length of 200 pixels. 

During the first half of the trial, the circle moved in the 

clockwise direction, during the other half it moved 

anticlockwise. The resulting dataset contains 90 saccades. 

Visual search task. During this task, the participant 

had to find all the numbers from 1 to 90 in the correct 

order. This test was used in the Soviet Union to test chil-

dren’s attentional capabilities. We considered the first 

minute of the task recording. The resulting dataset con-

tains 595 saccades. 

Art perception. The participant freely observed three 

paintings for one minute each. The participant was pre-

sented with Café Terrace at Night (1888) by Vincent van 

Gogh, I and the Village (1911) by Marc Chagall, and The 

Creation of Adam (1510) by Michelangelo. The resulting 

datasets contains 320, 380 and 375 saccades respectively. 

Results and Discussion 

In this section, we present and discuss the three use 

cases to illustrate the described scanpath visualizations 

using visual aggregation techniques, i.e. fixation cluster-

ing and saccade bundling. We close the discussion with 
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an example of scanpath comparison using the flow direc-

tion maps.  

Square scanpath 

This basic square scanpath illustrates all the steps of 

the described visualization methods. Figure 1 shows the 

raw fixations and saccades. At the top, fixations are rep-

resented as small black dots and saccades are shown with 

different color encodings. The color coding of the sac-

cade direction gives us initial information about the scan-

path nature. We used a standard rainbow colormap. 

Though far from perfect, and confusing for the viewer in 

some situations (Moreland, 2009; Borland & Taylor, 

2007), we consider it suitable for the illustrations pre-

sented here. Indeed, for the purpose of illustration we 

needed at least four principal colors to depict four com-

pass directions. For example, we can easily distinguish 

red-cyan horizontal and green-violet vertical transitions 

in Figure 3. Representing the line width proportionally to 

the local density facilitates the reading of the colors. 

Based on the raw fixations and saccades, four maps (2D 

textures) are generated: a fixation density map to perform 

fixation clustering, a saccade density map and a flow 

direction map to perform saccade bundling. We used a 

grayscale colormap for the density maps and the diverg-

ing colormap proposed by Moreland (2009) for the flow 

direction maps. 

Figure 6.  The scanpath visualization for the visual search task. A) visual stimulus, B) raw fixations and 

saccades, C) clustered data colored with line width proportional to local density, D) bundled data with 

line width proportional to local density, E) OLIC image of the flow direction map, F) horizontal and G) 

vertical components of the flow direction map. 
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The square scanpath illustrates the inherent visual 

clutter of gaze recordings. While the target presented a 

small dot appearing at the exact same locations, the fixa-

tions were detected at quite different positions. A few 

iterations of fixation clustering make it possible to bring 

adjacent fixations together (Figure 2), and saccade bun-

dling merges the saccades of the same direction and ori-

entation (Figure 3). After applying these two steps, we 

can easily distinguish mutual transitions between corners. 

By separating the edges of different directions, the flow 

direction map of bundled data can also be used to inter-

pret the data (Figure 4). While the overlapping saccades 

of the raw data canceled the flow of the opposite orienta-

tion (Figure 1, bottom right), the bundled layout has eight 

clearly visible flows corresponding to saccade bundles: 

four horizontal (Figure 4, left) and four vertical (Figure 4, 

right). 

The resulting flow direction map can be shown as a 

single texture by using the OLIC technique. Figure 5A 

shows the result of convolving noisy textures with the 

flow direction map from Figure 4. The ink droplets of 

varying intensity that follow the saccade flow allow in-

stant reading of the flow direction and orientation. 

Visual search task 

In this example (Figure 6A and 6B), we can notice the 

benefit of the proposed scanpath visualization when hun-

dreds of saccades are present. While the clustered layout 

with the color and line width encoding already gives us a 

few insights about the direction of the scanpath (Figure 

6C), the clustered and bundled layout significantly reduc-

es the visual clutter and uncovers the circular scanpath 

(Figure 6D). The red east-west transitions at the top, the 

Figure 7.  The scanpath visualization for the Vincent van Gogh (A) and Marc Chagall (B) paintings. 
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blue-violet north-south transitions on the left, the cyan 

west-east transition at the bottom, and the green south-

north transitions on the right can be seen. We can also 

spot the clearly visible violet north-south transition on the 

right and red east-west transition at the bottom. These 

latter transitions indicate the presence of local loops that 

can be seen on the OLIC representation (Figure 6E). The 

participant confirmed the circular visual search strategy 

afterwards. The obtained insights can also be seen in the 

horizontal and vertical components of the flow direction 

map (Figure 6F and Figure 6G).  

Art perception 

As in the visual search task example, the visualization 

of the art perception datasets reveals the scan strategy 

used by the participant viewing the masterpieces. Figure 

7A shows that the participant explored the Vincent van 

Gogh painting in a triangle between the café terrace, the 

night sky and the shop on the street corner. The line 

width encoding according to the bundle density also tells 

us that the least seen element was the corner shop, and 

the majority of transitions were between the blue sky and 

the yellow terrace. Figure 7B uncovers the main transi-

tions between the eyes and the lips of the peasant and the 

cow. Small transitions to the figures of two peasants on 

the top of the painting are also easily visible in the pro-

posed scanpath representation. 

Figure 8 shows the bundled layout and different color 

encodings of the gaze of the participant exploring the 

Michelangelo masterpiece. Figure 8C shows that the 

bundled layout reveals the main transitions between Ad-

am’s head and hand and God’s head and hand. However, 

Figure 8.  The scanpath visualization of the dataset for the Michelangelo painting. A) visual stimulus, B) raw 

fixations and saccades, C) data bundled according to saccade direction, D) layout “C” colored according to sac-

cade length, E) data bundled according to both direction and saccade length, F) layout “E” colored according to 

saccade length, G) layout “C” colored according to timestamp. 
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Figure 8D shows the color encoding according to the 

saccade amplitude, and reveals that saccades having the 

same direction between the heads and hands were bun-

dled together with the transitions between faces. We can 

easily correct this by applying multi-criteria bundling 

using both direction and saccade amplitude as a compati-

bility criterion. The resulting layout (Figure 8E) separates 

Adam’s hand-face and God’s face-hand transitions from 

the God-Adam face transitions. Encoding saccade magni-

tude (Figure 8F) allows us to see that the bundles take the 

differences of the saccade length into account. Moreover, 

color coding the saccade timestamp (Figure 8G) shows us 

the order in which the elements were looked at: first, the 

figures around God, next, Adam’s body, and, at last, a 

long exploration of the main characters’ faces and hands 

transitions. 

Scanpaths comparison 

The techniques presented provide a visual support for 

an analysis. Nevertheless, the rationale also provides us 

with flow direction maps which allow us to not only 

visualize but also quantitatively compare. Le Meur and 

Baccino (2013) presented a number of methods for com-

paring saliency maps, which are also suitable for compar-

ing flow direction maps: correlation-based measures, the 

Kullback-Leibler divergence, and the Receiver Operating 

Characteristic Analysis. These approaches can be used to, 

first, individually compute the similarities 𝑆𝑉 and 𝑆𝐻 

between vertical and horizontal components of the flow 

direction maps; and, then, choose a norm for the vector 

 𝑆 = (𝑆𝑉 , 𝑆𝐻) that defines the similarity between the two 

scanpaths. In this paper, we provide an example of anoth-

er more straight-forward approach that does not require 

Figure 9.  Comparison of scanpaths of two participants who observed the Vincent van Gogh 

painting. The similarity map is given by cosines between the two flow direction maps. 
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the choice of a norm. We use cosine similarity cos 𝜃 in 

which 𝜃 is the angle between two direction vectors. 

Therefore, we can compute a similarity map. Each pixel’s 

value varies from −1 (opposite direction) to 1 (the same 

direction). We further apply a mask of the vectors’ mag-

nitude (average of two flow direction maps) scaled to a 

range of [0, 1]. This allows us to visualize only parts of 

the similarity map in which direction flows are important. 

Figure 9 shows a comparison of two participants’ scan-

paths. We can notice that the upper part (blue areas) of 

the two scanpaths is rather different while the lower part 

(red areas) is similar. Notably, both scanpaths include a 

transition from the café terrace to the corner shop (cyan); 

and while participant A used a triangle pattern (as previ-

ously described), participant B mostly switched between 

the upper part and the center of the painting. More so-

phisticated approaches, such as a similarity measurement 

using global distributions (Dinh & Xu, 2008), exist and 

can be used to compare the flow direction maps of differ-

ent scanpaths. 

Conclusion and Future Work 

In this paper, we illustrated the use of different visual 

aggregation techniques to obtain non-cluttered visual 

representations of scanpaths. Fixation clustering and 

saccade bundling simplified the scanpath representation 

and allowed the scan strategy of the participant to be 

read. Flow direction maps generated using edge bundling 

can be further represented as a single image to explore 

the transitions and can be compared using cosine similari-

ty maps. Used together, these techniques provide an effi-

cient support for a visual analysis of the scanpaths and 

informative illustrations of the eye movement data. We 

also provide the example datasets in the supplementary 

material so that other researchers can test their visualiza-

tion methods on the data and compare it with our results.  

It is worth noting that these are the first results based 

on observations of the rendered images. To further 

demonstrate the efficiency of such visualizations, it 

would be necessary to conduct a study with a group of 

participants to statistically validate our findings.  

This work can be taken further in many directions. 

Using the proposed approach, we can visually simplify 

the scanpath of multiple participants. To do so, we will 

have to address the scalability issue with large quantities 

of data to be simplified. The used clustering and bundling 

algorithms have already proven capable of addressing 

these issues. The relative clutter of the generated layout 

despite their visual simplification can be further reduced 

using filtering based on the density map. For instance, we 

can choose to not display the least dense areas (which is 

partly done using the line width modulation), areas of 

some specific direction or time period. Finally, as ad-

dressed to some extent at the end of the discussion, quan-

titative metrics can be extracted from these simplified 

visualizations. Few metrics of scanpath comparison exist 

and our approach paves a new way to assess the eye 

tracking data.  
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