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Full-envelope Equations of Motion of the Generic Transport
Model based on Piece-wise Polynomial Aerodynamic

Coefficients

Torbjørn Cunis,1 Laurent Burlion,2 and Jean-Philippe Condomines3

Abstract— The Generic Transport Model (GTM)
has long been investigated in wind-tunnel studies
and contributes today to an elaborated aerodynamic
model. In this paper, we propose a novel approach
for fitting the aerodynamic coefficients of the GTM,
namely piece-wise polynomial identification, which
considers measurements both of the pre-stall and
post-stall region. This method provides a systematic
approach to incorporate the full-envelope aerodynam-
ics better than purely polynomial models. As a result,
an analysis of the GTM’s full-envelope trim conditions
has successfully been applied.

I. Introduction
Defined as any deviation from the desired flight-path [1],

in-flight loss of control (LOC-I) includes upset situations
such as stall, high and inverted bank angle, as well
as post-stall spirals and rotations. As such, LOC-I has
remained the foremost cause of fatal accidents for the
last decades and still imposes the highest risk to aviation
safety [2]. Today’s autopilots are not capable of recovery
from such situations. Normally, pilots are able to pull
back the aircraft by reducing the angle of attack, but
if the stall occurs suddenly due to vertical gusts, pilots
often don’t have enough time to react. Especially for
operators of unmanned aerial vehicles (UAV) who lack
of awareness for the current flight situation, recovering
their drone in case of stall is hard. Flying into clouds,
where vertical gusts are more likely but visual inspection
of the flight condition is impossible, prospects of recovery
are worse. This can lead to catastrophic consequences,
establishing the necessity of autopilots which are capable
of upset recovery.

With their unstable and highly non-linear characteri-
zations, LOC-I situations require extensive control effort
and adequate approaches. Non-linear behaviour of air-
crafts in the post-stall flight regime has been investigated
analytically [3–7] and researchers developed control laws
for upset recovery [8–17]. For the recovery approaches
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found in literature as well as proposed by the authors
[18] are model-based, there is a need for reliable flight
dynamics data.

Due to its rich and freely available data, NASA’s
generic transport model (GTM) is well-recognized in
aerospace engineering community and widely used in
literature [6, 7, 14–16, 19–23]. Representing a 5.5 %
down-scaled, typical aerial transport vehicle, the GTM
provides an unmanned aerial vehicle [24] with exhaustive,
full-envelope aerodynamic data from wind-tunnel stud-
ies [25–27]. An open-source, 6-degree-of-freedom aero-
dynamic model is available today for use in MAT-
LAB/Simulink [28].

Polynomial fitting of the aerodynamic coefficients pro-
vide a constructive method to define and evaluate models
based on analytical computation due to their contin-
uous and differentiable nature. However, none of the
polynomial models published recently [6, 19] represent
the aerodynamic coefficients well in the entire region
of the envelope. To overcome this problem, fitting of
the GTM aerodynamic coefficients by piece-wise defined
polynomials accounts for both the pre-stall and the post-
stall behaviour of the coefficients. On the other hand, a
piece-wise defined model can bring the disadvantage of
discontinuity and hence needs to be treated with care.

In this paper, we propose a novel approach for fitting
aerodynamic coefficients, namely piece-wise polynomial
identification, and demonstrate a trim condition analysis
for the full-envelope aerodynamic model of the GTM
based on piece-wise fittings.

II. Preliminaries

In this paper, we will mainly refer to the axis sys-
tems of the international standard[29]: the body axis
system—xf -axis aligned with fuselage, zf -axis points
vertically down, yf -axis completes the setup—; the air-
path axis system—xa-axis aligned with aircraft velocity
vector V, ya-axis lies in the xa-yf -plane, za-axis points
down completing the setup; and the normal earth-fixed
axis system —zg-axis points towards the center of gravity,
xg-axis and yg-axis are earth-fixed completing the setup.

The orientation of the body axes with respect to the
normal earth-fixed system is given by the attitude angles
Φ,Θ,Ψ and to the air-path system by angle of attack
α and side-slip β; the orientation of the air-path axes
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Fig. 1: Axis systems with angles and vectors.

to the normal earth-fixed system is given by azimuth χ,
inclination γ, and bank µ. (Fig. 1.)

III. Equations of Motion
The aerodynamic forces and moments in the body axis

system are subject to the aerodynamic coefficients,XA
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where S, b, and ca are wing area, aerodynamic span, and
aerodynamic mean chord; xcg and xref

cg are the position
and reference position center of gravity, respectively.
Likewise, the thrust forces and moments are given toXF
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assuming the engines to be aligned with the xf -axis,
symmetric to the xf -yf -plane, and deviated from the
origin only by the vertical offset lt. The gravity force
is finally given in the normal earth-fixed axis system asXG

Y G
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We have the resulting effective lift force, drag force,
and side force by rotation of Eqs. (1) to (3) into the
air-path axis system,

Leff = XA
f sinα− ZA

f cosα+XF
f sinα−mg cos γ cosµ; (4)

Deff = −
(
XA

f + ZA
f sinα+XF

f cosα
)

cosβ − Y A
f sinβ +mg sin γ; (5)

Qeff = −
(
XA

f + ZA
f sinα+XF
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)

sinβ + Y A
f cosβ +mg cos γ sinµ. (6)

Here, the effective drag force—negative xa-axis—leads

to a change in airspeed; the normal component of the
effective lift force, opposing the gravity vector,—negative
zg-axis—changes the inclination; and the effective side
force—positive ya-axis—contributes to the side-slip
angle:

V̇ = − 1

m
Deff; (7)

γ̇ =
1

mV
Leff cosµ; (8)

β̇ =
1

mV
Qeff. (9)

The horizontal component of Leff in case of a coordinated
turn acts as centripetal force pulling the aircraft radially
inwards, leading to a change of the azimuth χ:

χ̇ =
1

mV
Leff sinµ. (10)

For a symmetric plane (Ixy = Iyz = 0), the resulting
moments in body axis are derived from Eqs. (1) and (2)
and the conservation of angular momentum to [30]
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with the inertias Ix, Iy, Iz, Izx. The changes of angular
body rates are then given as
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Conveniently, the normalized body rates p̂, q̂, r̂ are used
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Rotating the body rates into the normal earth-fixed axis,
we conclude with the change of attitude:

Φ̇ = p+ q sinΦ tanΘ+ r cosΦ tanΘ; (19)
Θ̇ = q cosΦ− r sinΦ; (20)
Ψ̇ = q sinΦ cos−1 Θ+ r cosΦ cos−1 Θ. (21)



IV. Piece-wise Polynomial Identification
For the full-envelope, the aerodynamic coefficients of

the generic transport model are given by angle of attack,
side-slip, surface deflections, and normalized body rates,

(αi, βi, ηi, q̂i, CX,i, CZ,i, Cm,i)1≤i≤k ; (22)
(αi, βi, ζi, ξi, p̂i, r̂i, CY,i, Cl,i, Cn,i)1≤i≤k′ . (23)

Inspired by the AERODAS model [31], it seems ap-
propriate to fit the aerodynamic coefficients by piece-
wise defined polynomials to address the issue of accurate
fitting over the full range of the angle of attack:

C�(α, β, . . . ) =

{
Cpre

� (α, β, . . . ) if α ≤ α0

Cpost
� (α, β, . . . ) else (24)

with C� =
[
CX CY CZ Cl Cm Cn

]T . In order to
ensure continuity of the aerodynamic coefficients—and
thus the resulting equations of motion—over the entire
domain of α, we have the additional constraint

Cpre
� (α0, ·) ≡ Cpost

� (α0, ·) . (25)

The sub-functions are chosen to be sum of polynomials
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with CX =
[
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]T , CY =
[
CY Cl Cn

]T
for i ∈ {pre, post}. Optimal polynomials are subject to
the cost functionals
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with the data of the GTM given as

(αi, . . . ,C�α,i,C�β,i)i
(αi, . . . ,CXη,i,CXq̂,i)i

(αi, . . . ,CYζ,i,CYξ,i,CYp̂,i,CYr̂,i)i

and the pre-stall boundary α′ = αi′ selected from the
GTM data. Continuity of the single terms,

Cpre
�∗ (α0,Ξ) = Cpost

�∗ (α0,Ξ) (29)

for all C�∗ and inputs Ξ, then implies Eq. 25.
We reduce this problem to a linear least-square opti-
mization problem [32], where the solution q contains
the coefficients of the polynomial; the constraints of
continuity are transformed into matrix equalities in q.
The coefficients with respect to angle of attack are fitted
by piece-wise defined curves with the limit α0 initially
been found solving

Cpre
Xα(α0) = Cpost

Xα (α0) , (30)

where Cpre
Xα, C

post
Xα has been obtained with out constraints.

The coefficients with respect to the normalized rates

are fitted by piece-wise defined surfaces. Finally, the
coefficients with respect to side-slip angle and elevator
deflections can be approximated by simple polynomial
surfaces and hyper-surfaces, respectively.

A. Piece-wise curve fitting
Introducing the vector of monomials Pn(α) up to

degree n, i.e.

Pn(α) =
[
1 α · · · αn

]T
, (31)

and denoting the length of Pn by r [n], we can write a
polynomial as scalar product

C�α(α) = 〈Pn(α) ,q〉 (32)

with the vector of coefficients qT =
[
b1 · · · br[n]

]
.

The optimal polynomial sub-functions Cpre
�α , C

post
�α with

coefficients qpre,qpost minimizing the costs in Eq. (28)
are subject to the linear least-square problem:1

find q′ minizing
‖K ∗ q′ − κ‖22
under the constraint
A ∗ q′ = 0,

(33)

where ‖·‖22 is the L2-norm, q′ is the extended vector of
coefficients,

q′ =
[
qpre qpost ]T

, (34)

K is the data monomials matrix

K =
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... 0
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0
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and the constraint of continuity is written as[
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T

]
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∗
[
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with α0 given a priori.

B. Piece-wise surface fitting
Fitting a piece-wise defined polynomial surface, where

the polynomial sub-functions are given by

Cpre
�β = 〈Pn(α, β) ,q

pre〉;
Cpost

�β = 〈Pn(α, β) ,q
post〉;

with

Pn(α, β) =
[
1 α β · · · αn αn−1β · · · βn

]T
,

(37)

1https://mathworks.com/help/optim/ug/lsqlin.html

https://mathworks.com/help/optim/ug/lsqlin.html


is similar to the piece-wise curve fitting discussed before.
However, as the pre-stall boundary is extended to a curve
rather than a point, the constraint of continuity alters to

∀β ∈ R. 〈Pn(α0, β) ,q
pre〉 = 〈Pn(α0, β) ,q

post〉. (38)

Separation of the assigned parameter α ≡ α0 yields

〈Pn(α0, β) ,q
i〉 = 〈ΛT

0 Pn(β) ,q
i〉

= 〈Pn(β) ,Λ0q
i〉 (39)

with i ∈ {pre, post},

Pn(β) =
[
1 β · · · βn

]T
,

and

Λ0 =


1 α0 αn

0

1 · · ·
. . .

α0

1

 . (40)

As Eq. (39) again resembles polynomial curves with
coefficients Λ0q

i, we have that

〈Pn(β) ,Λ0q
pre〉 = 〈Pn(β) ,Λ0q

post〉

for all β ∈ R if and only if Λ0q
pre = Λ0q

post. Hence, the
constraint of continuity for piece-wise defined surfaces is
written as [

Λ0 −Λ0

] [ qpre

qpost

]
= 0 (41)

which is used for the constrained least-square problem of
Eq. (33).

V. Full-envelope Trim Analysis
The system of equations of motion of section III is in

a trim condition if and only if the airspeed and air-path
are constant, i.e. V̇ = γ̇ = 0; the side force vanishes,
β̇ = 0; the body rates remain unchanged, ˙̂p = ˙̂q = ˙̂r = 0;
and the attitude is constant, Φ̇ = Θ̇ = 0. In order to
allow a coordinated turn, we relax azimuth and heading
to be χ̇ = Ψ̇; that is, the heading is changed by a
bank turn only (cosµ 6= 0) and only if the azimuth
changes in the same manner. We now have airspeed V ,
inclination γ, and bank µ as continuation parameters,
leaving angle of attack α, side-slip β, the normalized rates
p̂, q̂, r̂, the surfaces ζ, η, ξ and thrust F as free variables.
The attitude angles Φ and Θ are fully determined by the
aforementioned angles.

VI. Conclusion
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