N
N

N

HAL

open science

A Computer Vision Based Algorithm for Obstacle
Avoidance (Outdoor Flight)

Wander Mendes Martins, Felix Mora-Camino, Alexandre Carlos

Brandao-Ramos

» To cite this version:

Wander Mendes Martins, Felix Mora-Camino, Alexandre Carlos Brandao-Ramos. A Computer Vision
Based Algorithm for Obstacle Avoidance (Outdoor Flight). ITNG 2018, 15th International Conference
on Information Technology: New Generations, Apr 2018, Las Vegas, United States. pp. 569-575/
ISBN: 978-3030083526, 10.1007/978-3-319-77028-4_ 73 . hal-01715673

HAL Id: hal-01715673
https://enac.hal.science/hal-01715673
Submitted on 22 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://enac.hal.science/hal-01715673
https://hal.archives-ouvertes.fr

A Computer Vision Based Algorithm for Obstacle
Avoidance (Outdoor Flight)

Wander Mendes Martins
Federal University of Itajuba

Itajubd, Minas Gerais, Brazil
wandermendes @unifei.edu.br

Abstract—This paper presents the implementation of an al-
gorithm based on elementary computer vision techniques that
allow an UAV (Unmanned Aerial Vehicle) to identify obstacles
(including another UAV) and to avoid them, using only a trivial
camera and applying six mathematical treatments on image. We
applied this algorithm in a drone in real flight.

Keywords—UAV, Computer Vision, Camera, Embedded Systems,
Obstacles Avoidance.

I. INTRODUCTION

In the last 50 years, machine vision has evolved into a
mature field embracing a wide range of applications including
surveillance, automated inspection, robot assembly, vehicle
guidance, traffic monitoring and control, signature verifica-
tion, biometric measurement, and analysis of remotely sensed
images[15]. Computational vision is the study of the extraction
of information from an image. More specifically, it is the
construction of explicit and clear descriptions of objects in
an image[13]. Computational-based navigation of autonomous
mobile robots has been the subject of more than three decades
of research and it has been intensively studied[1][2]. Process-
ing images in real time is critical for decision making during
the flight[3].

Another technology that is gaining great popularity are
the Unmanned Aerial Vehicles (UAVs), commonly known as
drones. Since the technology to build them today is inexpensive
and well understood, they are already being used in many
researches and in many applications. Among the proposed
applications in the civil area are fire monitoring and extinguish-
ing, inspection of bridges and buildings, crop dusting and even
search an rescue of survivors after a disaster. In the military
area the applications are surveillance, defense and even air
strikes.

There are many ways to make a drone perceive obstacles
in their path and deviate from them, such as using monocular
or stereo camera and sensors[4] like as sonars, GPS (global
position system), previously known routes, etc. In this work
we use only computer vision through the treatment of images
collected in real time from a trivial embedded camera. The
advantage of this solution is to be simple and to have a low
cost, proving to be efficient in the tests performed of outdoor
flight.

Low-cost solutions to drones are very interesting for use
their in large-scale global projects[S] and to popularize their

Alexandre Carlos Branddo Ramos
Federal University of Itajuba

Computer Science and Technology Mathematics and Computation’s Institute

Itajub4, Minas Gerais, Brazil
ramos @unifei.edu.br

Felix Mora-Camino
Ecole Nationale de 1’ Aviation Civile-ENAC
Toulouse, France
felix.mora@enac.fr

Fig. 1. Captured Photo - A drone flying

Fig. 2.

Edge Detecting

application[6].

In this work the images are captured in real time during
the drone flight, providing a ready-to-run solution.

The platform considered is a quadrotor micro aerial vehicle
(MAV) which is similar to a helicopter, but has four rotors[11].
The quadrotor platform is appealing because of its mechanical
simplicity, agility, and well understood dynamics[12]. The
rest of the paper is structured as follows. In Section II, we
present the resources, hardware, software and we detail the
technique used. The section III presents some considerations
for use of this algorithm in outdoor flights. Section IV shows
and discusses the experimental results obtained. Section V
presents the conclusion of the work and an evaluation as to
its applicability.

Fig. 3. Obstacle Detecting
option 3 option 5 option 4
=
option 1 option 2
option 6

Fig. 4. Free Areas

II. MATERIALS AND METHODS

We combine hardware and software to acquire, treat and
interpret images in real time during flight, and embedded the
developed algorithm into a drone.

A. Software

For development we used Linux operating system (OS)
Ubuntu Desktop 14.04 LTS[7]. The code was written in C++
language using OpenCV 3.2 open source graphic library[8].
We used ROS Indigo (Robot Operating System) firmware
embedded into a Raspiberry PI board on the drone.

B. UAV Platform

The proposed algorithm was intended to be run on a
250mm quadrotor using a Pixhawk[18] as the main controller
board. The Pixhawk is an open-source flight controller board
responsible for the low-level control of the quadrotor. It is
equipped with gyroscope, accelerometers, magnetometer and
barometer, and can also be connected to an external GPS mod-
ule, and has a powerful embedded software that implements the
basic control functions. An useful feature of the Pixhawk is the
ability to communicate with other devices through a protocol
called MAVLink[20], which was developed specifically for
UAV applications. This can be used to achieve autonomous
control of the UAV, by running the control algorithms in a
small portable computer, such as a Raspberry Pi[17], which is
carried by the UAV and sends commands to the Pixhawk by
MAVLink messages. The UAV is also equipped with a web
camera, mounted on its front, to capture the images of the path
it is moving into.

C. Technique

The technique consists of (1) image capturing; (2) apply
gray scale to the captured image; (3) blur the image; (4)
detect edges; (5) find contours; (6) draw contours; (7) identify
obstacles and free areas; (8) command the UAV moves to the
freer area; and (9) to repeat the process. The figures 1, 2, 3
and 4 show the result of this process. The images shown in
these pictures were taken by the embedded camera.

(1) Image Capturing: Capturing frame by frame the image
of the front camera (fig 1).

(2) Apply Grey Scale to the captured image: The first
mathematical treatment that the primitive image receives is to
have reduced its number of colors to a narrower band, limited
to tones or degrees or scales of gray, using the toCvShare
cvbridge library function, using the “mono8” parameter.

(3) Blur the image: The “blur” openCV library function
is used to blur the image. This function blurs an image using
both the normalized box filter and the following kernel K (fig
S5)[27].

1
_ 1 11 - 11
~ ksize.width*ksize.height

.........

Fig. 5. kernel used by the Blur openCV library function

(4) Detect Edges: The ”Canny” openCV library function is
used to apply the Canny Algorithm to detect edges into image.
The Canny Edge detector was developed by John F. Canny
in 1986. Also known to many as the optimal detector, Canny
algorithm aims to satisfy three main criteria: (a)Low error rate:
Meaning a good detection of only existent edges. (b)Good
localization: The distance between edge pixels detected and
real edge pixels have to be minimized. (¢) Minimal response:
Only one detector response per edge[23].

(5) Find Contours: The “findContours” openCV library
function is used to find object limits into image. The function
retrieves contours from the binary image using the algorithm
[Suzuki85]. The contours are a useful tool for shape analysis
and object detection and recognition[24].

(6) Draw Contours: The ”Scalar” and “drawContours”
opencv functions are used to draw the object’s contours into
the image (fig 2). ”Scalar” represents a 4-element vector. The
type Scalar is widely used in OpenCYV for passing pixel values.
We define a BGR color such as: Blue = a, Green = b and Red
= ¢, Scalar(a, b, ¢)[25]. The ”drawContours” function draws
contours outlines or filled contours[26].

(7) Identify obstacles and free areas: In this point, a
image has two kinds of basic pixels (dots): the black pixels
(RGB 0,0,0) and the non-black pixels. Our algorithm converts
the black pixels into white pixels (RGB 255,255,255) and
it converts all non-black pixels into black-pixels. After this,
the white pixels represents free spaces and the black pixels
represents obstacles (fig 3). Dividing the area into nine (or
more) subareas, we interpret as the most appropriate way for

the UAV to advance: the area with more white dots. The figure
4 shows option 1 and option2 areas witch more free areas witch
need less movements to avoid obstacles.

i)Scanning the image The process of identifying free
areas and obstacles consists of scanning the image from the
outermost pixels to the inner ones (from the outside to the
inside) (algorithm 1). As this is an external flight, we consider
the entire free area until the edge contour points of the figure
are found (non-white pixels). From there, what is inside the
contour is considered an obstacle and what is out of the contour
is considered free area where there is some chance of the drone
passing through the obstacles.

for Each row of the image. (from 0 to maxrow) do
for Each column of the row. (from 0 to maxcolumn)
do
while not found a pixel non-black do
| Turn white the color pixel;
end

end

end

for Each row of the image. (from 0 to maxrow) do

for Each column of the row. (from maxcolumn
downto 0) do

while not found a pixel non-black do
| Turn white the color pixel;

end

end

end
for Each column of the image. (from 0 to maxColumn)
do
for Each row of the column. (from 0 to maxrow) do
while not found a pixel non-black do
| Turn white the color pixel;
end

end
end
for Each column of the image. (from 0 to maxColumn)
do

for Each row of the column. (from maxrow downto
0) do

while not found a pixel non-black do

| Turn white the color pixel;
end

end

end

or Each pixel of the image. (row x column) do
if color pixel is non-white

Turn black the color pixel;

-y

end
Algorithm 1: Scan the contour image

ii) Count the amount of white pixels in each segment:
Defined the segments, we will count the number of points “on”
in each segment, represented by Sn, where n is the segment
and 0 <=n <= 2.

The pseudo-code for this count is:

for each segment n do
| Count the number of pixels on (Sn);
end
Algorithm 2: Count pixels on

iii) Suggest that the UAV moves to the segment with the
more amount of white pixels (totally 255): We interpret as
the most appropriate way for the UAV to advance, the segment
S with smaller amount of black dots. Here we interpret black
pixel as obstacle and white pixel as free area. In the first step
the algorithm divides the image into 3 areas: Left(0), center(1)
and right(2).

The decision table is:

H IF AND Action H
S0)> S(1) S(0)>S(2) turn left
S(H)> S(0) S(1)>S(2) go center
S(2)> S(0) S(2)>S(1) turn right

If two or more segments have the same amount of pixels
RGB(255,255,255), we apply the following decision table:

H IF Action H
S(n) = S(1) go center
S(0) = S(1) turn right

After this step, the area with more white pixels is divided
into 3 others vertical areas ,up(0), front(1), down(2), and the
process (iii) is repeated.

(8) Command the UAV moves to the freer area: Once
it is determined that the UAV has a chance to advance from
the some free space, and that there is sufficient amount of free
space for this advance, it should be assessed whether the free
space is arranged in such a way as to allow the UAV to pass
through the segment chosen. Lighted points being scattered
may indicate that their sum is greater than the dimensions
of the UAV but that their arrangement in space prevents
their advance. Commands witch control the UAV movement,
as ROLL, PITCH and YAW (fig 6). The move decision is
translated neither flying command and transmitted to the UAV
that will execute it.

Yaw

Roll

Pitch
Fig. 6. Quadcopter’s orientation

At this point other Artificial Intelligence features come in
and decisions that fall outside the scope of our work.

The idea is to offer a quick preliminary decision on the
direction the UAV should follow.

9) To repeat the process: Discard of the processed image
and its replacement by a new frame, now with the new
positioning of the UAV. Once the flight instruction is passed
to the UAV, another image is captured at a (t+1) time, and all
processing is repeated.

in detecting obstacles and free spaces in indoor images, no tests

mera/Front/image_Front_r /image_subscriber Jmavros/rc/overrid @ were performed in this sense.

Fig. 7. Diagram generated by the program rqt_graph showing the relevant
nodes and topics in the application

D. Implementation

Our algorithm was implemented in C++ and runs on the
ROS platform. ROS (Robot Operational System) is an open
source technology created to aid researchers in developing
robotic applications. ROS provides us with many tools and
facilities that were very useful in our work.

A ROS application is a network of nodes that communicate
with each other. Each node is an independent program in the
system and a Master node also exists to manage the network.
Nodes that generate data publish this information in topics
in the form of messages, while nodes that need that data
subscribe to the corresponding topics and receive the published
messages.

In our application we created a node called im-
age_subscriber, which subscribes to the topic where the image
messages from the camera are being published and is respon-
sible for processing the images and decide where the UAV
should move. In a real implementation the image messages
would come from a node connected directly to the camera
hardware, but in our implementation Gazebo publishes the data
from the simulated camera. Another node, called Mavros, is
responsible for communicating with the Pixhawk. When the
image_subscriber node decides where to move the UAV, it
creates a message of type mavros_msgs/OverrideRCIn, which
represents a command from a radio controller, fills it with
the corresponding values to cause the desired movement and
publishes it to a topic where Mavros is subscribed. Mavros
creates a MAVLink message containing that information and
sends to the Pixhawk via a serial connection. Figure 7 shows
a diagram generated by a ROS tool called rqt_graph showing
the nodes and the relevant topics.

III. THE EXPERIMENT

The experiments were carried out on the campus of the
Federal University of Itajub.

IV. RESULTS AND DISCUSSION

The tests show that the algorithm is efficient and diverted
the drone from all the obstacles it encountered in its path in a
outdoor flight. However this work limited itself to diverting
the drone and not executing a flight plan. In this context,
we can say that the goal of the algorithm was successfully
achieved. Getting the drone back on its original route after
it veers off an obstacle is not the scope of this algorithm
and there are other codes to do this. Also we do not include
the calculation of the distance between the obstacle sighted
and the drone in flight. Again the reason is the existence of
other algorithms to perform this task. The initial focus is for
outdoor flight, and we do not implement deviations over or
under obstacles. Deviations to the sides, to the center, up and
down were contemplated. Although the algorithm was efficient

V. CONCLUSION

The algorithm was proved efficient in driving the drones
through obstacles in outdoor flight without causing collisions.
There is a limitation related to the lighting in the environment.
It is known that computer vision solutions are very sensitive to
changes in lighting, so it would be interesting in future works
to test our algorithm in different conditions.

ACKNOWLEDGEMENT

This work was funded by Capes - Coordination of Im-
provement of Higher Level Personnel[21].

REFERENCES

[1] A.M.Waxman, J.J LeMoigne and B.Scinvasan, A visual navigation
system for autonomous land vehicles, IEEE J.Robotics Auto., vol.RA-3,
No.2, pp124-141 (1987)

[2] C. Thrope. M.H. Hebert. T. Kanade and S.A. Shafer, Vision and
navigation for the Carnegie-Mellon Navilab, IEEE Trans. Pattem Anal.
Mach. Intell., vol.PAMI1- 10, No.3. pp.362-373 (1988)

[3] A. Davison, Real-Time Simultaneous Localization and Mapping with a
Single Camera, IEEE International Conference on Computer Vision, pp.
1403-1410, 2003.

[4] Sergio Garca; M. Elena Lpez; Rafael Barea; Luis M. Bergasa; Alejandro
Gmez; Eduardo J. Molinos,Indoor SLAM for Micro Aerial Vehicles
Control Using Monocular Camera and Sensor Fusion, International
Conference on Autonomous Robot Systems and Competitions (ICARSC
2016)

[S] John-Thones Amenyo; Daniel Phelps; Olajide Oladipo; Folly Sewovoe-
Ekuoe; Sangeeta Jadoonanan; Sandeep Jadoonanan; Tahseen Tabassum;
Salim Gnabode; Tanging D Sherpa; Michael Falzone; Abrar Hossain;
Aerren Kublal, MedizDroids Project: Ultra-low cost, low-altitude, afford-
able and sustainable UAV multicopter drones for mosquito vector control
in malaria disease management, IEEE Global Humanitarian Technology
Conference (GHTC 2014)

[6] M. F. A.Rahman; A. I. C. Ani; S. Z. Yahaya; Z. Hussain; R. Boudville;
A. Ahmad,Implementation of quadcopter as a teaching tool to enhance

engineering courses, IEEE 8th International Conference on Engineering
Education (ICEED 2016)

[7]1 Ubuntu Desktop 14.04 LT https://www.ubuntu.com, accessed on 13
March 2017

[8] OpenCV 3.2, http://opencv.org, accessed on 13 March 2017

[9]1 ROS Indigo (Robot Operation System), http://www.ros.org, accessed on
13 March 2017

[10] Bueno, Andr, Fundamentos da Computao Grfica(in portuguese), Pon-
tifcia Universidade Catlica, Brasil: Rio de Janeiro, 2011

[11] Ascending Technologies, GmbH, http://www.asctec.de, accessed on 13
March 2017

[12] Koushil Sreenath, Taeyoung Lee, and Vijay Kumar. Geometric Control
and Differential Flatness of a Quadrotor UAV with a Cable-Suspended
Load. In IEEE Conference on Decision and Control (CDC), pages
22692274, Florence, Italy, December 2013.

[13] Ballard, Dana H. and Brown, Christopher M. Computer Vision. Prentice
Hall. ISBN 0131653164, 1982

[14] Bradski, Gary and Kaehler, Adrian. Learning OpenCV: Computer
Vision with the OpenCV Library. O’Reilly.

[15] E.Roy Davies, "Machine Vision: Theory, Algorithms, Practicalities”,
2005

[16] R. C. Gonzales and E. R. Woods, Processamento de Imagens Digitais
(in portuguese). So Paulo, Brazil, 2000.

[17] Raspberry pi, https://www.raspberrypi.org, accessed on 13 March 2017

[18] Pixhawk, https://pixhawk.org/, accessed on 13 March 2017

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

L.FLima, https://lazarolima.wordpress.com/2010/08/19/processando-
imagens-em-grayscale-e-negativo-em-c/(in portuguese),2010, accessed
on 13 March 2017

MavLink, http://www.mavlink.org/, accessed on 13 March 2017

CAPES, http://www.capes.gov.br, accessed on 13 March 2017

The Bored Engineers (https://theboredengineers.com/), "The quadcopter
: control the orientation”, https://theboredengineers.com/2012/05/30/the-
quadcopter-basics/, accessed on 11 Abril 2017

OpenCV 2.4.13.2 documentation (imgproc module). Image Processing,
”Canny Edge Detector”, http://docs.opencv.org/2.4/doc/tutorials/imgproc
/imgtrans/canny_detector/canny_detector.html?highlight=canny,
accessed on 27 April 2017

OpenCV 2.4.13.2 documentation, “Structural Analysis and Shape De-
scriptors”, http://docs.opencv.org/2.4/modules/imgproc/doc/structural_an
alysis_and_shape_descriptors.html?highlight=findcontourscv2.findConto
urs, accessed on 27 April 2017

OpenCV 2.4.13.2 documentation, “Basic Drawing”, http://docs.opencv
.org/2.4/doc/tutorials/core/basic_geometric_drawing/basic_geometric_dra
wing.html?highlight=scalar, accessed on 27 April 2017

OpenCV 2.4.13.2 documentation, ’drawContours”, http://docs.opencv.
org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors
.html?highlight=drawcontoursdrawcontours, accessed on 27 April 2017

OpenCV 2.4.13.2 documentation, “Blur”, http://docs.opencv.org/2.4/
modules/imgproc/doc/filtering.html?highlight=blurcv2.blur, accessed on
27 April 2017

