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Abstract—In this paper, we assess the performance of a
workload model trained on a subset of sectors, focusing on
how it generalizes on fresh sectors. The model of the air traffic
controller workload is learned from historical data made of
workload mesurements extracted from past sector operations and
ATC complexity measurements computed from radar records
and airspace data (sector geometry).

The workload is assumed to be low when a given sector is
collapsed with other sectors into a larger sector, normal when it
is operated as is, and high when it is split into smaller sectors
assigned to several working positions. This learning problem is
modeled as a classification problem where the target variable
is a workload category (low, normal, high) and the explanatory
variables are the air traffic control (ATC) complexity metrics.

In previous work, we compared several classifiers on this
problem. The models were trained on one week of traffic, and
their generalization performance was assessed on another week
of traffic, using the same sectors in both the training and test
sets.

In the current work, we examine if models learned on a specific
set of sectors can be performant on any other sector, or not. We
also give a closer look at how the workload varies with the ATC
complexity measures in our data, using bagplots of the data
points for a few sector instances. The results allow us to better
understand the strengths and limits of our data-driven model.

Keywords—Air traffic control, ATC complexity, workload,
machine learning, airspace configuration

I. INTRODUCTION

Predicting the workload of air traffic controllers is of crucial

importance to the safety of the air traffic management (ATM)

system at large. Overloads might lead to potentially dangerous

situations where some conflicts might not be detected in time

by the controllers.

Predicting the workload with good accuracy is also a

question of efficiency. In day-to-day operations, the airspace

is dynamically reconfigured according to the controller work-

load. Underloaded sectors are collapsed to form larger sectors,

and overloaded sectors are split into several smaller sectors

operated separately. When it is not possible to absorb the

traffic simply by reconfiguring sectors, the traffic is delayed

or rerouted so as to avoid the congested areas. This needs to

be done well in advance, usually before the aircraft take off.

Predicting with greater accuracy which ATC sectors shall be

operated at what time and which of these sectors might get

overloaded would improve the whole traffic regulation process.

This requires a realistic and accurate workload model, which

is the subject of this paper.

This problem has been addressed in several ways since

the beginings of air traffic control (ATC). Depending on the

context and purpose, one might count the movements on an

airport, or the number of aircraft within the boundaries of

an en-route sector, or the incoming flow of traffic over a

time period. Such basic metrics – and the associated threshold

values (capacities) – provide simple and straightforward an-

swers to the question of deciding whether the controllers are

experiencing a normal workload when handling given traffic,

or if they are overloaded.

However, it has been aknowledged for a long time that

simple metrics, such as aircraft count, do not adequately reflect

the complexity of air traffic control. ATC complexity covers

dynamic aspects relative to the traffic, static aspects relative

to the sector geometry and route network, and aspects relative

to the air traffic control procedures.

In this paper, we are interested in examining more closely

the relationship between ATC complexity metrics and work-

load, using a gradient boosted tree model selected in our

previous work [1]. This model is trained on historical data

of aircraft trajectories and past sector operations. This data

is made of complexity measures computed from radar tracks

and sector data, and workload measures extracted from the

status of the control sectors (collapsed, opened, or split into

smaller sectors). We have shown in previous works that such

a model provides correct predictions in more than 80% of the

cases, when training the model on one week of traffic in all

the french sectors, and when assessing the results on another

week of traffic in approximately the same sectors.

Our aim here is to check if such a model can be trained on

a subset of sectors, and still generalize well on fresh sectors.

In addition, we want to verify if some intuitive notions on

the relationship between complexity and workload – such as

“if this complexity value increases, then the workload should

be higher” – are actually true for our data. In other words,

we would like to know if our model actually captures the

relationship between the cognitive workload of the controller

and the complexity metrics, or if our data-driven approach also

captures some of the characteristics of the sectors and traffic

patterns in our data.

The remainder of this paper is organized as follows: Sec-

tion II gives some background on ATC complexity and air

traffic controller workload, and states the objectives of the

work presented in this paper. Section III is a short introduction
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to machine learning. Section IV describes the gradient tree

boosting method used in this study. The data and experimental

setup are described in section V. The results concerning

the generalization performance on fresh sectors are given in

section VI, and those concerning the relationship between

complexity and workload are given in section VII. The paper

concludes with a brief summary of our findings and the

perspectives of future works, in section VIII.

II. BACKGROUND AND OBJECTIVES

A. ATC complexity and air traffic controller workload

In this paper, we are interested in the relationship between

ATC complexity and workload. Both of these concepts are

loosely defined in the literature ([2]), and before building

models relating one to the other, we need to quantify them.

Many ATC complexity indicators have been proposed in the

literature [2], [3], [4], and this paper proposes nothing new

in that matter. Quantifying the controller’s workload has been

done through different kinds of measures: physical activity

([5], [6]), physiological indicators ([7], [8], [9]), or subjective

ratings ([10], [11]). Some of these indicators are difficult to

interpret, and others are subject to biases (such as the recency

effect denounced in [8], and the possibility of raters errors

in the case of "over-the shoulder workload ratings" [12]).

Collecting these data requires heavy experimental setups, often

resulting in relatively small datasets and potential overfitting

issues when trying to adjust a model on too few examples.

In order to avoid these drawbacks, we have proposed in

previous work ([13], [14], [15]) to use historical records of

the past sector operations to quantify the workload. These

records are available in large quantity, for a large number

of sectors. The information that can be extracted from the

past sector operations is the following: we can assume that

the workload was normal when the sector was operated, low

when it was merged with other sectors to form a larger sector,

and high when it was split into smaller sectors assigned to

several working positions.

Several approaches have been tried to build models relating

ATC complexity to workload. For example, taskload models

([16], [17]) compute the cumulative time required to execute

control tasks. Linear regression models such as the popular

dynamic density models ([18], [10]) approximate subjective

workload ratings by a linear combination of a number of

ATC complexity measures. Other works use a neural network

instead of a linear model ([11]) to approximate subjective

ratings.

In previous work, we also used neural networks, but our

target variable was the workload measured from the past

sector operations instead of subjective ratings. Considering an

initial set of 27 complexity metrics found in the literature, we

selected a subset of relevant metrics for the purpose of building

a model that could be used to predict future airspace config-

urations ([13], [14], [15]). We showed that this concept was

feasible and could be used to forecast airspace configurations

that were much more realistic than the actual sector opening

schedules made by the Flow Management Positions ([19],

[20]). The concept was demonstrated on a mock-up HMI using

static data ([21]). In [1], we compared the performances of

several machine learning methods using the six selected ATC

complexity metrics as input. The results showed that gradient

boosted trees and neural networks performed better than basic

classification methods such as linear discriminant analysis,

quadratic discriminant analysis, or naive Bayes classifiers.

B. Objectives

In all our previous works, the ATC sectors from which were

drawn our samples were approximately the same for both the

training and test sets. The test data was simply taken in a

different time interval than the training data, in order to assess

the generalization performance of the trained models on fresh

inputs (although in the same sectors).

In this paper, our first objective is to check if a model trained

on a subset of sectors can perform well on another subset

of sectors. Our concern is that the trained model might not

perform well on elementary sectors, for which there are no

occurences of “high” workload in the training data (as well as

in the test data). A second objective is to examine more closely

the relationship between the input variables (ATC complexity

metrics) and the workload to determine if we actually learn a

model of the cognitive workload of the air traffic controller,

or if we also learn some characteristics of the observed data.

III. A SHORT INTRODUCTION TO MACHINE LEARNING

This section is a brief introduction to machine learning. The

reader may refer to [22], [23], [24] for a more thorough view

of this active research field.

Learning from data with a computer can be done in different

ways, through supervised learning, unsupervised learning, or

reinforcement learning. In reinforcement learning, a sofware

agent takes actions in a given environment so as to maximize

a cumulative reward. In supervised or unsupervised learning,

given some features x of an observed phenomenon, the objec-

tive is to learn a model from a set of examples (x1, . . . , xN ).
Unsupervised learning considers the explanatory variables x
either to produce clusters of data, or to estimate the probability

density of x, using the examples (x1, . . . , xN ). In supervised

learning, we assume a relationship y = f(x) between x
and a target variable y, and we use examples of the outputs

(y1, . . . , yN ) associated with the inputs (x1, . . . , xN ) to learn

a model h approximating f .

In this paper, supervised learning techniques are used to

predict the workload from ATC complexity indicators. The

target variable y is here a workload category (low, normal,

or high) and the input x is a vector of complexity indicators

computed from the traffic or the sector geometry.

Such learning problems where the target is a categorical

variable are usually referred to as classification problems, as

opposed to regression problems where y is a floating-point

value or a vector of floats.

Given a loss function ℓ such that ℓ(y, ŷ) is the cost of the

error between the computed output ŷ = h(x) and the observed

data y = f(x), our objective is to choose h minimizing the
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following risk (i.e. the expected loss), where X and Y are the

random variables from which are drawn x and y:

R(h) = EX,Y

[
ℓ(Y, h(X))

]
=

∫

X×Y

ℓ(y, h(x))PX,Y (d x, d y)

(1)

A. Learning from a finite dataset

In practice, the joint distribution of X and Y is not known

and one can only approximate f using a set of examples S =
{(x1, y1), . . . , (xN , yN )} of finite size.

The most straightforward idea is then to select the model h

minimizing the following empirical risk:

Remp(h, S) =
1

|S|

∑

(xn,yn)∈S

ℓ(yn, h(xn)) (2)

Unfortunately, minimizing the empirical risk on S might not

lead to the most desirable model. The selected model might fit

the examples {(x1, y1), . . . , (xN , yN )} of S very well, while

performing poorly on new instances of x1.

Statistical models can be more or less “flexible” when

fitting the data, depending on their analytical expression. For

example, a linear model is much less likely to overfit the data

than a polynomial of high degree. Selecting the best model

among a collection of models of various “flexibilities” requires

a bias-variance tradeoff. Simple models tend to have a high

bias (i.e. they are far from truth) and a low variance (i.e. the

response of the model is about the same, whatever the training

set used to tune it). In contrast, complex models have low

bias and high variance. A complex model tuned on too few

examples tends to overfit these examples and to perform poorly

on new inputs.

B. Model assessment and selection

There are several ways to control overfitting and to find a

suitable bias-variance tradeoff. One can use an information

theory criterion, such as AIC (Akaike’s “An Information

Criterion”) or BIC (Schwartz’s Bayesian Information Crite-

rion). These asymptotic criteria add a penalty P depending

on the model complexity to the empirical risk Remp(h, S)
defined in equation (2). The model having the lowest value of

Remp(h, S) + P is selected.

Another way to proceed is to assess empirically the gener-

alization error. Let us denote A the algorithm used to learn a

model from a dataset S. In holdout cross-validation, the initial

dataset S is split into two sets: a training set ST used to learn

the models, and another set SV used to assess the holdout

validation error Errval as defined by the equation below:

Errval(A, ST , SV ) = Remp(A[ST ], SV ). (3)

The model having the lowest holdout validation error is

selected.

1For example, let us assume we fit a polynomial curve on 10 points. For
this regression problem, a polynom of degree 9 will fit exactly the examples,
but will give poor predictions at other points. For a classification problem,
the same overfitting problem might occur when using a K-nearest-neighbours
method with K = 1.

K-fold cross-validation is another popular empirical

method, where the dataset S is partitioned into k folds

(Si)1≤i≤k. Let us denote S−i = S\Si. In this method, k

separate predictors A[S−i] are learned from the k training sets

S−i. The mean of the holdout validation errors is computed,

giving us the cross-validation estimation below:

CVk(A, S) =
k∑

i=1

|Si|

|S|
Errval(A, S−i, Si). (4)

When used for model selection, cross-validation can be per-

formed successively on a collection of models. The model

having the best cross-validation error is selected.

C. Hyperparameter tuning

In many methods, the bias-variance tradeoff is controlled

through one or several parameters. For example, one can think

of the number of hidden units in a neural network, or the

weight decay hyperparameter. Hyperparameter values can be

selected through cross-validation.

Let us denote λ the vector of hyperparameters of an

algorithm Aλ. In this paper, a 5-fold cross-validation has been

used to tune hyperparameters, as described in algorithm 1.

Algorithm 1 Hyperparameter tuning for an algorithm Aλ and

a set of examples T (training set).

function TUNEGRID(Aλ,grid)[T ]

λ∗ ← argmin
λ∈grid

CV10(Aλ, T )

return Aλ∗ [T ]
end function

IV. THE GRADIENT TREE BOOSTING METHOD

In our experiments, we used the statistical software R, and

more specifically the Xgboost library for gradient boosted

trees.

The stochastic gradient boosting tree algorithm was intro-

duced in [25], [26], [23]. It applies functional gradient descent

to classification or regression trees ([27]).

The functional gradient descent is a boosting technique.

The model h is iteratively improved. Denoting hm the current

model at iteration m, we consider the opposite gradient of

the loss gi = −∂ℓ(ŷ,yi)
∂ŷ

(h (xi) , yi). A model g is then

tuned to fit this opposite gradient, using a set of examples

(xi, gi)1≤i≤n. The model h is then updated as follows :

hm+1(x) = hm(x) + ρg(x) , where ρ is a constant mini-

mizing the empirical risk. The next iteration repeats the same

procedure for hm+1 until a maximum number of iterations

is reached. In stochastic gradient boosting, the dataset is

randomly resampled at each iteration.

In the Gradient Tree Boosting, the machine learning algo-

rithm boosted by the functional gradient descent is a classi-

fication or regression tree algorithm. Before continuing our

description of gradient boosted trees, let us say a few words

on classification and regression trees (CART) which were

introduced by Breiman in [27]. In this algorithm, a binary tree
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is used to represent a binary recursive partition of the input

space. At each node, the input space is split in two regions

according to a condition xj ≤ s. The J leaves of this tree

describe a partition (Rj)1≤j≤J
of the input space. Each region

Rj is associated to a constant γj . In the case of regression, it

will be a constant float value (usually the average value of the

examples in region Rj). In classification trees, γj will be a

class (the most represented class among the examples in Rj).

When the tree is used to make a prediction on a new input x,

the value γj is returned when x falls into Rj .

CARTs have some advantages. For example, they are insen-

sitive to input monotonic transformations: Using xj , log(xj)
or exp (xj) leads to the same model. As a consequence, this

algorithm is robust to outliers. It can easily handle categorical

variables and missing values. However it is known to have a

poor performance in prediction. This performance is greatly

improved however when applying gradient boosting to CART.

In gradient boosted trees, the equation of the model update

is the following, where ν is a shrinkage parameter:

hm : x→ hm−1(x) + ν
∑

Rj∈Tm

γmj1Rj
(x) (5)

We can denote GBM(m,J,ν) the gradient boosted tree al-

gorithm, where m is the number of boosting iterations, J

is the number of leaves of the tree and ν is the shrinkage

parameter. The final model obtained after boosting is a sum

of regression or classification trees. J allows us to control the

interaction between variables, as we have J − 1 variables at

most in each tree. ν is the learning rate. In [23] (chap. 10), it is

recommended to take small values for the shrinkage parameter

(ν < 0.1) and small values for J as well (4 ≤ J ≤ 8). The

hyperparameter grid used for this algorithm is presented in

section V-E.

V. DATA AND EXPERIMENTAL SETUP

A. Explanatory variables

In this study, ATC complexity indicators are used as inputs

to our models. In previous works ([13], [28], [15]), we selected

6 basic complexity metrics among 27 metrics found in the

literature. We used a principal component analysis to reduce

the dimensionality of the inputs, and then selected the most

relevant metrics related to the significant components. The 6
metrics that were found to be the most relevant for the purpose

of building airspace configuration prediction models are the

following:

• vol, the airspace volume of the considered ATC sector,

• nb, the number of aircraft within the sector boundaries at

time t,

• flow15, the incoming traffic flow within the next 15
minutes,

• flow60, the incoming traffic flow within a 1 hour time

horizon,

• avg_vs, the average absolute vertical speed of the aircraft

within the sector,

• inter_hori, the number of speed vector intersections with

an angle greater than 20 degrees.

These metrics are fairly simple and can be computed from

radar tracks and static sector data (geometrical boundaries).

In the current paper, we have chosen to use the same

metrics. They are standardized so as to obtain explanatory

variables with mean 0 and standard deviation 1. These stan-

dardized variables are used as input vector x in our models.

B. Target variable

The target variable y we are trying to predict with our

models is a workload category: low, normal, or high. In order

to build our examples, we extracted this workload variable

from historical airspace configuration data. In many cases,

the workload in an ATC sector s at a past time t can be

quantified by considering how it was operated at that time

t. We simply make the following assumptions about the

relationship between sector operation and workload:

• Low workload when sector s is collapsed with other

sectors to form a larger sector operated on a working

position,

• Normal workload when the sector s is operated as is,

• High workload when s is split into several smaller sectors

operated on different working positions.

The other possible states – such as when a part of s is collapsed

with one sector and another part is collapsed with another

sector – are useless for quantifying the workload and are not

used.

C. Dataset

The datasets used in this study are built from radar tracks

and recorded sector operations from two weeks in October

2016 (13th to 26th), from the five french ATC control centers

(Aix, Bordeaux, Brest, Paris, and Reims). For a given ATC

sector, we sample the data so as to balance the occurences

among the workload classes having non-zero occurences in

the initial data. For example, for elementary sectors (or other

sectors) for which there is no occurence in the high workload

category2, we sample an equal number of instances in the low

and normal categories.

We then select all the sectors with non-zero occurences

of the “normal” workload category (i.e., sectors that were

opened at one moment or another). As a result, we obtain

50389 samples in the low workload category, 57539 in the

normal workload category, and 21372 samples in the high

workload category. This dataset is then completed by drawing

samples from the sectors having no occurences of normal

workload (i.e. sectors that were never opened). The resulting

dataset comprises 57539, 57539, and 32800 samples in the

low, normal, and high workload categories, respectively.

This procedure is different from the one adopted in our

previous work [1], where our dataset was built so as to

2By definition, elementary sectors cannot be split, so there is no occurence
of “high” workload according to our definition of workload based on the
sector status (merged, collapsed, or split).
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obtain an overall balance among the three classes3, without

considering the balance in each subset corresponding to each

sector. The resulting dataset contains 147878 complexity and

workload samples concerning 163 elementary sectors and 369
ATC sectors made of several elementary airspace sectors.

Note that the chosen data sampling procedure does not

provide an exactly equal representation of the three classes

in the resulting subset. One reason is that there exists no

instance of the “high” workload class in the initial data for

elementary sectors4. Even for ATC sectors made of several

airspace sectors, the sample might be imbalanced, for example

when the sector is opened for very large periods throughout

the day (i.e. there might not be enough data of the low or high

class from which to draw samples).

D. Performance evaluation and model selection

Our aim is to assess the performance of a model trained on

a dataset extracted from past ATC sector operations, checking

if this model generalizes well on new sectors that were not

used to train the model. Consequently, our dataset must be

split so that any ATC sector present in the subset used to train

a model is not represented in the subset used to assess the

model.

In addition, we would like examine how the trained model

performs on ATC sectors made of only one elementary

airspace sector. Considering these objectives, we use a nested

cross-validation procedure, stratified so that the proportion of

elementary sectors and collapsed sectors is about the same in

all subsets.

The nested cross-validation consists in an outer 7-fold cross-

validation for model performance assessment, embedding an

inner 5-fold cross validation for hyperparameter selection. The

dataset S is split in 7 subsets Si, 1 ≤ i ≤ 7. For each iteration

i, a model is trained on S−i = S\Si, and its performance is

assessed on Si. The training on S−i follows a 5-fold cross-

validation procedure (the inner cross-validation), in order to

select the best hyperparameter values for the chosen machine

learning method (model selection). This is done by splitting

S−i into 5 subsets S−i,j , 1 ≤ i ≤ 5. A grid of hyperparameter

values is used to tune several models on S−i,−j = S−i\S−i,j ,

and the performance of these models are evaluated on S−i,j .

The hyperparameter λ∗ providing the best performance on

the subsets S−i,j is then selected, and a final model with

hyperparameter λ∗ is trained on S−i. This is the model

evaluated on Si in the outer cross-validation.

This procedure is more computationally intensive than the

one chosen in our previous work [1], where the outer cross-

validation was a simple holdout validation, where the dataset

3Note that the dataset description in section III-C of [1] is partly incorrect:
although only sectors that were actually opened were initially selected,
the dataset was completed using sectors that were not opened during the
considered time period, in order to balance the number of instances among
the three workload categories.

4By definition, elementary sectors cannot be split into several smaller sector,
so we cannot measure high workloads for such sectors with the chosen target
variable (the sector status).

was split into a training set and a test set only, instead of a 7-

fold cross-validation. The new procedure has the advantage to

provide some evaluation of the distribution of the performance

results (considering the subsets Si).

Also, in our previous paper, there were a large number of

sectors overlapping in both the training and test sets. We were

interested in evaluating how a model trained on one week of

data would generalize on another week of data (the test set).

In the current paper, a different question is being adressed,

motivating the change of procedure. We want to check if a

model trained on a subset of sectors can generalize well on

another subset of sectors, and if our model overfits the data

for elementary sectors.

Knowing that there is no data with high workload available

for the elementary sectors in our training sets, we might expect

the model to overfit the training data and to generalize poorly

on fresh examples, for elementary sectors. Hovever, it should

generalize correctly on the other sectors.

E. Hyperparameter grids

The hyperparameter selection of the inner cross-validation

is performed on the training set, using function TuneGrid of

algorithm 1 and the grids described in table I.

Method Hyperparameter grid

GBM(m,J,ν)

m = {5000, 6000, 7000}
J = {2, 3, 4}
ν = {1e-4, 5e-4, 1e-3,1e-2,1e-1}

Table I: Grid of hyperparameters used in our experiments.

F. Classification performance metrics

In this paper, the performance of a classifier is assessed

through its accuracy, recall and precision. Accuracy is the

total number of correct predictions made divided by the

total number of predictions. Recall is the number of correct

predictions made for one class, divided by the actual number

of occurences in the considered class. Precision is the number

of correct predictions made for one class divided by the total

number of instances predicted to be in that class.

Reference

Predicted

C1 C2 C3

C1

C2

C3

a b c

d e f

g h i

Figure 1: Illustration of a confusion matrix.

In other words, considering the example of a confusion ma-

trix on Figure 1, accuracy, precision and recall are computed

as follows:

Accuracy =
a+ e+ i

a+ b+ c+ d+ e+ f + g + h+ i

Recall(C1) =
a

a+ d+ g
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Precision(C1) =
a

a+ b+ c

VI. RESULTS WHEN GENERALIZING ON FRESH SECTORS

In this section, we examine the performance of the GBM

model when generalizing on fresh data taken from sectors that

were not used when tuning the model. The model performance

is assessed on several sub-populations of ATC sectors:

• All ATC sectors (elementary, or not),

• Elementary sectors, i.e. sectors that cannot be split into

smaller sectors, and for which there is no occurence of

the “high workload” class5,

• Non-elementary sectors, i.e. ATC sectors made of several

elementary airspace sectors, for which we detail the

following results :

– Overall performance on the non-elementary sectors

– Model performance on non-elementary sectors for

which there is no instance of the “high workload”

class in the data.

A. Overall performance, all sectors included

Table II shows the performance of the GBM model, when

including all sectors in the performance assessment. The first

line shows the mean rates of correct classifications, and the

standard deviations (within brackets). The overall rate of

correct classification (2nd line, 2nd column) is the accuracy,

and the class-specific rates (2nd line, columns 3,4, and 5) are

the recall. The precision of the model is given on the last

line, where the overall precision is the average over the three

classes.

The mean values and standard deviations are computed

from the 7 folds of the cross-validation, considering only the

validation subsets Si (not used to train the model).

Overall Low Normal High

Correct classif. 0.759 0.757 0.736 0.808
(0.03) (0.046) (0.074) (0.100)

Precision 0.771 0.817 0.680 0.815
(0.034) (0.065) (0.042) (0.112)

Table II: Model performance averaged over 7 folds, for all

ATC sectors, using the GBM method.

B. Results for elementary sectors

Table III shows the correct classification rates (overall

accuracy, and class-specific recall), as well as the precision

of the GBM model, for the control sectors made of only one

elementary airspace sector. Such sectors cannot be split so as

to alleviate the workload. As a consequence, there is no data

concerning the “high” workload for these sectors.

For these results, the models trained in each fold of the

cross-validation are exactly the same as in the previous subsec-

tion. They are trained on the same training subsets as before.

However, the model performance is here evaluated considering

only the elementary sectors in the validation subsets.

5With the chosen target variable, high workload can be observed only when
the sector is split into several smaller sectors.

Overall Low Normal High

Correct classif. 0.82 0.904 0.507 NaN
(0.092) (0.062) (0.197) (NA)

Precision 0.519 0.856 0.539 0
(NA) (0.112) (0.271) (NA)

Table III: Model performance averaged over 7 folds, for

elementary airspace sectors only, using the GBM method.

C. Results for ATC sectors made of several airspace sectors

Table IV shows the results (correct classification rates and

precision) obtained for the control sectors made of several

elementary airspace sectors.

Overall Low Normal High

Correct classif. 0.757 0.739 0.748 0.808
(0.029) (0.041) (0.060) (0.100)

Precision 0.769 0.814 0.679 0.815
(0.031) (0.068) (0.047) (0.112)

Table IV: Model performance averaged over 7 folds, for ATC

sectors made of several elementary airspace sectors, using the

GBM method.

Table V details the results for the non-elementary sectors

for which there is no occurence of the “high workload” class

in the data, similar in that respect to the elementary sectors.

Overall Low Normal High

Correct classif. 0.738 0.713 0.760 NaN
(0.033) (0.058) (0.089) (NA)

Precision 0.504 0.784 0.729 0.000
(0.020) (0.087) (0.056) (0.000)

Table V: Model performance averaged over 7 folds, for

non-elementary sectors having no data instances in the “high

workload” category.

When comparing the results in tables IV, V and III, we see

that the model performance drops for the elementary sectors,

with a recall barely above 50 % for the “normal workload”

class, but that it remains good for non-elementary sectors in

general, and even those with no occurence of high workload.

This tends to show that our model overfits the data taken from

elementary sectors specifically, and generalizes poorly on these

sectors but not on the others. One reason might be that there

are no other sectors in our data that would be similar to the

elementary sectors in size and characteristic, and that would

be well-balanced among the three classes. By contrast, we can

find a lot of data samples from well-balanced (non-elementary)

sectors having sizes and characteristics similar to the non-

elementary sectors having no high workload occurence. This

might explain why our model still generalizes correctly on

these sectors.

This is a good result, as it means we can still use our work-

load model to find optimal combinations of sectors, although

we should replace or amend our model when assessing the

workload in elementary sectors.
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show that high values of avg_vs are more acceptable to the

controllers for small values of nb than for high values, at least

for this sector. A similar shape can be observed on many

other sectors. So, within the normal workload category, our

intuition that the cognitive workload increases with the number

of climbing/descending aircraft might actually be true.

This relationship is simply difficult to observe at the macro-

scopic level: the median values of avg_vs are about the same

whatever the workload category, which simply reflects the fact

that there are no more climbing/descending aircraft, in our

data, when the sector is split than when it is normally operated

or collapsed.

In addition, the influence of avg_vs must be considered

across all the sectors. When doing so, and when combining it

with other variables such as the sector volume, the average ver-

tical speed avg_vs does influence the workload categorization,

as was shown in previous work on the selection of relevant

explanatory variables ([13], [28], [15]). It remains to be seen

if, for our purpose, it could be replaced with a categorical

variable characterizing the sector (en-route, or pre-approach,

for instance).

VIII. CONCLUSION

Let us now conclude this paper by summarizing our ap-

proach and our findings. We have looked into the performances

of a workload model learned from historical data, using

gradient boosted trees. The examples used to learn the model

were made of ATC complexity measurements computed from

radar records and sector data, and workload measurements

extracted from past ATC sector operations. The three levels

(low, normal, high) only give a rough indication of the work-

load. However, this workload measurement has the advantage

of being easily available, in large quantities and for a great

number of ATC sectors, because it can be directly extracted

from historical records of past sector operations.

In previous works, this model showed an 82% rate of correct

classifications, when training the model on one week of traffic,

and assessing it on another week, considering approximately

the same set of sectors in both the training and the test set.

In the current work, our first objective was to look into the

model’s performances when the model is trained on a subset

of sectors and assessed on a different subset. Our second

objective was to examine more closely the relation between

the input ATC complexity variables and the output (i.e. the

workload class).

The results show that the overall performance of the model

is slightly degraded, with a rate of correct predictions around

76%, when the training and test sets are geographically segre-

gated (different sectors) instead of being temporally segregated

like in our previous approach. The detailed results show that

our model probably overfits the training data for elementary

sectors, leading to poor generalization performance for these

sectors. However, the model remains performant on all non-

elementary sectors, even those having no occurence of the high

workload class in the data.

Concerning the relations betwen the input variables and the

workload output, the bagplots of section VII confirm some

natural intuitions on the sense of variations of these quantities

for most variables, except maybe for one, the average absolute

vertical speed of all aircraft in the sector. For all variables

except this one, we observe on two instances of sectors (one

en-route and one pre-approach sector) that when the input ATC

complexity metric increases, we are more likely to be in a

higher workload category.

A natural intuition is that the cognitive workload of the

controller should also increase when there are more climbing

and descending aircraft in the sector, just as for the other vari-

ables. This relationship is most probably true, but it is difficult

to observe in our macroscopic workload categorization, except

maybe by looking closely at the dispersion of the data in the

normal workload category.

To conclude, the model obtained with the GBM machine

learning method cannot be interpreted only as a model of

the cognitive workload of the controller. The model expresses

relations among variables emerging from the data, and it

can only be as good as the data that was used to train it.

It cannot be transposed to any context without precautions.

The fact that our workload model remains performant for

all non-elementary sectors confirms that it can actually be

used to predict optimal configurations of ATC sectors (sector

opening schemes), where we only search to split or merge

sectors optimally. This model should be completed or replaced

by a more simple model when evaluating the workload in

elementary sectors.

In future works, we might try to produce some artificial

data samples of the “high” workload class for elementary

sectors. This would force our model to correctly assess the

boundary between normal and high workload for these specific

sectors. Another approach that we could try is to apply one-

class classification methods on the “normal” workload class, to

detect when non-normal instances (underloads, or overloads)

occur in elementary sectors. Other work might consider the

seasonal variability in our data. It would be interesting to

compare the performances of a same model tuned several times

on data samples of different months.
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