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Generation of Curvature Continuous Trajectories for Transport Aircraft
using Bezier Curves

H. Escamilla Núñez & F. Mora Camino
Laboratoire ENAC-Optim
École Nationale de l’Aviation Civile, France.

ABSTRACT: With the increase in air traffic, better management and organization of it is crucial for increas-
ing traffic safety and airspace capacity. Hence the need of ad-hoc descriptions of more complex and flexible
aircraft trajectories, allowing high traffic densities and limiting environmental impact. The approach consists of
a smooth 4D path generation from pre-existing control points by stitching several Bezier curves while assuring
G2 continuity at the joints. Also, as the Euclidian distance between control points and the proposed trajec-
tory is controlled by an optimal reshaping of the trajectory, the tradeoff between curvature-speed-load factor
of the trajectory is considered. The generated trajectories are meant to be a complement to regular flight plans,
helping to solve air traffic conflicts and enhance air capacity by better timing. Matlab simulations corroborate
the feasibility of the approach, showing promising results when a distance range is defined for the reshaping
algorithm.

1 INTRODUCTION

Nowadays, even aircraft with operating ACAS/TCAS are exposed to near mid air collisions, or in worst case
scenarios, to events like the one occurred on july 1 over Überlingen, Germany in 2002, where two transport-
category aircraft collided after TCAS instructed one pilot to climb, but the pilot descent in compliance to air
traffic controller instructions. Moreover, even if only 1 in 10 Traffic Advisory (TAs) provided by TCAS result
in a Resolution Advisory (RAs), this event and others 1, are clear examples of human error and lack of homo-
geneity in TCAS.
As both SESAR and NextGen projects plan to implement new operational concepts which will reduce the
spacing between aircraft. TCAS in its current form is not compatible with such concepts and would alert too
frequently to be useful. Consequently, in order to allow aircraft to fly closer, quick and efficient 4D trajectory
generation when needed is crucial. In this manner, air traffic conflicts can be avoided or addressed if present,
taking into account load factor limits to look after passengers comfort.
The generation of flyable and efficient trajectories has been considered by several authors (Bakolas et al. 2011,
Anderson et al. 2005, Judd & McLain 2001, Yang et al. 2015, Yang & Sukkarieh 2010, Delahaye et al. 2014).
From a general view, reference trajectories are essential for flight plans which meet a large set of overfly or
profile constraints, which vary in general from flight to flight. On the other hand, the generation of reference
trajectories at short term should allow the implementation of procedures in the case of potential conflicts. Cur-
rent path generation for transport aircraft is based on a sequence of objective points in a 2D/3D space given to
connect two geographical locations (Walter 2015). Then, using diagrams like Voronoi, or Delaunay triangula-
tion, or any other method, a piecewise path is constructed using straight lines denominated legs. This path may

1https://www.skybrary.aero/index.php/Accident_and_Serious_Incident_Reports:_LOS



be offered by a high-level path planner from techniques such as Dijkstra’s, A*, probabilistic roadmaps, genetic
algorithms, or Rapidly exploring random tree star (RRT*), just to mention a few. However, as path differen-
tial requirements have to be satisfied, the initial trajectory needs to be reshaped in order to provide a flyable
trajectory for transport aircraft. The problem of designing a flyable path over or close to the objective points
while satisfying constraints such as maximum curvature and/or G2 continuity (curvature continuity), has been
addressed using different approaches.
As a pioneer, Dubins assured that the shortest path between two points involves circles and straight line path
segments (Dubins 1957). However, curvature continuity at the joints of lines and circular arcs is not satisfied.
Techniques to solve this track transition problem are addressed using Clothoids (Scheuer & Fraichard 1997),
but as they do not have closed-form expressions, the computation complexity is increased. Circular arcs as
transitions tracks have been also proposed (Anderson et al. 2005), where a 2D real-time trajectory is generated
satisfying curvature and velocity constraints. Also, the deviation between the generated circular path and the
associated control points is minimized using a parameter κ ∈ [0,1]. If κ = 0, the distance is zero, so the plane
will fly exactly over the waypoint, and if κ = 1, minimum-time transitions between control points are achieved.
However, the election of this parameter κ becomes an issue when a range of distance wants to be elected as
a permitted deviation from the generated path. Dubins’ approaches generate paths limited to straight lines and
arcs of circles without parametrization. Thus, the method shows disadvantages being able to generate several
arcs without curvature continuity or with high computation complexity.
Another tool to generate smooth flyable paths are splines, defined by series of low order polynomials. In (Judd
& McLain 2001), after finding the best path from a UAV position location to a target location using a Voronoi
diagram and a Dijkstra’s algorithm, the 2D path is smoothed using cubic splines. It is worth to say that the
optimal locations of the middle knots of a spline are crucial for the shape of the segments. However, the optimal
computation of these points is very time-consuming unless a set of cases are defined a priori.
As an attractive approach, Bezier curves are able to generate continuous-curvature paths, having the advantage
of passing through initial and final points while the whole curve always remains within the convex hull that is
built by the control points. Also, the initial and final piecewise straight lines of the control polygon are always
tangent to the Bezier curve at the starting and ending control points. An example is given in (Lee et al. 2016),
where the authors present the generation of a 3D path obtained from a combination of Rapidly exploring random
tree star (RRT*) using a C2 class Bezier curve, and Dynamic Movement Primitives (DMP’s), that allow coop-
erative aerial manipulators to avoid known and unknown obstacles. As the final Bezier curve is a barycentric
combination of the polygon vertices formed by the control points, it may be thought that a trajectory could not
be accurately generated if the control points positions are zig-zags like. However, this aspect can be handled by
stitching several Bezier curves to form a bigger path while assuring G2 continuity at the joints. In (Yang et al.
2015), after a Guiding Attraction based Random Tree (GART) is used to obtain control points in a 2D plane,
a kinematic smoother based on sixth order Bezier curves to achieve second derivative continuity (curvature
continuity) is proposed. Finally, a local optimal reshaping of the path, minimizing length and curvature cost is
performed. In (Yang & Sukkarieh 2010), it is presented an algorithm based on cubic Bezier curves for 3D path
smoothing, satisfying G2 continuity and maximum curvature constraints, where instead of addressing a direct
solution for the 3D path smoothing, a 2D path smoothing for consecutive triplets of control points is applied,
considering each triplet as a 2D plane; Nevertheless, deviation from the resulting trajectory w.r.t. the control
points is not controlled.
In this paper, assuming velocity/time constraints, a time-parametrized smooth trajectory is developed by stitch-
ing several Bezier curves while assuring G2 continuity at the joints, also, the Euclidian distance between the
control points and the proposed trajectory is controlled, yielding an optimal 4D trajectory valid for 4D guidance.
Finally, since flyable trajectories depend heavily on the load factor, the tradeoff between curvature-speed-load
factor is analysed.

2 TRAJECTORY GENERATION

2.1 Bezier Curves and G2 Continuity
A Bezier curve P (s) of degree n, obtained from n+ 1 control points (P0, . . . , Pn), is described with its deriva-
tives by
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Note that
P (0) = P0 P (1) = Pn (6)

P ′(0) = n (P1 − P0) P ′(1) = n (Pn − Pn−1) (7)

P ′′(0) = n (n− 1) (P2 − 2P1 + P0) (8)

P ′′(1) = n (n− 1) (Pn − 2Pn−1 + Pn+2) (9)

According to (Barsky & DeRose 1984), G2 continuity is the second-order geometric continuity, implying
the second derivative continuity of two curves at the joint. Moreover, if P (s) = (x(s), y(s), z(s)) is a regular
parametrization of a curve in an interval I = [a, b] → R3. An expression for the curvature is obtained by:
κ(s) = ‖P ′(s)×P ′′(s)‖

‖P ′(s)‖3 ≥ 0. If κ(s) = 0, P (s) is a straight line. Otherwise, the curve will have a curvature radius of
1/κ(s). Thus, let a Bezier curve C(s) with m+ 1 control points (C0, . . . ,Cm), and a second Bezier curve D(s)
with n+ 1 control points (D0, . . . ,Dn) be joined. C0 continuity is guaranteed if:

Cm = D0 (10)

A smooth transition is assured if (10) is satisfied and Cm,D0,Cm−1,D1 are on the same line. Furthermore, C1

continuity is guaranteed if the tangent vector of the first curve at s = 1 is identical to the tangent vector of the
second curve at s = 0, meaning that:

C ′(1) =m(Cm −Cm−1) = n(D1 −D0) = D′(0) (11)

This states that the ratio
(

Cm−Cm−1

D1−D0

)
must be n

m
. Since n and m are fixed numbers, the positions of Cm−1 and

D1 can be rearranged to be not only at the same line, but also at the proper distance to assure C1 continuity. In
the same tenor, C2 and G2 continuity are guaranteed at the joint if it is verified that

C ′′(1) =m(m− 1)(Cm − 2Cm−1 +Cm−2)

= n(n− 1)(D2 − 2D1 +D0) = D′′(0) (12)

Hence, to assure G2 continuity, the locations of Cm, Cm−1, Cm−2, D0, D1, D2, where (10)-(12) are satisfied,
need to be proposed.

2.2 Path Generation and Time-parametrization
In this paper, the 3D path is decomposed into several 2D planar trajectories laying on the tangent/normal plane
of the frenet frame, similar to (Yang & Sukkarieh 2010). Since three control points are required to form a
plane, at least three control points are defined, and then divided into triplets. Several quintic Bezier curves,
one for each triplet of control points, are stitched together to form a bigger path while assuring G2 continuity
at the joints. For a triplet of control points (P1, P2, P3), G1 continuity can be achieved by interpolating four
points (Q0,Q1,Q4,Q5), and for G2 continuity, six points are interpolated (Qi; i ∈ {0, . . . ,5}). The points are
interpolated as follows: Q0 and Q5 are defined to be at the middle point of ( ¯P1P2) and ( ¯P2P3) respectively,
forcing a past and following Bezier curve formed by the past and next triplet of control points, to finish and
start at Q0 and Q5. In other words, a next triplet of points conformed by (P2, P3, P4) will have a Bezier curve
starting at Q5, so (10) is fulfilled. For Q1 and Q4, they are computed to be also in the same line of ( ¯P1P2) and



( ¯P2P3) respectively, but separated by a δ1 distance from Q0 in the case of Q1, and a distance δ2 from Q5 in the
case of Q4. Note that the number of auxiliary interpolated points to compute the Bezier curves are the same
for all the triplet of points, so m and n from (11) are equal. Hence, to fulfill G1 continuity, only remains to
guarantee that the distance δ2 of a certain triplet of control points is equal to the distance δ1 of the next triplet of
control points. Finally, if the positions of Q2 and Q3 are computed also in the same line of ( ¯P1P2) and ( ¯P2P3)
respectively, separated by the same distances δ1 from Q1, and δ2 from Q4, if it is proposed: δ1 =

¯P1P2

4
, and

δ2 =
¯P2P3

4
, equations (11), (12) are satisfied. Besides, knowing that the first and last Bezier curves conforming

the total path will start and end at the middle point of their corresponding control points, as straight lines have
zero curvature, the path can be completed with straight lines without affecting the G2 continuity. After the
interpolation of these auxiliary control points, a quintic Bezier curve is adjusted to them in the case of the G2

continuity path.
As several Bezier curves conform the total path, and each Bezier curve is parametrized by s ∈ [0,1], a time-
parametrization needs to be done for the creation of a flyable path for transport aircraft. This re-parametrization
consists in perfom the operation: s = t−ti

ti+1−ti where i ∈ [0,1, ...,Bn], considering Bn as the number of existent
Bezier curves, such that the multiple Bezier curves parametrized by s ∈ [0,1], can be used at their proper time
intervals [ti, ti+1]. Note that the times in which each Bezier curve is used need to be known to paramterize the
curve, therefore, the velocity for the aircraft to follow the path, or as an alternative way, the timestamps in which
the aircraft is supposed to fly over the joints of the Bezier curves, are defined in advance, thus, the computation
of the arc length of each Bezier curve is inherent.

3 OPTIMAL RESHAPING AND LOAD FACTOR OF THE TRAJECTORY
Depending on the application, some aircraft may need to fly directly over the control points or at least near
a defined range of distance from the control points. In order to achieve this demand, the Euclidian distance
from the G2 continuity path w.r.t. the nearest control point is controlled. For this special case, an extra auxiliary
point is computed such that an optimum path based on sixth order Bezier curves is obtained. The other auxiliary
control points are computed as before in order to do not affect curvature continuity, but the position of the heptic
auxiliary point is moved gradually until the generated path passes within a distance range defined by the user.
Considering that (Q0,Q1,Q2,Q4,Q5,Q6) are the necessary points to achieve G2 continuity, the auxiliary point
(Q3) is moved away in the direction of:

~aux =
~(Q2 −Q1) + ~(Q4 −Q5)

‖ ~(Q2 −Q1) + ~(Q4 −Q5)‖
(13)

As transport aircraft are designed to flight smooth trajectories, some limitations on the load factor have to be
respected for the well being and comfort of passengers. According to (FAA 2017), on a typical flight, the load
factor is limited to +2.5g and -1g for regular maneuvers. The expressions relating the load factor and speed of a
turning/pitching aircraft, with the horizontal path of radius R, and radius of vertical curvature R′ are:

R =
V 2
a

g
√
n2z − 1

q =
(nz − 1)g

Va
=
Va
R′

(14)

As the path has a curvature radius of 1/κ, the curvature κ of the path is directly related to (14). In this manner,
for independent lateral or vertical maneuvers, the path that an aircraft can follow without infringing load factor
limits can be computed, taking into account the speed of the aircraft and the curvature of the path generated by
the position of the control points. Then, path constraints regarding to maximum curvature can be established for
different flyability requirements based on load factor limits. According to (14), maximum radius of curvature
for circular motions can be computed for different speeds after defining load factor limits. For example, a 2.5g
load factor at 200m/s is generated by a circular trajectory of a radius of 1,779.55m, equivalent to a roll angle of
66.5o, which is also the maximum roll angle permitted for transport aircraft.

4 SIMULATION RESULTS

In Figure 1, a G1/G2 continuity path for a triplet of points (P1, P2, P3) is shown. The locations of the auxiliary
points is according to Subsection 2.2, as well as the straight lines in the extremes to complete the path without
affecting the curvature continuity. Consequently, consider that some control points emulating the avoidance of
potential threats are given in Table 1. They generate a G1 and G2 path depicted in Figure 2. Regarding to the



Figure 1: Bezier curve completed with straight lines.

Figure 2: Arc lengths and joints of Bezier curves.

joints of the G2 Bezier curves, and assuming that the path is intended to be followed at 200m/s velocity, Figure
2 shows the arc lengths (li; i ∈ [1,6]) and their times (tj; j ∈ [0,6]) assigned. The values of li and tj are given
in Table 2. Then, comparing the curvatures of the G1 and G2 continuity paths (Fig. 3), it is clearly seen how the
G2 path has continuity in the curvature at the joints of the different Bezier curves, and that these joints occur
at the assigned time, represented by asterisks in the correspondent axis. Concerning to the optimal reshaping
of the path, in Figure 4, a 100m maximum deviation for a triplet of control points is commanded, meaning
that the optimized path will be generated such that it will pass no further than 100m away the control point
P2. In this case, the optimizing algorithm stopped at a distance of 92.48m. The distance at which the algorithm
stops depends on the step size in which the extra auxiliary control point (Q3) is moved away in the direction
of ~aux. For a small step size, the path will be closer to the distance defined by the user, in this case 100m,
but the computation time will be increased. Now, for a complete trajectory, using the control points of Table 1,
a 100m maximum deviation is commanded, the resultant path is shown in Figure 5. The Euclidian distance at
which the trajectory is generated from the closest control points is given by Table 3. Assuring that the maximum
deviation distance is achieved. To better exemplify the relation of the load factor w.r.t. the velocity, lets propose
a didactic scenario of the trajectory of an aircraft changing airways by changing its heading. Three control
points located at the same altitude and separated by 50 nautical miles (nm) from each other are used (Table 4).
The control points are shown in Figure 6, along with the computed Bezier curves of G2 continuity. Also, the
arc lengths of each curve and the points where the Bezier curves are joined, denoted by their timestamp, are

Table 1: Control Points.
X(m) Y(m) Z(m)

1 0 0 10,000
2 120,843 16,983 9,300
3 210,332 -14,779 9,000
4 272,744 -759 8,200
5 388,920 -11,130 9,500
6 478,501 12,964 9,800

Table 2: Time and Arc length.
Arc length(m) Time(s)

t0 0
l1 61,016 t1 305.1
l2 107,536 t2 842.8
l3 78,523 t3 1,235.4
l4 89,990 t4 1,685.3
l5 104,206 t5 2,206.4
l6 46,383 t6 2,438.3

Table 3: Distance of trajectory from control points.
From P2 P3 P4 P5

Initial distance (m) 2800.77 2351.04 1449.10 2010.67
Optimized distance (m) 92.48 99.72 96.09 79.53



Figure 3: Curvature of the G1 and G2 continuity paths.

Figure 4: 100m deviation optimized path using Q3.

Figure 5: 100m deviation optimized path.

Table 4: Control points for an aircraft changing airways.
1nm=1852m X(m) Y(m) Z(m)

P1 0 92,600 10,000
P2 92,600 92,600 10,000
P3 92,600 0 10,000

Table 5: Arc lengths and times at different velocities
Arc length(m) Time(s)

170m/s 200m/s 230m/s
t0 0 0 0

l1 46,300 t1 272.35 231.5 201.30
l2 84,571 t2 769.83 654.35 569
l3 46,300 t3 1,042.18 885.85 770.3

shown. Now, lets consider three different speeds for an aircraft to go through these control points, the numerical
values of the timestamps where the Bezier curves are joined change according to Table 5. Also, the transition
between legs will generate different load factors depending on the speed, shown in Figure 7. On the other hand,
independent from the speed, the curvature of the path remains constant. Once that the relation of the load-
factor and velocity is stated, lets explore the curvature constrains due to load factor limits keeping a constant
velocity. In the example above, the distance from the trajectory to the point P2 is 7,161.66m, so, lets propose
the trajectory of an aircraft turning closer to P2 with a constant velocity of 200m/s. If the optimal reshaping
of Section 3 is asked to modify the trajectory such that a maximum of 10m deviation from P2 is achieved, the



Figure 6: Control points of example with Arc lengths and Times.

Figure 7: Load factor at different velocities.

Table 6: Auxiliary control points to force a high load factor
X(m) Y(m) Z(m)

Paux1 77,043.2 92,600 10,000
Paux2 92,600 77,043.2 10,000

load factor remains within bounds. This scenario is depicted in Figure 8, where a zoom to P2 shows how the
generated trajectory is bended before and after the control point to satisfy the maximum deviation constraint.
The load factor of the generated trajectory reaches a pike of ≈1.425g and a curvature of ≈2.5x10−4(m−1). The
distance from this trajectory to P2 is 1.36m.
Consequently, in order to have a trajectory close to the control point P2 while increasing significantly the load
factor, two auxiliary control points are added (see Table 6), such that the direction of the path is not bended,
like in the case when the optimal reshaping is done. A zoom close to the control point P2 shows the generated
trajectory, which passes at a distance of 1,203.15m from P2 (Fig. 8). Under this conditions, the load factor
reaches the 2.5g limit. The curvature of the path pikes at ≈5.6x10−4(m−1), close enough to the 1,779.55m
radius limit stated at the end of Section 3. Thus, if an aircraft at 200m/s is commanded to pass through "L"
shape control points, a single turn maneuver leaves the aircraft at 1,203.15m from the middle control point
before infringing load factor limits, on the other hand, the proposed reshaping algorithm generates a flyable
trajectory at 1.36m from the same point. Numerical computations can be done for any other velocity and the
pitching motion.

5 CONCLUSIONS

As the curvature of the path is forced to be zero at the joints between Bezier curves,G2 continuity is assured. As
the time interval for each Bezier curve needs to be known for the time-parametrization, velocity/time constraints
are assumed, leading to an inherent computation of the arc length for each Bezier curve. The closer the optimal
path is to the control points, the bigger the curvature becomes, such that a maximum curvature is defined and
controlled by the deviation distance defined by the user, establishing a tradeoff between curvature-speed-load
factor of the trajectory. This approach for 4D smooth trajectories generation, opens the way to 4D guidance
along the time-parametrized Bezier curves under path and flyability constraints. The adoption of these trajecto-
ries should ease air traffic management in congested areas, helping to solve air traffic conflicts and improving



Figure 8: Trajectories close to P2 with a 10m maximum deviation and forcing a maximum load factor.

on-board guidance systems performance.
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