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Abstract 
Cognitive workload is of central importance in the fields of human factors and ergonomics. A 

reliable measurement of cognitive workload could allow for improvements in human machine 

interface designs and increase safety in several domains. At present, numerous studies have 

used electroencephalography (EEG) to assess cognitive workload, reporting the rise in 

cognitive workload to be associated with increases in theta band power and decreases in alpha 

band power. However, results have been inconsistent with some failing to reach the required 

level of significance. We hypothesized that the lack of consistency could be related to 

individual differences in task performance and/or to the small sample sizes in most EEG 

studies. In the present study we used EEG to assess the increase in cognitive workload 

occurring in a multitasking environment while taking into account differences in performance. 

Twenty participants completed a task commonly used in airline pilot recruitment, which 

included an increasing number of concurrent sub-tasks to be processed from one to four. 

Subjective ratings, performances scores, pupil size and EEG signals were recorded. Results 

showed that increases in EEG alpha and theta band power reflected increases in the 

involvement of cognitive resources for the completion of one to three subtasks in a 

multitasking environment. These values reached a ceiling when performances dropped. 

Consistent differences in levels of alpha and theta band power were associated to levels of 

task performance: highest performance was related to lowest band power. 

Keywords 
Cognitive workload; Electroencephalography; Multitasking, spectral power. 

Highlights 
Theta band spectral power increased with increase of cognitive load and reached a plateau 

after overload. 

Theta and alpha bands spectral power allowed to distinguish participants based on their 

performances during task completion, better performers generating lower levels of spectral 

power. 



Alpha band spectral power allowed differences to be distinguished according to the cognitive 

resource involvement during the task. 
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Introduction 
Cognitive workload is considered as an important factor in human performance, affecting 

human error, system safety, productivity and operator satisfaction (Xie & Salvendy, 2000). It 

can be defined as “the proportion operator information processing capacity or resources that is 

actually required to meet system demands” (Eggemeier, Wilson, Kramer & Damos, 1991; 

Cain, 2007; see also Moray, 1979; Vidulich & Tsang, 2012 for reviews), the amount of 

cognitive resources being limited (e.g., Broadbent, 1958). These cognitive resources mainly 

refer to attentional resources (Patten, Kircher, Östlund, Nilsson, & Svenson, 2006; Hollands 

& Wickens, 2000; Wickens, 1991; 2008) and to working memory capacity (Brouwer et al., 

2012; Berka et al., 2007; Grimes, Tan, Hudson, Shenoy & Rao, 2008) both of them 

representing the cognitive processes involved in cognitive workload (Sauseng, Klimesch, 

Schabus, & Doppelmayr, 2005). This concept of cognitive workload has raised many 

theoretical concerns (Tricot & Chanquoy, 1996), but “perhaps the most basic issue in the 

study of cognitive workload is the problem of how to actually measure it” (Gevins & Smith, 

2003). 

When assessing cognitive workload, three different measurements are usually distinguished: 

behavioral, subjective and physiological (Vidulich & Tsang, 2012; Cegarra & Chevalier, 

2008; Kramer, 1990; Cain, 2007). They provide different information and are only rarely 

correlated (Funke et al., 2013), which lead to the hypothesis that these measurements reflect 

different aspects of the cognitive workload phenomenon (Matthews, Reinerman-Jones, Barber 

& Abich, 2015; Cain, 2007). 

The present study focused on physiological measurements of cognitive workload, mainly 

using electroencephalography (EEG), however other techniques such as pupillometry might 

also provide valuable insight. 

Pupil diameter is assumed to reflect general arousal and has also been shown to reflect 

variations of workload (Beatty & Lucero-Wagoner, 2000 for a review) either during 

laboratory experiments (Kahneman & Beatty, 1966; Peavler, 1974) or during more 

ecologically-valid tasks (Just & Carpenter, 1993; Ahlstrom & Friedman-Berg, 2006; Stein, 

1992). Pupil size increases with cognitive effort (Kahneman, Tursk, Shapiro, & Crider, 1969; 



Iqbal, Adamczyk, Zheng & Bailey, 2005), in response to inhibition which is assumed to 

consume attentional resources (Laeng, Ørbo, Holmlund, & Miozzo, 2011; Chiew & Braver’s, 

2013) and thus also with attentional load (Lisi, Bonato & Zorzi, 2015). However, pupil size 

may vary with luminosity (Beatty & Lucero-Wagoner, 2000 for a review) and with other, 

non-cognitive, factors, such as physical effort (Richer & Beatty, 1985). Despite these 

limitations, pupil size analysis remains a good indicator of cognitive load variations in 

laboratory experiments (Beatty & Lucero-Wagoner, 2000). 

EEG is another extensively used to assess cognitive workload (Ke et al., 2014). When using 

EEG, it seems necessary to rely on studies that focus on the cognitive determinants of the 

cognitive workload, mainly attention and working memory (e.g., Wickens, Kramer, Vanasse 

& Donchin, 1983). By explaining the implications of different resources, studies on cognitive 

determinants may help to reconcile divergent results on cognitive workload measurements. 

While studies of cognitive processes used laboratory settings, cognitive workload studies 

often used more ecologically-valid tasks. This difference might be the source of 

inconsistencies between the two domains. Nonetheless, explaining attention and working 

memory processes might help to understand variations in the measurements of cognitive 

workload. In the next sections, we will firstly present empirical findings of laboratory studies 

on EEG markers of attention and working memory. Secondly, we will present empirical 

findings of ecologically-valid studies on EEG cognitive workload assessments. 

EEG markers of attention and working memory 

Attention and working memory share parts of the same cerebral regions.  However, it remains 

unclear whether they share the same networks and are different functions emerging from these 

networks or whether they rely on distinct ones (LaBar, Gitelman, Parrish, & Mesulam, 1999). 

Working memory is supported by prefrontal cortex and parietal areas (Sauseng et al., 2005), 

the left parietal lobe supporting the phonological loop (Ravizza, Behrmann, & Fiez, 2005) and 

the right parietal lobe supporting the visuo-spatial sketchpad (see d’Esposito et al., 1998 for a 

review, but see also LaBar et al., 1999). Activation of frontal and right parietal cerebral 

regions, reflected by a synchronization in the theta band (4-8 Hz) and a desynchronization in 

the alpha band (8-12 Hz), is sensitive to working memory load (see Schacter, 1977; Basar, 

Basar-Eroglu, Karakas & Schürmann, 2001; Kahana, Seelig, & Madsen, 2001; Klimesch, 

1999 for review). Fronto-parietal theta power has been linked to working memory capacity in 

numerous studies (Sauseng, Griesmayr, Freunberger & Klimesch, 2010; Klimesch, 1996), 

with a higher level of theta band spectral power elicited reflecting lower working memory 

capacity (Klimesch, Vogt & Doppelmayr, 1999; Klimesch, 1999). These differences might be 

due to different amounts of cognitive resources available as well as to differences in strategies 

used to complete the task or perhaps an interaction between the two hypotheses (Gulbinaite, 

Johnson, de Jong, Morey & van Rijn, 2014). 

In a similar manner, the solicitation of attentional resources has been linked mainly to a 

desynchronization of the alpha band (Klimesch, 1996; Klimesch, Doppelmayr, Russeger, 

Pachinger & Schwaiger, 1998) and theta band synchronization (Gevins & Smith, 2000). Both 

processes share the same cerebral regions and vary in the same way for numerous tasks, but 

alpha band synchronizations were also found during tasks soliciting frequent task switching 



(Pope, Bogart & Bartolome, 1995). Other studies also found alpha band power to increase 

with task demand; (Borghini, Astolfi, Vecchiato, Mattia & Babiloni, 2014; Kamzanova, 

Kustubayeva & Matthews, 2014; Zhao, Zhao, Liu & Zheng, 2012). Recently, it was proposed 

that both alpha band synchronization and desynchronization might be responsible for two 

different working memory maintenance mechanisms (Capilla, Schoffelen, Paterson, Thut & 

Gross, 2014). As a result, alpha band synchronization would support interfering item 

inhibition (Rihs, Michel & Thut, 2007) while alpha band desynchronization would support 

relevant item maintenance (Fukuda, Mance & Vogel, 2015). 

EEG related workload assessment 

Despite differences between laboratory settings and ecologically-valid experiments, results 

obtained in both fields are mostly consistent. Indeed, EEG has often been used to assess 

changes in mental workload and is probably the “most studied mental workload indicator” 

(Ke et al., 2014; Gevins et al., 1998). Considering EEG methods, an increase in workload is 

said to be associated with theta synchronization and with an alpha desynchronization, mainly 

at frontal and parietal sites, (Smith, McEvoy, & Gevins, 1999; Antonenko, 2007). 

In eliciting cognitive workload, two approaches are usually employed. The first consists in 

increasing the difficulty of the task, with the assumption that the more processing steps the 

task requires in a time unit, the higher the cognitive workload (Johannsen, 1979). The second 

way is to use multitasking paradigms, since the number of concurrent tasks to be processed is 

one of the major determinants of cognitive workload (Schvaneveldt, 1969; Yeh & Wickens, 

1988; Rogers & Monsell, 1995). 

Alpha spectral power variations 

Alpha spectral band power has been shown to decrease with increased task difficulty 

(Sterman & Mann, 1995; Klimesch, 1999; Ota, Toyoshima, & Yamauchi, 1996), as well as 

with increased memory load (Fairclough & Venables, 2006; Ryu & Myung, 2005; Sterman & 

Mann, 1995; Fairclough, Venables, & Tattersall, 2005; Fournier, Wilson & Swain, 1999; 

Gevins et al., 1998; Smith, Gevins, Brown, Karnik, & Du, 2001). In the same way, alpha band 

power decreases with the increase in experienced time pressure (Slobounov, Fukada, Simon, 

Rearick, & Ray, 2000). This decrease in alpha brain waves is mainly located in the occipital 

and parietal brain locations and may be modulated by high inter-individual variations 

(Klimesch, 1999; Kramer, 1990). It is usually attributed to modulation due to task related 

attention demand, but the mere onset of the task may sometimes be sufficient to cause the 

suppression of alpha waves (Valentino, Arruda, & Gold, 1993). 

Theta spectral power variations 

On the other hand, theta spectral power is thought to increase along with numerous other 

factors, such as time pressure (Slobounov et al., 2000) cognitive resource demand (see 

Vidulich & Tsang, 2012 for a review) and the number of concurrent tasks to be processed 

(Yamada, 1998; Fairclough & Venables, 2006; Fairclough, Venables, & Tattersall, 2005). 

This increase is mainly observed in fronto-central regions, though these locations may be 

modulated by age (McEvoy, Pellouchoud, Smith, & Gevins, 2001). However, using 



increasingly difficult tasks to elicit consistent patterns of increasing theta spectral power has 

been proved inefficient in numerous studies (Käthner, Wriessnegger, Müller-Putz, Kübler, & 

Halder, 2014; Fournier, Wilson and Swain, 1999; Baldwin and Penaranda, 2012; Funke et al., 

2013) or revealed inconsistent patterns (Brookings, Wilson & Swain, 1996; Pigeau, Hoffman, 

Purcell & Moffitt, 1988). For example, Gevins and his colleagues (1995) reviewed three of 

the experiments of their team using tasks of increasing difficulty (Gevins & Schaffer, 1980; 

Gevins et al., 1979; Gevins, Zeitlin, Doyle, Schaffer, & Callaway, 1979). None of these 

revealed a significant increase of theta band power in relation to the difficulty of the task. 

Increasing the number of concurrent tasks to be performed simultaneously, also led to either 

no pattern or an inconsistent one in different studies (Holm, Lukander, Korpela, Sallinen, & 

Müller, 2009; Fournier, Wilson & Swain, 1999). Moreover, according to a review by Kramer 

(1990), theta band power should decrease with an increasing cognitive workload, a result 

already reported in Sirevaag, Kramer, DeJong and Mecklinger (1988) and in Natani and 

Gomer (1981). 

Hypothesis on results differences 

The lack of consistent variations in EEG theta rhythms and an incoherent pattern might arise 

from two possible methodological issues. Either these studies used paradigms where the low 

workload condition demanded too many cognitive resources to allow for significant variations 

with other workload conditions (see Kramer, 1990 for a discussion of this point) or the inter-

individual differences overshadowed the variations elicited by the task manipulations. The 

first explanation was suggested by Kramer (1990) who compared EEG patterns with regard to 

theta rhythm in three studies (Sirevaag et al., 1988; Natani & Gomer, 1981; Pigeau et al., 

1988). He remarked that the differences in theta rhythm were due to differences in the 

difficulty in the initial task. 

The second concerns a statistical issue occurring when too few subjects with high differences 

perform the same tasks. Differences between participants will elicit high variations while 

differences due to the task are considered as negligible using a statistical test of hypothesis. 

None of these studies have tried to form clusters of participants based on their performances 

and to compare the theta spectral measurements of these clusters. Such cluster analysis might 

reduce the influence of inter-individual differences since different participants might generate 

different levels of theta spectral activity according to their cognitive resources (Beatty & 

O’Hanlon, 1979; Beatty, 1977; Valentino, Arruda & Gold, 1993). 

The present study 

In this experiment, we took into account both concerns. Firstly, we induced cognitive 

workload increase by increasing the number of subtasks to perform simultaneously, starting 

with a very easy monitoring subtask and ending with a complex multitasking environment. 

Thus, we maximized the likelihood of variations in the level of cognitive workload. 

Moreover, we used also subjective and pupil size measurements in order to check for these 

variations. Secondly, we collected data on a large group of participants (n = 20) in order to 

group participants with similar performances and thus avoid to confound inter-individual 

differences and differences among workload conditions.  



More precisely, we used a multitasking protocol employed in a French airline pilot 

recruitment. It proposes an increasing number of tasks to be processed, rising from one to four 

concurrent multitasks. Since the number of concurrent sub-tasks has proved to be an efficient 

way to induce increasing levels of cognitive workload, we expected this protocol to generate 

increasing cognitive workload starting with a low level. We used behavioral, subjective and 

pupil size measurements as overall cognitive workload indicators to compare with EEG 

variations. We computed a cluster analysis based on performance and calculated EEG spectral 

power for each homogeneous group. 

We anticipated that theta band power level would increase with a rising number of 

concurrently processed sub-tasks, this level being higher for the lower performance group. As 

our multitasking setting imposed a larger need to inhibit concurrent sub-tasks while 

processing than to maintain relevant items in working memory, we also expected alpha band 

power to increase, with differences between the performance-based clusters. However, given 

the nature of the task used we did not expect to be able to make any hypothesis on the nature 

of the differences of processing observed, whether related to cognitive resource capacity or to 

strategy use. 

Method 

Participants 

Twenty participants took part in this study (14 women and 6 men), aged from 19 to 38 (mean 

age = 27.25 sd = 3.88). Most of them (16) were right handed. The mean number of college 

years after graduation was 4.1 (sd = 1.57). They all volunteered for this experiment and were 

not paid. They all gave an informed verbal consent before their participation. 

Material 

Pupil size was recorded using an EyeLink 1000 remote eye-tracker (SR Research Ltd., 

Mississauga, Ontario, Canada) connected to a Pentium IV 3.0GHz computer. This eye-tracker 

has a spatial accuracy greater than 0.5, and a 0.01 spatial resolution. The sampling rate was 

set to 1000Hz. The camera was placed at a distance of 20cm from the screen and the eye-

camera distance was 60cm. A chin and forehead rest was used to maintain these distances and 

to avoid head movements. We used a display screen DELL 19” with a refresh rate of 75 Hz 

and a resolution of 1024 x 768 pixels. All eye-tracking data was extracted using the SR 

Research default algorithm. Simulation room lighting was maintained constant. The 

luminance was constant across all phases of the study (i.e., 212 lux as measured a posteriori 

with an analogical luxmeter Extech 401025). 

EEG was continuously recorded using a 32-channel BioSemi ActiveTwo system (BioSemi, 

Amsterdam, Netherlands) connected to an Intel i5 3.0 GHz computer. Electrodes were 

mounted on an elastic head cap and located at standard positions on the left and right 

hemispheres at frontal, central, parietal, occipital and temporal locations (10/20 international 

system): Fp1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, Pz, PO3, O1, Oz, O2, PO4, 

P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, AF4, Fp2, Fz, Cz. Due to the frontal 



localization of the electrodes Fp1 and Fp2, their data was excluded as it was contaminated by 

occasional contacts with the forehead rest, producing exceedingly high electrical values. Only 

the data from the 30 remaining electrodes was used. The impedance of the electrodes was 

always lower than 3 kΩ, and EEG data was recorded with a 512 Hz sampling frequency and 

filtered during the offline analysis with a Butteworth band pass of 0.01-40 Hz. In addition, the 

Horizontal Electro-OculoGram (HEOG) was recorded from a bipolar installation with 

electrodes placed 1 cm to the left and right of the external canthi; the Vertical (VEOG) was 

recorded from a bipolar montage with electrodes placed beneath and above the right eye, to 

detect blinks and vertical eye movements. The EEG was re-referenced offline from the 

algebraic average of two electrodes positioned on the left and right mastoids. EEG data was 

then processed using the BrainVision Analyzer (v2.4) software and corrected for eye 

movements by using an independent component analysis (ICA) based correction with the 

addition of VEOG and HEOG channels. 

Subjective workload measurements were recorded after each phase of the task, using a 

computerized version of Nasa-Tlx. Participants rated each of the six dimensions by moving a 

cursor on a scale ranging from 0 to 100. Behavioral performances were recorded during the 

entire experiment based on instantaneous performance on each subtask. 

Procedure 

The multitasking situation adopted was the Priority Management Task, currently used at the 

ENAC (Ecole Nationale de l’Aviation Civile, the French civil aviation university) for airline 

pilot student selection. It includes four phases of progressive difficulty during which 

participants had to manage one to four tasks simultaneously. During the first phase, called the 

gauge monitoring task, participants had to monitor four gauges by using the left joystick. 

Periodically (each 15s), one or more of the gauges needles drifted from their location. Before 

the first phase, participants were allocated one minute to train with the same task. During the 

second phase, participants had to deal simultaneously with the first sub-task (gauge 

monitoring) and the second sub-task, called the tracking task. In this second sub-task, 

participants had to maintain a white cross in a white circle by using the right joystick. 

Periodically (each 15s), the white circle moved rapidly from its previous location. This second 

phase was also preceded by one minute of training with the two sub-tasks. During the third 

phase, participants had to simultaneously manage the first two sub-tasks in addition to a third, 

the letter detection by using the keys F1 to F9. In this sub-task, a series of three target letters 

were presented and participants had to detect them in a block of nine letters by pressing the 

corresponding keys on the keyboard. Periodically (each 15s), the series of nine letters was 

renewed. This third phase was preceded by one minute of training with the three sub-tasks. 

During the fourth phase, represented in Figure 1, participants had to manage the first three 

sub-tasks and a fourth, a mental arithmetic sub-task. In this sub-task, participants had to 

answer to a series of easy mental arithmetic problems (for example: “what is 11% of 500?”) 

by using the number keypad and then validating their answer. A new problem was presented 

each 15s. This fourth phase was preceded with training on the four sub-tasks for one minute. 

Importantly, the subtask events were synchronized, forcing the participant to make choices. 



During each phase, instantaneous performance on each sub-task and global performance were 

displayed to participants. At the end of each of the four phases, participants rated the six 

dimensions of the Nasa-Tlx questionnaire (Hart & Staveland, 1988) using a computer version 

and after the last phase they completed both the dimension and the pair comparisons. The 

entire experimental protocol lasted one hour. 

 

Figure 1: Experimental protocol. During Phase 1, participants had to manage task “A”, the 

gauge monitoring task. During Phase 2, they had to simultaneously perform task “A” and “B”, 

the tracking task. In Phase 3, the task “C”, letter detection was added to the first two tasks and 

during Phase 4, the participants had to solve small calculation problems at the same time as 

the three precedent sub-tasks. During the whole task, instantaneous performance was 

displayed to the participants (top of the screen). 

Data processing 

EEG signal processing: The signal was segmented at the end of each phase, resulting in four 

segments of different length according to the phase. Then the signal was divided into 10s 

length segments with an overlap of 5s. Then a Fast Fourier Transform (FFT) using a hamming 

window was applied to each segment to avoid differences due to segment size on band power 

calculation. The average power associated with each frequency band according to the two 

rhythms Theta (4-8Hz) and Alpha (8-12Hz) during each of the four experimental phases were 

then calculated. These values were then log transformed to achieve normal distributions. 

B 

A 
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Dependent variables and statistical analysis 

Raw Nasa-Tlx scores for each dimension were averaged to compute a global score. 

Performance data were obtained each 100ms for each subtask during each phase. A global 

performance measurement was computed by averaging sub-task performance. To prevent the 

participants giving up with one sub-task, global performance dropped to zero when one of the 

four sub-task performances fell below a threshold of 10%. A global score was then computed 

by averaging the global performance across the phase. This global performance score ranged 

from 0 to 150. Pupil size measurements were transformed into a z-score taking training phases 

into account. 

Results 
The results of the different measures are summarized in Table 1 and detailed below. 

Nasa-Tlx: The global Nasa-Tlx score increased significantly with the number of tasks to 

process, F(3,57) = 74.56, p<.001, η2
partial = .797, see Figure 2 left panel. Further pair 

comparisons using a LSD test showed a significant increase between phases (all ps<.001). 

Pupil size analysis: The z-score measurement of pupil size increased significantly with 

the number of tasks to process, F(3, 57) = 21.57, p<.001, η²partial = .532. Post-hoc analysis 

revealed a significant increase between the three first phases (all ps<.02) but only a 

marginally significant difference between phases 3 and 4 (p = .10). Since performances 

feedback represented less than 5% of the fixations at any phase, this AOI was not further 

considered. 

  Phase 1 Phase 2 Phase 3 Phase 4 

Nasa-Tlx 

Overall 3,28 (1,57) 5,17 (1,75 5,93 (1,68) 7,22 (1,68) 

Cluster High 3,68 (1,41) 5,05 (1,84) 5,58 (1,63) 7,02 (1,33) 

Medium 2,37 (1,10) 5,01 (1,83) 5,98 (1,72) 7,12 (2,18) 

Low 4,88 (2,66) 6,41 (0,78) 7,37 (0,39) 8,57 (0,31) 

Performance 

Overall 126,07 (27,50) 118,57 (40,47) 112,64 (32,77) 92,676 (26,55) 

High 137,36 (7,85) 135,94 (6,99) 127,77 (7,16) 111,87 (4,97) 

Medium 128,27 (8,72) 125,80 (7,68) 116,68 (8,49) 84,638 (10,15) 

Low 60,81 (58,80) 2,74 (1,79) 20,85 (13,21) 28,845 (10,03) 

DP 

Overall -0,79 (0,62) -0,45 (0,33) -0,03 (0,31) 0,18 (0,18) 

High -1,02 (0,60) -0,44 (0,30) 0,050 (0,19) 0,20 (0,15) 

Medium -0,68 (0,42) -0,38 (0,37) -0,16 (0,42) 0,20 (0,16) 



Low -0,14 (1,20) -0,74 (0,24) 0,026 (0,29) -0,01 (0,34) 

EEG Theta 

Overall 4,88 (0,82) 5,01 (0,79) 5,34 (0,91) 5,33 (0,91) 

High 4,55 (0,77) 4,72 (0,78) 5,10 (0,99) 5,11 (1,01) 

Medium 5,11 (0,72) 5,24 (0,66) 5,54 (0,74) 5,48 (0,74) 

Low 5,58 (0,65) 5,59 (0,66) 5,76 (0,74) 5,80 (0,73) 

EEG Alpha 

Overall 4,17 (0,91) 4,31 (0,89) 4,46 (0,89) 4,44 (0,91) 

High 3,80 (0,80) 3,97 (0,83) 5,10 (0,87) 5,11 (0,89) 

Medium 4,47 (0,81) 4,58 (0,73) 4,72 (0,74) 4,68 (0,78) 

Low 4,78 (1,09) 4,92 (1,08) 4,85 (1,05) 4,92 (1,03) 

Table 1 : Means (and Standard Deviation) of the measures of the study, across all participants 

and by cluster based on performances. 

Performances: Performance scores varied significantly with the number of tasks to 

process, F(3,57) = 22.24, p<.001, η2
partial = .539. When comparing phases, performances did not 

significantly decrease between phase 1 and phase 2 (M1 = 126.07 and M2 = 118.57 

respectively, p = .161) but phase 1 was significantly higher than phase 3 (M3 = 112.645, 

p = .003) and higher than phase 4 (M4 = 92.676, p<.001). Phase 2 was not significantly higher 

than phase 3 though marginally different (p = .063), but was significantly higher than phase 4 

(p<.001). Performance decreased significantly between phase 3 and phase 4 (p<.001). The 

lack of significant difference between performance in phases 1 and 2 might be accounted for 

by the lack of sensitivity of performance based workload measurements already mentioned: 

Performance measurements might be maintained at a specified acceptable level while the 

cognitive workload rises to maintain this level (Wickens, 2002; 2008). 

Participants could be gathered into three different groups, particularly during the fourth phase. 

Thus we used performance at this most demanding phase (phase 4) to split participants into 

different clusters. A hierarchical cluster analysis using the Ward method revealed three 

clusters of participants based on their performances (see Figure 2, top panel). The first cluster 

gathered higher performers, with raw scores on phase 4 ranging from 105.6 to 118.9. A 

second cluster gathered medium performers, with performances on phase 4 ranging from 67 

to 97.3. The third cluster comprised two participants with very low performances (ranging 

from 21.7 to 35.9). When splitting performance data by cluster, a repeated measure ANOVA 

following the phase performed on each cluster revealed significant differences for cluster 1, 

“higher performers” (F(3,27) = 42.11, p<.001, η2
partial = .82) and for cluster 2, “medium 

performers” (F(3,21) = 36.97, p<.001, η2
partial = .84). The third cluster, comprising only two 

participants, showed no significant performance differences according to the phase 

(F(3,3) = 1.30, p = .42) with their performances remaining at a low level for each phase. For 

higher performers, pair comparisons revealed no decrease between phase 1 and phase 2 

(p = .29) but a significant decrease between phase 2 and phase 3 (p = .009) and also between 



phase 3 and phase 4 (p = .001). The same analysis for the medium performers revealed a 

similar pattern: No differences between phase 1 and phase 2 (p = .57), nor between phase 2 

and phase 3 though there was a trend (p = .051) and a significant decrease between phase 3 

and phase 4 (p<.001). 

 

Figure 2: Means and standard errors (1 SE) for subjective ratings and performance data. Two 

main clusters emerged from the performance data, the two remaining participants being 

gathered into a third cluster. Subjective ratings increased between each phase while 

performance decreased significantly only between phase 3 and phase 4. Pupil size increased 

between all phases significantly except between phase 3 and phase 4, where the increase was 

only marginal. 

Electroencephalography: For each rhythm we performed a two-way ANOVA with 

Electrodes (28) and Phases (4) as within factors. Since most of the previous studies focused on 

frontal electrodes when analyzing theta spectral feature data and on parietal electrodes 

regarding the alpha rhythm, we reproduced our analysis on five electrodes centered on these 

areas. Considering the low sample size of the low performers cluster (n = 2), this cluster was 

removed from all ANOVAs. However, low performers’ data was analyzed descriptively as we 

were interested in comparing their levels of frequency band spectral powers to those of 

medium and higher performers. We focused our analysis (1) on global level differences 

between medium and higher performer clusters, (2) on band frequency differences across 



phases for each cluster, when the number of concurrent tasks increased. We then used planned 

comparisons to compare clusters and phases. 

Theta rhythm: A repeated measures Anova with the Cluster as a between subject factor and 

the 28 electrodes and the four phases as intra-participants variables revealed a main effect of 

the cluster, for the theta rhythm F(2,162) = 5.20, p = .017, η2
partial = .060. Analyses of the theta 

rhythm are illustrated in Figure 3. Considering cluster comparisons, the medium performers 

cluster exhibited a significantly higher level of theta spectral power than the higher 

performers cluster at phase 1, F(1,16) = 7.23, p = .02, at phase 2, F(1,16) = 6.93, p = .02, and at 

phase 3, F(1,16) = 4.80, p = .04, but not at phase 4, F(1,16) = 2.91, p = .11. Thus, except for the 

highest workload level, higher performers had lower theta spectral power than medium 

performers. Moreover, in descriptive terms, theta spectral power for low performers was 

higher than for that of the medium performers cluster at each phase. 

Considering phase comparisons, when focusing on the higher performers cluster, theta 

spectral power increased between phase 1 and phase 2, F(1,16) = 13.36, p = .002, between 

phase 2 and phase 3, F(1,16) = 21.52, p<.001, but not between phase 3 and phase 4, F(1,16) = 

0.08, p = .77. When considering the medium performers cluster, the same pattern was 

observed with an increase between phase 1 and phase 2, F(1,16) = 6.12, p = .02, between phase 

2 and phase 3, F(1,16) = 10.69, p = .005, but not between phase 3 and phase 4, F(1,16) = 0.96, 

p = .34. To summarize, for higher as for medium performers, theta spectral power increased 

from one to three concurrent tasks and then reached a plateau. Adding a fourth task resulted in 

no increase. In the meantime, both low performers exhibited a smaller increase between 

phases 1 and 4 than the mean of medium or high performers. 

Based on the literature, five electrodes were selected as particularly relevant for the analysis 

of the theta band frequency on frontal localization. A repeated measures Anova, including the 

two main regions of interest (frontal and parietal) and the cluster as a between subject factor 

revealed a significant effect of the phase (F(3,51) = 18.29, p < .001, η2
partial = .518) the region 

(F(2,51) = 8.17, p = .011, η2
partial = .325 and of the cluster (F(2,17) = 4.09, p = .036, 

η2
partial = .325). The theta rhythm appeared to be higher for the frontal region than the parietal 

region (p = .011) though the interaction between region and cluster was not significant 

(F(2,17) = 0.13, p = .883, η2
partial = .014) nor was the interaction between phase and cluster 

(F(3,51) = 1.42, p = .227, η2
partial = .143). 

Performing the same analysis as previously, based on cluster with these five electrodes 

centered only in the frontal area (Fz, F3, F4, F7 and F8) did not allow to discriminate between 

phase 1 and phase 2 neither for the higher performers cluster, F(1,16) = 2.67, p = .121, nor for 

the medium performers cluster, F(1,16) < 0.01, p = .954. 



 
Figure 3: EEG Theta spectral power of the entire scalp for phase 1 to 4 from the top to the 

bottom respectively. From the left to the right, higher performers, medium performers and 

lower performers. 



Alpha rhythm: A repeated measures Anova with the Cluster as a between subject factor and 

the 28 electrodes and the four phases as intra-participants variables revealed no significant 

main effect of the cluster for the alpha rhythm F(2.162) = 2.21, p = .140, η2
partial = .027. 

Following Howell (2007, pp. 366-367) commenting Wilcox (1987), further analysis were 

nevertheless performed similarly as with theta rhythm. Analyses of the alpha rhythm are 

illustrated in Figure 4. Considering cluster comparisons, the medium performer cluster 

exhibited higher alpha spectral power than the higher performer cluster during the first three 

phases though these differences were only marginally significant (phase 1: F(1,16) = 3.90, p = 

.07; phase 2: F(1,16) = 3.70, p = .07; phase 3: F(1,16) = 3.66, p = .07). There was no significant 

difference at phase 4, F(1,16) = 2.92, p = .11. Moreover, from a descriptive viewpoint, low 

performers exhibited higher levels of alpha spectral power than the medium and higher 

performers clusters during each phase. Thus, alpha spectral power tended to be higher for 

lower than for higher performers. 

Considering phase comparisons, higher performers’ alpha spectral power increased 

significantly between phase 1 and phase 2 F(1,16) = 10.20, p = .006, between phase 2 and 

phase 3, F(1,16) = 14.73, p = .001 but not between phase 3 and phase 4, F(1,16) = 0.20, p = .66. 

The medium performers cluster presented the same pattern, with a marginally significant 

difference between phase 1 and phase 2 F(1,16) = 3.97, p = .06, a significant increase between 

phase 2 and phase 3 F(1,16) = 5.89, p = .03 and no difference between phase 3 and phase 4 

F(1,16) = 0.54, p = .47. Therefore, as for theta spectral power, alpha spectral power tended to 

increase from one to three concurrent tasks and to reach a plateau after the addition of the 

fourth task. 

Based on the literature, five electrodes were gathered to examine parietal variations in the 

alpha band frequency. A repeated measures Anova, including the two main regions (frontal 

and parietal) and the cluster as a between subject factor revealed a significant difference 

following the phase (F(3,51) = 10.38, p < .001, η2
partial = .379) but not following the region 

(F(1,17) = 0.59, p = .455, η2
partial = .033) nor the cluster (F(2,71) = 1.86, p = .185, η2

partial = .180) 

though the interaction between region and cluster appeared marginally significant 

(F(2,17) = 3.16, p = .068, η2
partial = .271. The interaction between phase and cluster showed no 

significant effect (F(6,51) = 1.25, p = .398, η2
partial = .128).  

Considering only the five electrodes (Pz, P3, P4, P7 and P8) in the parietal area showed an 

increase in alpha spectral power between phase 1 and phase 2 for both groups (F(1,16) = 9.84, 

p = .006 and F(1,16) = 6.11, p = .02 for higher and medium performers clusters respectively). 

Alpha spectral power also increased between phase 2 and phase 3 for both higher and medium 

performers, F(1,16) = 6.71, p = .02 and F(1,16) = 6.59, p = .02 respectively but not between phase 

3 and phase 4, F(1,16) < 0.01, p = .97 and F(1,16) = 0.99, p = .33 respectively. Thus, the same 

pattern was observed as for the entire scalp. 



 
Figure 4: EEG Alpha spectral power all over the scalp for phase 1 to 4 from the top to the 

bottom respectively. From the left to the right, higher performers, medium performers and 

lower performers. 



Discussion 
Many authors consider that an increase in cognitive workload is associated with an increase in 

theta band frequency and a decrease in alpha band frequency (Vidulich & Tsang, 2012, for a 

review) during ecologically-valid tasks. Nevertheless, a deeper look at the empirical findings 

revealed that these differences were not systematically observed (Kramer, 1990; Sirevaag et 

al., 1988; Natani & Gomer, 1981; Fournier, Wilson & Swain, 1999; Holm et al., 2009; Funke 

et al., 2013). However, on laboratory tasks more systematic variations on theta and alpha 

band frequencies characterized working memory and attention solicitation (Klimesch, 1999). 

We hypothesized, based on previous studies on cognitive workload, firstly that some 

workload manipulations might not have been effective or might have reached a plateau. 

Secondly, there could have been individual differences in absolute spectral band frequencies 

relative to performance differences or in attention allocation and working memory solicitation 

strategies used to perform the task. This might have brought noise into the data and masked 

band frequency differences. During this experiment, (1) we recorded subjective ratings as 

well as pupil size in order to confirm the workload manipulation and (2) we collected data for 

a large sample of participants (20) in order to enable cluster analysis based on performances. 

Our participants had to manage an increasing number of concurrent subtasks in a complex 

multitasking environment used in pilot selection. Subjective ratings as well as pupil size 

variations increased with the addition of concurrent tasks from one to four. Thus, converging 

elements were in favor of an increase in cognitive demands imposed by the task across 

phases. Furthermore, behavioral results allowed distinguishing three different clusters of 

participants based on their performances at the fourth task phase. 

Electroencephalographic data indicated an increase in the theta band in line with the number 

of concurrent tasks to perform until reaching a plateau for three and four concurrent tasks. 

This pattern was observed for medium and higher performers but not for low performers who 

appeared to reach a plateau from the beginning of the first task. This increase was consistent 

with previous studies indicating a link between theta spectral power and task demand (e.g., 

Klimesch, 1999 for review) or with the number of tasks to be performed (Fournier, Wilson & 

Swain, 1999; Gevins & Smith, 2003; Holm et al., 2009; see Borghini et al., 2014 for a 

review) and while other studies failed to replicate this increase in theta spectral power 

according to the task demands, our results showed the expected pattern. Some studies failed to 

discriminate between one and two concurrent tasks (Holm et al., 2009), while others 

succeeded in discriminating one versus two or one versus four simultaneous tasks, but failed 

to discriminate different levels of difficulty for the same task (Matthews et al., 2015; Käthner 

et al., 2014; Fournier, Wilson & Swain, 1999). However, using only five frontal electrodes 

did not reveal a difference between one and two concurrent tasks. This might be accounted for 

by the differences in the nature of the four tasks used in this experiment. This result was also 

consistent with the claim that working memory uses large scales networks distributed over 

frontal and parieto-occipital regions (Kahana, Seelig & Madsen, 2001; d’Esposito et al., 

1998). Moreover, the results of the lower performers indicated that with a group of 

participants who have difficulties with the task, one could find no differences in theta spectral 

power. 



The plateau effect might reflect saturation in cognitive resource allocation. Although largely 

speculative, this interpretation could be supported by the behavioral performance differences, 

which were significant between the third and fourth phases. If all available cognitive 

resources were used to perform three concurrent tasks and maintain performance at an 

acceptable level (Wickens 2002), then adding a fourth would have detrimental effects on 

performance. The participants would no longer be able to compensate for the increasing 

cognitive load and maintain performance at the same level, leading to the observed 

performance diminution (Wickens, 2002; 2008). This interpretation of the observed plateau as 

reflecting a saturation of cognitive resources allocation is further supported by the significant 

increase in subjective ratings and decrease in performance. When comparing the clusters 

based on performance, significant differences appeared, higher theta spectral power being 

associated with lower performances. The medium performers exhibited higher theta power 

than the higher performers cluster at least until the third phase. No difference appeared 

between the two clusters during the fourth phase. From a descriptive viewpoint, the lower 

performers cluster exhibited higher theta spectral power during the whole experiment. This 

result was in line with previous findings suggesting that the power of theta rhythm could 

predict performance with a negative correlation: the higher the theta spectral power, the lower 

the performance (Beatty & O’Hanlon, 1979; Beatty, 1977, see also Kramer, 1990 and 

Klimesch, 1999 for reviews). However, our experimental protocol did not allow determining 

why this pattern was observed. For example, some participants might have better performed 

the task due to a larger amount of cognitive resources available or due to the use of more 

efficient strategies. More efficient strategies could have reduced the cost of task performance 

and therefore of working memory solicitation. 

When considering the alpha band, results showed a similar pattern with an increase in alpha 

spectral power according to the number of concurrent tasks, similar to the effects observed 

with the theta rhythm. This increase was opposite previous findings, which usually note an 

alpha decrease with an increasing task demand (Klimesch, 1996; see Borghini et al., 2014 and 

Vidulich & Tsang, 2012 for reviews). The broadly accepted assumption is that when attention 

demands increase, alpha spectral power decreases, mainly in the parietal and central areas. In 

this experiment, as the number of tasks increased, the attention demands also increased but 

the alpha power rose accordingly. 

While other studies found an increased alpha level with an increased task difficulty (Pope, 

Bogart & Bartolome, 1995; Kamzanova, Kustubayeva & Matthews, 2014), another 

interpretation might arise from the work of Sauseng and his colleagues (2009). In their study, 

they found that the alpha spectral feature increased with an expanding number of irrelevant 

items to inhibit. This would be consistent with previous studies showing a disrupting effect of 

alpha rhythm on cognitive processing (see Foxe & Snyder, 2011, for a review). Indeed, an 

increase in occipito-parietal alpha band is assumed to reflect an inhibition of irrelevant 

processing. While some studies found a decrease in alpha spectral power according to task 

demand (Klimesch, 1997; Fairclough & Venables, 2006; Klimesch, 1999 for review) or the 

number of items held in working memory (Fukuda, Mance & Vogel, 2015), others found an 

increase in alpha band associated with irrelevant task inhibition (Rihs, Michel & Thut, 2007). 



Both variations might reflect distinct mechanisms involved in working memory performance, 

an alpha band desynchronization underlying memory maintenance processes and an alpha 

band synchronization reflecting the inhibition of irrelevant items (Capilla et al., 2014). Thus 

increases and decreases of alpha spectral power reflect distinct strategies and task demands 

which are often confounded when considering cognitive workload measurement. In this 

experiment, the increase in cognitive workload may be due to an increase in inhibition of 

irrelevant information and therefore might be associated with an increase in alpha spectral 

power. Finally, our results showed a consistent pattern of mean level of spectral power related 

to task performance: the more participants were proficient on the task, the lower level of 

spectral power, both for theta and alpha bands. Such results are consistent with previous 

findings on working memory solicitation and performances-based groups (Klimesch, Vogt & 

Doppelmayr, 1999; Klimesch, 1999). This highlights the importance of considering 

homogeneous groups of participants regarding task performance when assessing the impact of 

variables (such as cognitive load levels) on EEG spectral power bands. 

In conclusion, our results indicated that EEG allows discriminating cognitive resource 

involvement with a widespread increase of theta rhythm and a more localized increase of 

alpha rhythm. Both rhythms increased with the number of tasks to perform concurrently until 

reaching a plateau with three and four simultaneous tasks. These differences are better 

explained using a laboratory theoretical framework of executive functions, emphasizing the 

need to bridge the gap between laboratory and ecological experiments. Our study showed 

differences in relation to the experienced cognitive workload. It also provided evidence that 

by controlling inter-individual differences and the absolute level of induced cognitive 

workload, efficient measurements can be derived. 
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