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Continuous and Discrete Formulations for Modeling

Electromagnetic Wave Propagation over an Impedance

Ground in Low Troposphere in 3D

H. Zhou ∗ A. Chabory ∗ R. Douvenot ∗

Abstract � A 3D discrete mixed Fourier transform

method is proposed for modeling the wave propaga-

tion over an impedance ground in 3D. The contin-

uous and discrete formulations of the propagators

are presented. The discrete formulation achieves

self-consistency with respect to the discrete electro-

magnetic theory. Numerical tests are performed to

compare the two propagators. Both are shown to be

accurate. Therefore, the self-consistent propagator

should be preferred.

1 INTRODUCTION

Troposphere large-range propagation based on
the parabolic equation method (PE) has been an
important research �eld for communications and
radar [3]. The PE is an approximation of the wave
equation valid along a paraxial direction neglect-
ing the backward propagation. One of the most
e�cient methods for solving PE is the split-step
Fourier (SSF) method [1]. It can consider any
source, the geographical environment and realistic
atmospheric conditions. The computation is per-
formed going back and forth from a spatial to a
spectral representation of the wave to evaluate the
propagation iteratively. The corresponding spec-
tral transform depends on the boundary conditions
applied on the computation domain. Considering
an impedance ground, the discrete mixed Fourier
transform method (DMFT) [2] is used, which have
�rstly been introduced in 2D. Then 3D-SSF meth-
ods based on PE have been proposed [4]. However,
a paraxial approximation is assumed to split the
vertical and azimuthal derivative components.

In this paper, a 3D-SSF method based on the
wave equation is proposed. This formulation is di-
rectly derived from the discretized wave equation
to achieve self-consistency according to the discrete
electromagnetic theory [6]. This work has already
been performed for propagation over a PEC ground
in [5]. The 2D spectral transform proposed here ac-
counts for an impedance ground. Moreover, the
propagators are extended to include the ground
wave. Both the continuous (classical) and discrete
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(self-consistent) formulations are presented. The
propagation over an impedance ground with both
propagators are tested and compared.
In section 2, the con�guration is introduced. In

section 3, the 3D-DMFT method is presented. In
section 4, the formulations of the continuous and
discrete propagators are derived. In section 5, nu-
merical tests with two propagators are performed.

2 Con�guration

The propagation is performed in the cylindrical
coordinates (r, θ, z) with unit vectors (r̂, θ̂, ẑ). The
wave sources are located into the cylinder r ≤ r0

and their radiated �elds are known at r = r0. The
propagation is computed in the region r > r0, z >
0.
The computation domain is of �nite size. The

vertical domain is limited to z ∈ [0, zmax] and an
impedance ground is assumed.
The �elds are decomposed in one transverse elec-

tric (TE) and one transverse magnetic (TM) com-
ponents oriented along ẑ. In this work, the TE
component Ψ is considered. The TM component
can be formulated in a similar way.

3 3D discrete mixed Fourier transform

3.1 General method

For numerical reasons, a discretization is applied.
The following uniform grid is used

r = r0 + pr∆r for pr ∈ {1, ..., Nr},
z = pz∆z for pz = {1, ..., Nz − 1},
θ = pθ∆θ for pθ = {0, ..., Nθ − 1},

(1)

with ∆r = (rmax − r0)/Nr, ∆z = zmax/Nz and
∆θ = 2π/Nθ. This grid is shown in Fig. 1.
The computation is performed marching on in

distance. Between two consecutive cylinders, we
propagate the �eld through a homogeneous medi-
um. To account for refraction in the atmosphere,
the phase screen method [2] is applied.

3.2 Spectral transform

The �eld Ψ satis�es the 3D wave equation. On
the azimuthal direction θ̂, due to the 2π-periodic



Figure 1: Grids along ẑ and θ̂ on the initial cylinder
at the distance r0 and on a cylinder at r > r0.

condition, the spectral transform amounts for a dis-
crete Fourier transform (DFT). The spectrum of Ψ
corresponds to θ̂ is denoted as Ψ̄.
On the vertical direction ẑ, the spectral represen-

tation of the DMFT is based on the �nite-di�erence
approximation of the Leontovich boundary condi-
tion [2] along the vertical axis z. We make a sub-
stitution from Ψ̄ to w. For pz = {1, . . . , Nz − 1},

wpr,pz,qθ =
Ψ̄pr,pz+1,qθ

−Ψ̄pr,pz−1,qθ

2∆z + αΨ̄pr,pz,qθ ,
(2)

where

wpr,pz,qθ = w(r0 + pr∆r, pz∆z, qθ),
Ψ̄pr,pz,qθ = Ψ̄(r0 + pr∆r, pz∆z, qθ),

(3)

and α is an impedance coe�cient [2]. The spectrum
Wpr,qz,qθ is given by

Wpr,0,qθ = A
Nz∑
pz=0

′
Rpz Ψ̄pr,qz,qθ ,

Wpr,Nz,qθ = A
Nz∑
pz=0

′ (− 1
R

)pz
Ψ̄pr,qz,qθ ,

Wpr,qz,qθ =
Nz−1∑
pz=1

wpr,qz,qθ sin
(
πqzpz
N

)
,

with qz = {1, . . . , Nz − 1},

(4)

where R satis�es R2 + 2α∆zR − 1 = 0, and A =
2(1−R2)

(1+R2)(1−R2Nz )
. Besides, the prime superscript on

the sum indicates that the �rst and last terms are
weighted with a coe�cient 1/2.
The propagation from r to r + ∆r is computed

by multiplying M by a diagonal operator, denoted
as the propagator. Two formulations of the propa-
gators are presented in the next section.
Then the inverse transform is performed. First,

Ψ̄pr+1,pz,qθ is retrieved from Wpr+1,qz,qθ as de-
scribed for the 2D DMFT algorithm [2]. Then,
an inverse DFT on θ̂ is performed to obtain
Ψpr+1,pz,pθ .

4 Propagators

The propagators are derived from the solution of
the spectral wave equation. Two formulations are
presented here. The �rst is the continuous formu-
lation, which is a natural extension of the DMFT
method [2] in 3D. We have highlighted an incon-
sistency of 2D-DMFT in [7]. The inconsistency
problem of the 3D extension will be presented here.
Then, a discrete formulation is proposed to achieve
self-consistency.

4.1 Continuous formulation

The �eld Ψ satis�es the 3D wave equation:

∂2Ψ

∂r2
+

1

r2

∂2Ψ

∂θ2
+
∂2Ψ

∂z2
+

(
k2

0n
2 +

1

4r2

)
Ψ = 0. (5)

As introduced in the previous section, the dis-
crete spectral transform amounts to a DFT along
θ̂ and a DMFT along ẑ. However, in the continu-
ous formulation, the spectral component is cast as a
continuous function. Thus, the continuous spectral
representation of wave equation is obtained.
From the solution of this spectral equation, the

propagator is derived: for qz = {1, . . . , Nz − 1},

Wpr+1,qz,qθ =
H

(2)
κ (krr2)

H
(2)
κ (krr1)

√
r2

r1
Wpr,qz,qθ , (6)

where r1 = r0 + pr∆r, r2 = r0 + (pr + 1)∆r, and

H
(2)
κ denotes the Hankel function of the second kind

of order κ with κ = qθ, qθ = {0, . . . , Nθ − 1}.
Besides, k2

r = k2
0n

2 − k2
z with

kz = qzπ/zmax. (7)

The ground and sky waves are propagated by
substitutingWpr,0,qθR

z
∆z andWpr,Nz,qθ (− 1

R )
z

∆z in-
to the wave equation and solving. This yields

Wpr,0,qθ =
H

(2)
κ (ksw1

r2)

H
(2)
κ (ksw1

r1)

√
r2

r1
Wpr,0,qθ ,

Wpr,Nz,qθ =
H

(2)
κ (ksw2r2)

H
(2)
κ (ksw2r1)

√
r2

r1
Wpr,Nz,qθ ,

(8)

with ksw1 =
√
k2 + (lnR)2/(∆z)2 and ksw2 =√

k2 + (ln(−R))2/(∆z)2. Note here, the sky wave
is not considered in practical since apodization lay-
er is applied on the top half domain.
This method is based on a �nite-di�erence ap-

proximation for the ground boundary condition, its
propagator in the spectral domain is obtained from
the continuous spectral equations. To overcome
this inconsistency, we propose a discrete formula-
tion in the following subsection.



Figure 2: Normalised �nal electric �eld of the ana-
lytic solution of a CSP in 3D

4.2 Discrete formulation

To render our spectral representation numerical-
ly self-consistent, discretization is applied a prior-
i. Central-di�erence approximations substitute the
derivatives along θ̂ and ẑ in (5). Then the discrete
spectral transforms are applied. The propagators
are derived from the discrete spectral wave equa-
tion. The derivations are similar as in the continu-
ous case.
The ground and sky waves are propagated by

substituting Wpr,0,qθR
pz and Wpr,Nz,qθ (− 1

R )pz into
the wave equation and solving. The propagator is
the same as in (6) except for κ and kz, which are
now given by

κ =
2

∆θ
sin

(
πqθ
Nθ

)
with qθ = {0, ..., Nθ − 1},

kz =
2

∆z
sin

(
πqz
2Nz

)
with qz = {1, ..., Nz − 1}.

(9)
The propagation of surface waves is the same as
(8) with ksw1

=
√
k2 + (R+R−1 − 2)/(∆z)2 and

ksw2
=
√
k2 + ((−R) + (−R)−1 − 2)/(∆z)2.

5 Numerical tests

5.1 3D propagation in free space

In order to compare the propagation with the
continuous and discrete propagators, a complex
source point (CSP) [8] is propagated with both
propagators. The results are compared to its an-
alytic expression.
The frequency is 3 GHz. The complex source is

located at rs = rsr +
jk0W

2
0

2 , zs = 200 m, with the
beam's width W0 = 3 m and rsr = 800 m.
The simulation parameters are: r0 = 1 km,

rmax = 5 km, ∆r = 400 m, zmax = 200 m,
∆z = 0.1 m, and Nθ = 60000. The choices of ∆z
and Nθ satisfy the Nyquist criteria.

(a) Di�erence continuous SSF - analytic so-
lution

(b) Di�erence discrete SSF - analytic solution

Figure 3: Propagation of a 3D CSP in free-space.

The 3D propagation in free-space is performed.
The �nal �eld of the analytic solution is plotted in
Fig. 2 as a reference. The di�erence of SSF methods
with the continuous and discrete propagators to the
analytic solution are plotted in Fig. 3. The max-
imum di�erence between the continuous SSF and
the analytic solution Difc = −51.7 dB. And the
one of the discrete case Difd = −51.0 dB. Both
cases are accurate for free-space propagation.
If we double the discretization step on ẑ and θ̂

(i.e., ∆z = 0.2 m, Nθ = 30000), the di�erences
become Difc = −51.8 dB and Difd = −37.0 dB.
The discrete case is a little less accurate, since a
FD approximation is applied.

5.2 3D propagation over an impedance

ground

The propagation over an impedance ground is
considered with a relative permittivity εr = 20 and
a conductivity σ = 0.02 S/m.
A complex source point is considered with zs =

15 m. The other parameters are the same as in
the previous test. An apodization is applied on the
upper half domain.
The �nal �eld using the geometric optical (GO)

method is plotted in Fig. 4 as a reference. The
di�erences of SSF with the two propagators to GO



Figure 4: Normalised �nal electric �eld of GO for
a propagation over an impedance ground

are plotted in Fig. 5. The maximum di�erence of
the continuous case is −52.4 dB and the one of the
discrete case is −51.9 dB. The 3D-DMFT method
with both formulations are accurate.

6 Conclusion

In this work, the aim is to simulate the 3D propa-
gation over an impedance ground. The 2D discrete
mixed Fourier transform method (DMFT) has been
extended to 3D. Then the continuous and discrete
formulations for the propagator have been present-
ed. The continuous formulation is a natural ex-
tension of 2D-DMFT. However, an inconsistency of
this method has been highlighted. Then, the dis-
crete formulation has been proposed to achieve self-
consistency in the discrete domain. The simulation
accuracy of 3D-DMFT with both propagators have
been compared in the numerical tests. An analytic
solution of a complex source point has been used
as a reference. Propagations in free space and over
an impedance ground are performed. The results
of 3D-DMFT with both propagators are accurate.
This method is successfully tested. The discrete
formulation achieves a self-consistency. Therefore,
the latter should be preferred for numerical simu-
lations.
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