
HAL Id: hal-01619784
https://enac.hal.science/hal-01619784v1

Submitted on 19 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of properties of interactive components from
their executable code

Stéphane Chatty, Mathieu Magnaudet, Daniel Prun

To cite this version:
Stéphane Chatty, Mathieu Magnaudet, Daniel Prun. Verification of properties of interactive compo-
nents from their executable code. 7th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS 2015), Jun 2015, Duisbourg, Germany. pp.276-285 �10.1145/2774225.2774848�.
�hal-01619784�

https://enac.hal.science/hal-01619784v1
https://hal.archives-ouvertes.fr

Verification of properties of interactive components
from their executable code

Stéphane Chatty Mathieu Magnaudet Daniel Prun
Université de Toulouse - ENAC

7 av. Edouard Belin, 31055 Toulouse, France
firstname.lastname@enac.fr

ABSTRACT
In this paper we describe how an executable model of interac-
tive software can be exploited to allow programmers or spec-
ifiers to express properties that will be automatically checked
on the components they create or reuse. The djnn framework
relies on a theoretical model of interactive software in which
applications are described in their totality as hierarchies of in-
teractive components, with no additional code. This includes
high level components, but also the graphics, behaviors, com-
putations and data manipulations that constitute them. Be-
cause of this, the structure of the application tree provides
significant insights in the nature and behavior of components.
Pattern recognition systems can then be used to express and
check simple properties, such as the external signature of a
component, its internal flows of control, or even the contin-
ued visibility of a component on a display. This provides pro-
grammers with solutions for checking their components, en-
suring non-regression, or working in a contract-oriented fash-
ion with other UI development stakeholders.

Author Keywords
interactive component; verification; properties; static
analysis; tree; pattern matching; specification

ACM Classification Keywords
H.5.2 Information Interfaces and presentation: User Inter-
faces; D.2.4 Software engineering: Software/Program Veri-
fication

INTRODUCTION
Using executable representations of programs to verify soft-
ware properties by static analysis is a well established tech-
nique. Static analysis requires no additional modeling work
from developers, and can be performed automatically on the
source code or on intermediate representations produced dur-
ing its compilation. With languages such as Java and C it has
become a standard step in development processes: program-
mers rely on the compiler to detect unused arguments, incom-
patible types, and unusual control flows. Static analysis is

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.
Every submission will be assigned their own unique DOI string to be included here.

also what gives domain specific languages, such as SCADE
for command and control systems and VHDL for hardware
circuits, a key role in the development of critical systems for
fields such as transportation, health and defense.

Static analysis has even been used with languages like Eif-
fel to introduce software engineering methods based on con-
tracts. Instead of checking generic properties only, the com-
piler checks properties defined by development teams for in-
dividual components. This helps them to organize develop-
ments and ensure non-regression.

However, there are limitations to applying these methods to
human-centered software such as surveillance systems and
vehicle cockpits. Interactive software is software that inter-
acts with its environment, which may include users, perva-
sive sensors and control systems. This brings additional de-
sired properties, related to how the software will interact. For
instance, when working on a graphical button one may want
to guarantee that the button will always have three visually
different states, and not only that its code will not crash. But
various categories of interactive software, including modern
user interfaces, have part of their code written with tradi-
tional programming languages. This makes the verification
of interaction-oriented properties difficult because the native
code may have an influence on these properties but it is not
accessible to analysis at the desired level of abstraction. In
practice, development teams must generally do with tradi-
tional computation-oriented verifications.

In this article we present verifications of interaction-oriented
properties that are made possible by using an executable lan-
guage dedicated to interactive software. After reviewing the
state of the art we present the djnn programming frame-
work that executes descriptions of interactive components,
and show how these descriptions are organized like an ab-
stract syntax tree. We then show how properties can be stati-
cally derived from this tree with pattern matching techniques
such as XPath. We conclude on the perspectives in terms of
methods and tools for developing interactive systems.

STATE OF THE ART

Properties of interactive systems
As stated in [1], an interactive property is a feature of an in-
teractive system that is the subject of analysis and evaluation.
During the system definition phase, interactive properties are
used to express user needs without any consideration about
how they will be fulfilled. They allow external stakeholders

of the system (for example the final user) to capture all fea-
tures expected from the future system. Properties are also
used as drivers for the design: they define the limits in the
design space in which the solution must fit. Finally, they are
used as a reference for the validation phase during which the
final system is checked against the user needs. Such prop-
erties are often expressed at task level: ”when activated, the
alarm must always be visible by the user”; ”the user must
always have the possibility to abort a task”.

Another way to use properties has been pointed out in [8],
properties are defined during the iterative design of interactive
software and used to support and justify design choices. Di-
rectly aimed at designers’ concerns, properties address tech-
nical features resulting from design elements (input devices,
displays, etc) and design choices (interaction style). Exam-
ples of such properties are ”all mouse press on one graphical
component have an effect on another component” and ”the
resolution of the printer is 9600 dpi”.

In parallel a lot of effort has been spent on classifying
interaction-oriented properties. Works initially done in [23],
[9] and in software standards have defined several criteria to
assess whether a final product meets its expected goals. Cri-
teria focused on usability (learnability, flexibility, robustness)
have been added later for graphical user interfaces [1], then
multimodal user interfaces [25]. In accordance with [8], these
works showed how interaction can be correlated with rela-
tionships between design level properties (related to devices,
interaction, language) and system level (tasks).

Verification of interactive system properties
During the last decades, several methods for the verification
of interactive system properties have been proposed. The em-
pirical method relies on the execution of the final system (or a
prototype) with end-users accomplishing selected tasks, in a
dedicated environment. During the execution, measurements
and observations are performed. Collected data are then used
to assess whether the system fulfills the expected properties or
not. This approach is widely used for interactive system eval-
uation and for many properties it is the only available method.
The main drawback is its lack of exhaustivity, because proper-
ties cannot be checked against all possible executions of the
system. This is compounded by the cost of empirical tests,
which limits the number of tests that can be run.

Another approach consists of using model-based methods:
during the design, a model of the future system is built and
properties are verified on the model rather than on the final
system itself. The underlying logic behind this approach is
that if a property holds on the model, and if the final system
is built according to the model, then the property holds on
the final system. Several kinds of models can be used ac-
cording to the nature of the system and the properties to be
checked. Formal models are models whose syntax and se-
mantics are defined in an unambiguous way. This allows to
define proven model transformations and analysis algorithms
that can be used for verifying properties. For example, dedi-
cated algorithms on Petri net models can identify loops within
the control flow or prove ressource boundedness; refinement

proofs on B models can show that an invariant is preserved
when adding more details to a model.

Model checking methods are a class of model-based methods.
They are based on the evaluation of logical properties on the
state-transition structure obtained from the simulation of the
model. For instance a combination of the LOTOS language
and the task model Concur Task Tree has been proposed to
verify dynamic properties of the user interface [27]. Inter-
active Cooperative Objects follow a similar approach, using
Petri nets to model part of the behavior of interactive compo-
nents [26]. Safety properties of synchronous languages Lus-
tre and Esterel are also checked with model checking [17, 4].

Alternatively, proof-based methods are a class of model-
based methods where the model is described by a set of vari-
ables, operations, events, temporal properties and invariants.
The operations must preserve these invariants and a set of
other properties (preconditions and/or post conditions). To
ensure the correctness of these specifications a set of proofs
is generated and shall be proved. In the field of interactive
software, VDM [13] and Z [18] have been used for defin-
ing atomic structures like interactors. The B language has
been used to express the design of a system by the way of
successive refinements starting from task model level to code
level [2]. Finally, logics and type systems have been also ap-
plied. HOL (a higher order logic theorem prover) has been
used in the verification of user interface specifications [6].

In the context of interactive systems, models are mainly used
to express elements with a high level of abstraction. For ex-
ample many models describe information related to Abstract
User Interfaces (AUI). A lot of details related to the concrete
interface, including the description of modalities, are not or
little included in the models, which makes hard or even ex-
cludes the verification of some properties.

Abstract interpretation of software
Abstract interpretation [12] consists in giving an abstract se-
mantics to a programming or specification language so as to
perform operations on the abstract representation: property
verification, optimisation, debugging. Concrete semantics are
mathematically well defined objects that explicit the meaning
and the possible behaviors of the program. Concrete seman-
tics are generally not computable, which makes all non-trivial
properties undecidable. To avoid this, abstract semantics are
introduced as computable approximations of concrete seman-
tics in which more properties are decidable.

Static analysis is the major concrete application of abstract
interpretation. It is applied by analyzing the source code of
programs and automatically extracting an abstract semantic
that can be used to verify properties and perform optimisa-
tions. This approach has been used in software compilers for
a long time (for example [28] uses it for the optimisation of
the gcc compiler, [7], [19] and [21] for automatic software
parallelisation). This approach has also been used for the ver-
ification of various properties of programs: the static analyzer
Astrée is able to prove the absence of some types of run time
errors on C programs [5], and has been used in safety-critical
projects. The FLUCTUAT tool [16] is an abstract interpreta-

tion tool for studying numerical C programs, and in particu-
lar the propagation of uncertainties in floating-point compu-
tations.

There have been some works on using abstract interpretation
for interactive properties. [20] first advocated this approach
with the objective of providing a unification canvas for veri-
fication techniques. [15] described the verification of interac-
tive Web pages through the static analysis of the user interface
and ergonomic rules, encoded in UsiXML. [29] proposed to
exploit a graph-oriented semantics of an interactive device to
support the verification of properties. In this work, an ex-
isting device was analyzed and modeled with a graph whose
arcs represent user actions and nodes observable states. It was
then possible to compute some interactive properties on the
graph that can be interpreted at the device level. Despite its
success, this work illustrates the constraints that often apply
to using abstract interpretation on interactive systems: when
the system is built with tools that do not capture the appro-
priate level of information, the missing information must be
introduced by producing a model by hand.

In order to support fully automated verifications, one must
ensure that what programmers or designers produce contain
all the necessary information to derive an abstract interpreta-
tion. Any part of the software built with a traditional language
foils this approach, because it would be extremely difficult to
reconstruct the impact of this piece of code on the program’s
interactive behavior automatically. Model-based engineering
solves this by having humans create task descriptions and de-
riving the code from this. An alternative consists in providing
programmers with an interaction-oriented language that al-
lows them to describe complete applications at an appropriate
level of abstraction.

THE DJNN FRAMEWORK
djnn is a programming framework that relies on a model of
interactive software in which any program can be described
as a tree of interactive components [11]. Basic components
such as variables, control structures, and graphical objects are
assembled to produce bigger components, themselves assem-
bled until producing the desired application.

The execution of a program is described by the interactions
between its components, and between them and the external
environment: components react to events detected in their en-
vironment, and may themselves trigger events. For instance,
a simple “hello world” program can be described with two
components. The first prints text when activated, and the sec-
ond binds the activation of the first to the start of the program.
Launching the program is an external event that triggers the
start of the program, thus triggering the binding component
which itself triggers the text-printing component.

djnn has the expressive potential of a general programming
language. This contrasts with most user interface program-
ming frameworks, which provide reusable components and
architecture patterns that programmers combine with code
written in a traditional programming language. Not only does
djnn aim at covering 100% of the user interface code, it also

has the potential of describing the functional core as well,
thus covering whole interactive applications.

Creating a program as a hierarchy of components is similar
to constructing an abstract syntax tree, as done by traditional
compilers. The tree contains all the information needed to
execute the program directly or translate it into executable
code for a given platform. It also lends itself to static analysis,
because all the components of the tree can be interpreted in
a common semantic framework. This is what we propose to
exploit in the rest of this paper, after giving more details on
djnn and its component system.

Root concepts: processes
The conceptual model of djnn can be compared to that of
functional programming languages: it relies on a very re-
duced set of concepts, from which all other language concepts
and programmer-defined concepts are derived. In functional
languages the basic concepts are functions, arguments and
function calls, all rooted in the theoretical concept of lambda
term from lambda calculus. In djnn the basic concepts are
components, names and activation, all rooted in the theoreti-
cal concept of process from process algebras [3].

Like computations can be described as the evaluation of
lambda expressions, interactions can be described as the acti-
vation of interconnected processes: activation signals, called
events, propagate from one process to another according to
how they are coupled, thus producing the reactive behavior
of the system. Process-based theories are general enough to
model both interaction-oriented software and computation-
oriented software [14]. But they can also model hardware
devices, and more generally the environment in which soft-
ware applications run. This allows to model both the software
and its direct environment using processes, so that no special
provision has to be made for those part of the software that
interact with the environment. Whole interactive applications
can therefore be described in the same language.

Interactive components
Component are man-made embodiment of processes: engi-
neers build systems by assembling components, and the the-
oretical model of the resulting systems can be deduced from
those of the individual components and how they are assem-
bled. This includes hardware components as well as software,
programmers being in charge of the latter. Programmers cre-
ate interactive programs by instantiating and assembling soft-
ware components, and connecting them to hardware compo-
nents. The djnn environment provides them with basic soft-
ware components to this effect:

• components that support user interaction, either because
they are software proxies for hardware devices (e.g.
mouse, display monitor) as in [10] or they represent ab-
stractions created on top of hardware devices (e.g. graphi-
cal objects, windows, sounds, speech grammar rules);

• components for data representation, such as numerical, text
and boolean values;

• computation-oriented components, such as numerical, ge-
ometrical and logical operators;

• components that encapsulate pre-existing code written in
another language, such as gesture recognition algorithms;

• components aimed at assembling and connecting other
components; this includes composite components for
grouping, and control structures for connecting compo-
nents to ensure that they will interact.

Like in traditional software, control structures are the key to
providing programmers with the appropriate power of expres-
sion. djnn provides the control structures that have been in-
troduced for interactive software in the last decades, as well
as traditional computation-oriented control structures. This
includes:

• bindings, which ensure simple reactions to events: when
two components are interconnected by a binding, activa-
tion of the first triggers activation of the second;

• connectors, which ensure that any modification of their in-
put value are propagated to their output values;

• state machines, whose transitions can be triggered by the
activation of components, and whose states and transitions
can trigger the activation of other components;

• composite components, which propagate their activation to
their sub-components;

• iterators, which activate other components in a given order;

• tests, which activate another component only when they
are activated and when a boolean value is true;

• switches, which activate one among several components
depending on the value of their state.

Programmers can extend this basic set by assembling avail-
able components to produce new control structures dedicated
to their own needs, for instance control structures dedicated
to software adaptation as suggested in [22].

Component hierarchies
Even though programs can be described in their totality by in-
terconnected components, programmers need additional ser-
vices to manage their code. To start with, when using text-
based languages they need to use names to designate the com-
ponents they wish to interconnect. These names are not es-
sential to program execution and can disappear during com-
pilation, nevertheless they are essential to writing programs.
Similarly, programmers need means to organize their compo-
nents so as to understand how their programs work, organize
their tasks, and reuse components between programs.

The composite components of djnn provide support for both
organizing components and naming them. Because they con-
tain other components, they allow to create component hier-
archies. For instance, a text is part of a button, itself part
of a dialogue box, and so on. This defines a natural scheme
for naming components: if each component has a name rel-
ative to its parent, all components become addressable with
names such as mydialogue/ok/label. The following pseu-
docode shows the hierarchy of djnn components for a simple
wall clock whose needle turns by 6 degrees every 1000 ms.

component wallclock {
component control {

clock cl (1000);
increment incr;
multiplier mult (0, 6);
binding (cl, incr);
connector (incr/state, mult/left);

}
component graphics {

circle (250, 250, 100);
rotation r (250, 250, 0);
line needle (250, 250, 250, 100);

}
connector (control/mult/result, graphics/r/angle);

}

In this example, the clock, increment, multiplier, binding,
connector, circle, rotation and needle are basic compo-
nents provided by djnn. The control component represents
the underlying mechanics in the wall clock. Every 1000 mil-
liseconds, the clock named cl is activated. Because this clock
is bound to the increment named incr by an anonymous bind-
ing, the state of the increment increases by one each time.
Since we want the needle to turn by 6 degrees, the state of
the increment is fed through an anonymous connector to the
left input of the multiplier named mult, and the right input
of the multiplier is set to 6. Consequently, the result of the
multiplier increases by steps of 6 every 1000 milliseconds.
The graphics component is a small graphical scene made of
a circle, a rotation and a line. Because of its position in the
order of the scene, the line is drawn on top of the circle and
is rotated by the amount defined in the rotation component.
Consequently, the effect of the last anonymous connector is
to ensure that the needle is rotated by 6 degrees every second.

Semantics of the hierarchy
The names used in the connectors of the above example, e.g.
control/mult/result, are representative of how the hierar-
chy of components is used. This hierarchical structure allows
programmers to think of their applications as trees of compo-
nents, to address components as tree branches, and to reuse
whole branches as components in other applications. It also
provides the basis for drawing a parallel between the djnn
component hierarchy and the abstract syntax trees of tradi-
tional languages. In both cases, the execution of the program
is defined by a graph of interconnected elements. This graph
contains elements that can point at any other element: for in-
stance a function can call itself recursively and a button can
trigger the closing of its parent dialogue box, thus creating a
loop in the graph. But in both cases, a tree-like subset of this
graph captures how the program was organized by program-
mers. This dual structure is exploited by compilers and by
static analysis tools for computation-oriented software. Simi-
larly, we can exploit it to verify interaction properties of djnn
components.

With djnn the significance of the tree structure is even higher
than usual because, like with XML-based formats such as
SVG and HTML and unlike with traditional programming
languages, the structure of djnn programs is the same as the
structure of their data. This is because interactive applica-
tions, and particularly graphical applications, generally have
a static structure in which data and behavior are intermixed.
For instance, a dialog box is made of a basis of graphics, to

which behavior was added. This combination of data and be-
havior is so meaningful to programmers and designers that
it guided the design of user interface programming tools,
including djnn and its component model. At the opposite,
computation-oriented programs have a syntactic structure that
is guided by software reuse and not by any data structure.

This central role of the tree means that important properties
can be evaluated by analyzing it, without need to explore the
full graph. In particular, since the introduction of graphical
“scene graphs” decades ago the tree structure of interactive
applications has been used to express execution control. The
position of a graphical object in the tree does not only tell
to which component it belongs, it also tells its relative posi-
tion to other graphical objects in the same component. Thus,
a component situated on the right of another one in the tree
will be displayed on top of it if their coordinates overlap. In
the same way, djnn implements a flavor of graphical scene
graphs in which graphical style components such as color,
opacity and stroke width can be placed in the tree and act as
context modifiers that affect all the shapes that follow. The
shapes added to the right of these style components are then
affected by them (see Figure 1). This also applies to geomet-
rical transformations (rotation, scale, translation).

Figure 1. The order in the tree determines the graphical result

The djnn hierarchy of components is an augmented scene
graph that contains components as varied as control struc-
tures, sounds, files and numerical operators, and sometimes
even does not contain graphical objects at all. For consis-
tency, the original context-oriented semantics of the order of
components in the tree was maintained and used for other
modalities when this is meaningful. This can be easily ex-
ploited toward the verification of properties. For instance, as
detailed later, it makes it possible to answer questions such as
“will this component be overlaid by another one?”, “is the
color difference between the background and the foreground
components large enough?”, “is the display of this message
triggered by the right sensor?” or “is there an event source
connected to each transition of the finite state machine?”.

Building and exploring the component hierarchy
djnn can be used as a traditional toolkit in which all compo-
nents are created through a C, C++, Perl, Python or Java API.
For instance, the following Java code creates the wall clock
described earlier.
wallclock = new Component("wallclock");

control = new Component(wallclock, "control");
cl = new Clock(control, "cl", 1000);
incr = new Incr(control, "incr", 1);
new Multiplier(control, "mult", 0, 6);
new Connector(control, 0, incr, "state", mult, "left");
new Binding(control, 0, cl, 0, inc, 0);

graphics = new Component(wallclock, "graphics");

new Circle (graphics, "bkg", 250, 250, 100);
new Rotation(graphics, "r", 0, 250, 250);
new Line(graphics, "seconds", 250, 250, 250, 150);

new Connector(wallclock, 0, control, "mult/result",
graphics, "r/angle");

But, as illustrated in Figure 2, djnn can also be used as an
interpreter for components that are produced with external
tools, and all or parts of djnn programs can be loaded from
XML files and executed by the djnn interpreter. For instance,
the above wallclock can be executed from the following file:
<component name="wallclock">
<component name="control">
<clock name="cl" period="1000"/>
<incr name="incr"/>
<multiplier name="mult" left="0" right="6"/>
<connector in="incr/state" out="mult/left"/>
<binding source="cl" action="incr"/>

</component>
<component name="graphics">
<circle name="bkg" cx="250" cy="250" r="100"/>
<rotation name="r" cx="250" cy="250" a="0"/>
<line name="sec" x1="250" y1="250" x2="250" y2="150"/>

</component>
<connector in="control/mult/result" out="graphics/r/a"/>

</component>

The djnn interpreter can be compared to a Java virtual ma-
chine, and the djnn XML format to Java byte code. In both
cases, executable programs are loaded in memory and run by
an interpreter. In this context, the traditional toolkit API of
djnn can be considered as an alternative byte code format:
components are either stored in XML or in compiled code.

This architecture that separates an interpreter and an exe-
cutable set of components provides two solutions for per-
forming static analysis of the components. The hierarchy of
components can be analyzed in memory, whatever method
was used for creating it. This can be done by adding analysis
tools to the djnn interpreter. Alternatively, analyses can be
performed on XML files using dedicated analytical tools.

compilation djnn platform
(.exe)

djnn platform
(C)

compilation

djnn platform application

execution

djnn team

authoring authoring authoring

static analysis
at runtime

execution

interpreter
(in memory)

loading
djnn components

(in memory)

djnn components
(.o, .dll)

djnn components
(C, C++, Perl, etc.)

djnn components
(XML)

saving

static analysis
at development time

application team

analyzer
(in memory)

analyzer

Figure 2. How the djnn platform loads, executes and verifies the proper-
ties of components

ANALYZING DJNN COMPONENTS
As stated previously, the hierarchy of components in djnn car-
ries a significant part of the semantics of a djnn program.
Consequently, a number of properties can be checked by
analysing the tree of components. In this section, we describe
several kinds of such analyses. We start with some properties
that can be verified by pattern matching in the tree only. For
practical reasons, we use XPath queries, although other meth-
ods may prove useful in the future. We then move to proper-
ties that need additional more sophisticated graph analysis.

Pattern matching with XPath
XPath is a language specified by the WWW Consortium [30],
originally dedicated to the exploration of XML trees. It de-
fines a rich grammar to build expressions that can be used
to select nodes in a hierarchical document. The syntax of an
XPath expression can be quite complex. It offers various con-
structs to specify a search path (relative, absolute), to express
relationships, called axes, between the nodes (parent, chil-
dren, sibling, descendant, etc.) and to check properties of the
elements or their attributes through logical and arithmetic ex-
pressions. Processing an XPath query results in a list of items
that all contain elements that match the expression. For exam-
ple the expression expr=(/widget/descendant::*/button)

retrieves all the “button” elements that descend from the
“widget” element.

Although XPath was designed for XML, it can be used with
any hierarchical structure that is similar enough to the ontol-
ogy of an XML document: element, element value, attribute,
attribute value, etc. This is the case of the hierarchies of com-
ponents in djnn, both in their XML form and when loaded
in the djnn interpreter. When executing a djnn program, two
phases can be distinguished: the building of the hierarchy of
components in memory, then its execution. We focus on the
first phase, in which djnn can perform static analysis automat-
ically before running the program. This provides a convenient
time, if not always optimal, to provide developers with feed-
back on the robustness of their code.

Verifying component signature
Most modern developments involve teams of developers that
build or evolve components in parallel then combine them.
In the case of graphical user interfaces, this concurrent engi-
neering can even involve different professions, with graphical
designers producing the visual components and programmers
producing the rest. The efficiency of this development pro-
cess would be improved if all developers could verify before
integration that their components follow the contract that was
originally decided upon. Here, a number of such contracts
can be defined as the existence of a specific pattern of de-
scendants in a component.

Suppose for example that one creates a new widget for a
WIMP toolkit. It must then be checked that this widget has
a width and a height children to ensure that it will be pos-
sible to connect them to the layout system. Such a verifi-
cation can be made by checking that the XPath expressions
expr=(/widget/width) and expr=(/widget/height) do not
return a null result.

Similarly, before adding a drag and drop behavior to a
component, we must check the existence of the press/x

and press/y patterns, that is the event and properties
that will trigger the behavior, as well as the existence
of and x and y children, that is the properties that will
be changed by the behavior. The corresponding XPath
requests are, respectively, expr=(/component/press/x),
expr=(/component/press/y), expr=(/component/x) and
expr=(/component/y).

Patterns can also be used in a more flexible way. Suppose that
one wants to build a clock with three needles for hours, min-
utes and seconds. Coding the clock behavior involves trig-
gering a periodical change of the angle of the needles around
their respective rotation center. This code can only work if the
graphics have three needles. A good way to verify this con-
dition is to check it through an XPath request: the graphical
component must contain components called hours, minutes
and seconds. XPath allows to find a component without as-
suming any specific place for it in the tree. For instance, the
expression expr=(//hours) will find, if it exists, the hours

component whatever its position in the graphical component.
Note that the condition is verified for many different graphi-
cal design (e.g. figure 3). Thus, this verification focuses on
what is needed exactly and does not impose a strong restric-
tion over the power of expression.

Figure 3. Two graphical designs for a clock verifying the same condition

Verifying execution context
The specification of an interactive system sometimes includes
the expression of constraints on the hardware and software
environment in which a given application will run. For in-
stance, some applications require a minimum screen size to
ensure readability and others require a specific input device
to support a specific interaction style. Some of these con-
straints can be checked through XPath requests over the ex-
tended djnn tree, that includes the context.

The djnn framework gives programmers the possibility to ex-
plore an extended component hierarchy that represents the
context in which their program runs. Their own components,
when created, become part of this extended tree. Upon re-
quest, the extended tree can contain the available physical
displays, the input devices, the batteries, etc. Once initialized,
the extended tree can be explored like the application tree and
its components can be used in control structures in the appli-
cation tree. Consequently, verifying that a large enough phys-
ical display is available amounts to verifying the existence of
a specific component in the display tree through an XPath re-
quest such as: (/displays/display[@width > 800]). Fig-
ure 4 shows how the result of the query can be used to decide

whether or not to launch a program depending on the current
hardware configuration.

Figure 4. Checking the presence of an appropriate physical display

Verifying component visibility
As mentioned earlier, the order of graphical components in
the tree determines what will effectively be displayed. Based
on this, it becomes possible to verify some properties such as
the visibility of a graphical component. The properties to be
verified are, at least, that the component is rightmost in the
tree and that there is no opacity components with a zero value
on its left. Moreover we have to check that, if an opacity
component is present in the context, there is no event source
that can modify it. The following example illustrates such a
situation:
<component uri="djnn://root">
<clock name="cl" period="100"/>
<incr name="incr" />
<formula name="f" formula="a = (1-i/100)"/>
<connector in="djnn://root/incr/state"

out="djnn://root/f/i"/>
<binding name="b" source="djnn://root/cl"

action="djnn://root/incr"/>
<frame name="frame" title="myFrame" x="50" y="50"

width="250.00" height="250.00"/>
<fill-color name="fc" r="30" g="10" b="200"/>
<fill-opacity name="fo" a="0.81"/>
<connector in="djnn://root/f/_child3/result"

out="djnn://root/fo/a"/>
<rectangle name="myR" x="10" y="10" width="150"

height="100" rx="0.5" ry="0.5"/>
</component>

This piece of XML is a complete representation of a simple
program. The program displays a blue rectangle, and a clock
periodically triggers an increment that is used through a cal-
culation to modify a fill-opacity component (Figure 5). We
want to check if the rectangle is always visible.

It is quite easy to see, on this example, that the rectangle
is the last graphical shape of the tree. We can also au-
tomate this verification, by combining XPath queries in a
simple algorithm. Firstly, we have to check the very ex-
istence of the graphical object of interest. If the object’s
name is top then we can check that the expression exp =

(/descendant::*[@name=’top’]) does not return a null re-
sult. Then we have to verify that no graphical shape can mask
it. The method consists in retrieving the list of all the graphi-
cal shapes situated in the tree after the closing tag of the top

component. This list can be retrieved with a series of XPath
expressions of the form:
/descendant::*[@name=’top’]/following::*/rectangle

where the last name is replaced by the different kinds of
graphical shapes (rectangle, circle, path, etc.). For each ex-
pression, it must be verified that the returned list is empty.

The second step consists in checking that there is no opacity
component at the left of the component. Similarly, with the
expression:
/descendant::*[@name=’top’]/preceding::*/fill-opacity

it is possible to verify if there is an opacity component that
can change the visibility of the component top. Of course, the
opacity value can be high enough to guarantee the visibility of
the following components. But we have to detect if the value
can be changed during execution. Opacity components have a
property named a whose value fixes the current opacity. Thus,
if the name of the opacity component is fo, then we have to
check if there is a data flow component, a connector, whose
output value ends with fo/a. Once again we can build an
XPath expression to retrieve all the connectors of the tree:
/descendant::*/connector

Then, with a simple algorithm, it is possible for each node to
retrieve the value of its output attribute and to verify whether
or not it ends with the specified suffix. If this is the case, this
means that the property can change during execution, and that
the visibility of the component cannot be ensured.

Figure 5. Various representations of an animated program

Verifying the control flow
The combination of XPath queries to select elements and sim-
ple algorithms over their results allows to address more com-
plex cases. The example shown in Figure 6 is a classic cockpit
component, the primary flight display, here represented with
an alarm message on the top. This message alert must be trig-
gered by a proximity sensor that has two children true and
false. The message must be displayed when the true child
of the sensor is active and must disappear when the false

child is active.

Figure 6. A primary flight display for aircraft cockpits

The usual way offered by djnn to program this behavior is
to combine a switch component and a finite state machine
(FSM). Any number of children can be added to a switch but
only one is active at a given time; which child is active is de-
fined by the state of the switch. When the state of a FSM is
connected to the state of the switch, the FSM controls which
child is active. In our case, adding the alarm message to one
branch of a switch ensures that it is visible when the FSM de-
cides that this branch is active. This ensures that the visibility
of the message is controlled by events received by the FSM.

Consequently, to verify the behavior of the alarm we have to
check at least that:

1. the alarm message component is a child of a switch;

2. the switch is connected to a FSM;

3. the FSM is well formed;

4. there is a bijection between the branches of the switch and
the states of the FSM;

5. the transition in the FSM that goes to the alarm state is
triggered by the right event source.

Regarding point 1, the parent of an element can be easily re-
trieved through the following XPath expression:
expr = //descendant::*/component[@name=’terrain_alert’]/parent::node()

Once found, we can check that it is actually a switch through
the attribute name of the node. For point 2, we have to ver-
ify the existence of a connector that connects a FSM to the
switch found previously. This can be done by chaining XPath

requests. The first finds all the elements in the tree whose
node type is connector. Then we can look for a connector
whose in attribute corresponds to the state of a fsm node and
out to the state of the switch.

If a connected FSM is found, we can make classic verifica-
tions on it (point 3) such as “is there a transition allowing to
reach each state?”. This means here:
S = XPath.evaluate ("/fsm/children::*/state")
T = XPath.evaluate ("/fsm/children::*/transition")
for each state s in S verify that:
exists t in T such that output (t) = s

We also have to check that for each branch of the switch,
there is a corresponding state in the connected FSM (point 4).
For this, we must verify that for each branch of the switch,
it exists a state in the FSM with the same name. Finally, to
verify point 5 we have to follow the control flow that goes
from the transition whose output is the alert state, to the event
source that will ultimately triggers it. This step can be seen
as a partial traversal of the control flow graph. It consists in
collecting the control nodes of the tree and in exploring the
input and output nodes that they connect.

We implemented the final verification as a Java test that runs
the XPath queries on the XML version of the program, then
executes the above steps. In our program, there is a con-
nector c1 between the switch controlling the message and
a FSM. The transitions of the FSM are connected to the
terrain alert and end terrain alert components, them-
selves connected to the true and false children of the prox-
imity sensor through two bindings components b1 and b2.
The result is the following:
[connector:c1] connects djnn://root/fsm/state

to djnn://root/sw_alert/state
[fsm:fsm] well formed
[fsm:fsm] and [switch:sw_alert] rightly connected

Transition from alert to no_alert
triggered by event djnn://root/end_terrain_alert

[binding:b2] connects djnn://root/proximity_sensor/false
to djnn://root/end_terrain_alert

Transition from no_alert to alert
triggered by event djnn://root/terrain_alert

[binding:b1] connects djnn://root/proximity_sensor/true
to djnn://root/terrain_alert

Thus we can verify that the alert message will indeed be dis-
played only when the true child of the proximity sensor is
activated.

PRACTICAL APPLICATIONS AND PERSPECTIVES
djnn is available at http://djnn.net. It was designed to
support the development of modern interactive systems, in-
cluding post-WIMP and multimodal interaction, ubiquitous
computing and internet of things applications, and to explore
new engineering processes for interactive software. Since
practical application to real life developments is essential to
the validation of the underlying research, djnn is maintained
and proposed to user interface developers on several oper-
ating systems. It comes with a complete graphical module,
and with partial support for modern input devices, multiple
displays and file management. Other modules are under de-
velopment for supporting various interaction modalities, all

http://djnn.net

based on the theoretical principles explained earlier and thus
all accessible to static analysis.

djnn has been used to develop various real-size applications
including a touch-based ground control station for squads
of drones, a pen-based map annotation system for crews
of search and rescue missions, a multimodal cockpit proto-
type for civil aircraft, and an interactive show room. Some
are illustrated in the djnn web site. All these applications
have been designed and implemented using the same process:
user-centered design methods yielding low fidelity prototypes
(mostly paper prototypes, sometimes video prototypes), par-
allel production of graphical components and behavior com-
ponents, and final integration. The graphical components are
produced with Inkscape or Adobe Illustrator and loaded from
SVG files when the application is initialized, while the rest
of the component hierarchy is created through the djnn APIs.
The most popular APIs are the Java API and a proprietary
ObjectiveC API created by a user interface design company.
The main application of the XML formats so far has been to
transform or verify programs that had been previously created
by hand, not to execute models produced through controlled
processes. This underlines the utility of performing property
verification on executable programs without making assump-
tions on how these programs have been produced.

The verification of properties on djnn components is still ex-
perimental work and has not yet been integrated in the public
releases. As explained previously, some properties are cur-
rently checked on the representation of the tree in memory
when programs are launched and others on XML files us-
ing external tools. Each of these two approaches has proved
useful. The external approach is useful for exploring proper-
ties and algorithms before considering an implementation in
djnn. But it also helps to imagine solutions in which verifica-
tions are performed offline when modifications of programs
are committed to version management systems or continu-
ous integration systems. As for the internal approach, it also
opens the door to verifications that would be performed at
run time and not only when the program is initialized. For
instance, verifications on the context such as checking what
kind of display is available can be executed when the list of
available displays changes, thus becoming part of the interac-
tive program itself as proposed in [22].

In both cases, what the examples in this article illustrate is
that interesting properties can be defined at the level of each
component by programmers. There probably are general
properties than must be checked for all programs, like what
compilers propose for traditional programming languages.
But, in the same vein as the verification of invariants in
the programming-by-contract paradigm [24], there are many
properties that are meaningful for a given component only,
or for a given development team. This justifies supporting
the management of such properties in languages and tools for
interactive software. For instance, the XML format for djnn
components can be enriched with new sections for each com-
ponent, as in the example below:
<component name="graphics">
<xpath-required query="//sec" />
<circle name="bkg" cx="250" cy="250" r="100"/>

<rotation name="r" cx="250" cy="250" a="0"/>
<line name="sec" x1="250" y1="250" x2="250" y2="150"/>

</component>

These conditions, evaluated at verification time rather than
run time, can be defined by designers or development teams
before starting development, as a materialisation of a con-
tract. Or they can be added by programmers during devel-
opment, because they notice that they had to guarantee them
even though they were not originally specified; doing so en-
sures non-regression for the future.

CONCLUSION
In this paper, we have developed an approach for the verifi-
cation of interactive system properties based on static anal-
ysis and on the use of a language that describes interactive
software as a hierarchy of interactive components. This ap-
proach transfers to interactive systems a method that is well
known and used in other software domains. It gives the djnn
framework the ability to support the formulation of compo-
nent properties by members of development teams. Build-
ing abstract interpretations of djnn programs allows to check
various properties automatically and directly on the code,
whether they are related to design level or to system level.

So far we have studied abstractions based on the component
hierarchy, and more marginally on the control flow graph.
Even if promising results have been obtained, a lot of further
research is needed to explore the potential of this approach.
Several research directions are currently under consideration.
The range of properties expressible with XPaths must be ex-
plored as well as other methods for pattern matching in trees,
including easier languages for expressing queries. It will
also be useful to explore how well known graph properties
and related algorithms can contribute to establishing useful
properties, notably design structure matrix, graph traversal
algorithms and graph covering problem. Another possible
research area is how other abstractions built from the djnn
model can be used for verification, for instance the data flow
graph and the slicing approach.

Finally, we must explore what kind of design and develop-
ment processes can be introduced for managing interactive
software using these new possibilities. Contract-based devel-
opment is an option, as well as incremental specification in
parallel with prototype development. The extension of the
proposed method to the verification of the compatibility of
software with users’ activities and tasks can also be explored.

As a final note, it should not be forgotten that it will be
some time before the effective perception of an alarm can be
proved, and not only its effective display. Empirical evalua-
tion remains an important validation step for many systems.

ACKNOWLEDGMENTS
This research was partly supported by the French DGAC
through project FUMSECK and the EU ARTEMIS Joint Un-
dertaking through project HoliDes (SP-8, GA No 332933).
Any contents herein reflect only the authors’ views. Neither
DGAC not the ARTEMIS JU are liable for any use that may
be made of the information contained herein.

REFERENCES
1. Abowd, G. D., Coutaz, J., and Nigay, L. Structuring the

space of interactive system properties. In Proc. IFIP
EHCI’92, North-Holland (1992), 113–129.

2. Aı̈t Ameur, Y., Baron, M., Kamel, N., and Mota, J.-M.
Encoding a process algebra using the Event B method.
STTT 11, 3 (2009), 239–253.

3. Baeten, J. C. M. A brief history of process algebra.
Theor. Comput. Sci. 335, 2-3 (May 2005), 131–146.

4. Berry, G., Bouali, A., Fornari, X., Ledinot, E., Nassor,
E., and De Simone, R. ESTEREL: A formal method
applied to avionic software development. Science of
Computer Programming 36, 1 (Dec. 2000), 5–25.

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Mine, A., Monniaux, D., and Rival, X.
Design and Implementation of a Special-Purpose Static
Program Analyzer for Safety-Critical Real-Time
Embedded Software. LNCS 2566. Springer, Oct. 2002,
85–108.

6. Bumbulis, P., Alencar, P., Cowan, D., and Lucena, C.
Validating properties of component-based graphical user
interfaces. In Proc. DSV-IS96. Springer, 1996, 347–365.

7. Burke, M., and Cytron, R. Interprocedural dependence
analysis and parallelization. In Proc. SIGPLAN’86,
ACM (1986), 162–175.

8. Campos, J., and Harrison, M. The role of verification in
interactive systems design. In Proc. DSV-IS98, Springer
(1998), 155–170.

9. Cavano, J. P., and McCall, J. A. A framework for the
measurement of software quality. In Software quality
assurance workshop on functional and performance
issues (1978), 133–139.

10. Chatty, S., Lemort, A., and Valès S. Multiple input
support in a model-based interaction framework. In
Proc. of the 2nd IEEE workshop horizontal interactive
human-computer systems (Tabletop’07), IEEE
Computer Society (2007), 179–186.

11. Chatty, S. Supporting multidisciplinary software
composition for interactive applications. In Proc. of the
7th international symposium on software composition,
no. 4954 in LNCS, Springer Verlag (2008), 173–189.

12. Cousot, P., and Cousot, R. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc.
ACM POPL’77, ACM (1977), 238–252.

13. Duke, D., and Harrison, M. Abstract interaction objects.
Comput. Graph. Forum 12, 3 (1993), 25–36.

14. Goldin, D., Smolka, S., and Wegner, P., Eds. Interactive
computation - the new paradigm. Springer Verlag, 2006.

15. González-Calleros, J. M., Guerrero Garcia, J., and
Vanderdonckt, J. Advanced human-machine interface
automatic evaluation. Universal Access in the
Information Society 12, 4 (2013), 387–401.

16. Goubault, E., Martel, M., and Putot, S. Asserting the
precision of floating-point computations: A simple
abstract interpreter. In ESOP 2002, vol. 2305 of LNCS,
Springer (2002), 209–212.

17. Halbwachs, N. and Caspi, P. and Raymond, P. and
Pilaud, D. The synchronous dataflow programming
language Lustre. Proc. of the IEEE 79, 9 (1991),
1305–1320.

18. Hussey, A., and Carrington, D. Specifying a Web
Browser Interface Using Object-Z. Springer, 1998,
157–174.

19. Kennedy, K., and Allen, J. R. Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann, 2002.

20. Le Charlier, B. Abstract interpretation and application to
interactive system verification. In Proc. DSV-IS’96,
Springer (1996), 46–72.

21. Lim, A. W., and Lam, M. S. Maximizing parallelism and
minimizing synchronization with affine transforms. In
Proc. POPL’97, ACM (1997), 201–214.

22. Magnaudet, M., and Chatty, S. What should adaptivity
mean to interactive software programmers? In Proc.
ACM EICS’14, ACM (2014), 13–22.

23. McCall, J. Factors in Software Quality: Preliminary
Handbook on Software Quality for an Acquisiton
Manager, vol. 1-3. General Electric, November 1977.

24. Meyer, B. Object-Oriented Software Construction.
Prentice Hall, 1988.

25. Nigay, L., and Coutaz, J. Multifeature Systems: The
CARE Properties and Their Impact on Software Design.
1997.

26. Palanque, P., Barboni, E., Martinié, C., Navarre, D., and
Winckler, M. A model-based approach for supporting
engineering usability evaluation of interaction
techniques. In Proc. EICS 2011, ACM (2011), 21–30.

27. Paternò, F. Formal reasoning about dialogue properties
with automatic support. Interacting with Computers 9, 2
(1997), 173–196.

28. Pop, S. The SSA Representation Framework: Semantics,
Analyses and GCC Implementation. PhD thesis, Ecole
des Mines de Paris, 2006.

29. Thimbleby, H., and Gow, J. Applying graph theory to
interaction design. In Proc. EICS2007, J. Gulliksen, Ed.,
vol. 4940 of LNCS, Springer Verlag (2008), 501–518.

30. W3C. XML path language (XPath) 2.0 (second edition).
http://www.w3.org/TR/xpath20/.

http://www.w3.org/TR/xpath20/

	Introduction
	State of the art
	Properties of interactive systems
	Verification of interactive system properties
	Abstract interpretation of software

	The djnn framework
	Root concepts: processes
	Interactive components
	Component hierarchies
	Semantics of the hierarchy
	Building and exploring the component hierarchy

	ANALYZING DJNN COMPONENTS
	Pattern matching with XPath
	Verifying component signature
	Verifying execution context
	Verifying component visibility
	Verifying the control flow

	Practical applications and perspectives
	Conclusion
	Acknowledgments
	REFERENCES

