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Abstract: In this paper, the problem of aircraft trajectories representation and analysis is addressed. In many
operational situations, there is a need to have a value expressing how trajectories are close to each other. Some
measures have been previously defined, mainly for trajectory prediction applications, all of them being based
on distance computations at given positions in space and time. The approach presented here is to consider the
trajectory as a whole object belonging to a functional space and to perform all computations in this space. An
efficient algorithm for computing mathematical distance between trajectories is then presented and applied to
the major flows extraction in the French airspace.
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1 Introduction
Future Air Traffic Management relies, in part, on

the use of decision support tools (DST) to provide im-
proved service to the user community under increas-
ing traffic demand. Furthermore, this improvement
has to be validated by the mean of system perfor-
mance metrics such as complexity, robustness, capac-
ity. As aircraft fly 4D trajectories, there is a strong
need to quantify the associated trajectory accuracy in
order to validate aircraft models and trackers. Such
validation is usually based on a comparison between
the actual trajectory and a reference by the mean of a
trajectory distance. This last point is the key element
of the whole process. Such trajectory distance is still
needed for ATM applications and the goal of this pa-
per is to present a new trajectory distance based on
rigorous mathematical concepts. Although trajecto-
ries are well understood and studied, relatively little
investigation on the precise comparison of trajecto-
ries is presented in the literature. A key issue in per-
formance evaluation of ATM decision support tools
(DST) is the distance metric that determines the sim-
ilarity of trajectories. Most existing measures [7, 22]
compute a mean distance of the corresponding posi-

tions of two equal duration trajectories. Supplemen-
tary statistics such as variance, median, minimum,
and maximum distances are also suggested to extend
the description of similarity. In [17], Needman pro-
posed an alignment based distance metric that reveals
the spatial transition and temporal shift between the
given trajectories, and introduced an area based met-
ric that calculates the total enclosed area between tra-
jectories using trajectory intersection.

One main disadvantage of the existing approaches
is that they are all limited to the equal duration (life-
time) trajectories. By duration we refer to the num-
ber of coordinate points that constitute the trajectory.
These coordinates are sampled at different instances.
Since the existing measures depend on the mutual co-
ordinate correspondences, they cannot be applied to
trajectories that have different durations. Conventional
distance measures assume that the temporal sampling
rates of trajectories are equal. They do not cope with
the uneven sampling instances, i.e. varying temporal
distance between the coordinates. Therefore, there
is a need to develop other alternatives that can ef-
fectively measure the difference between unrestricted
trajectories.There are a lot of ATM applications where
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Figure 1 General simulation model. The solver gen-
erate trajectories as close as posible to the reference
trajectory thanks to the feedback path.

such distance between trajectories is needed.
Aircraft model Inference
All aircraft models are based on ODEs (Ordinary

Differential Equation), including tabular ones (see Fig. 1).
The aircraft model inference consists in answering
the following question :Given a parametrized model
and a goal trajectory, can we infer the best param-
eter values? A model can be viewed as a mapping
from the control space into the trajectory space. The
way to answer the previous question is then given by
the closest model to the goal trajectory (see Fig. 2).
In order to find the closest model in this trajectory

γ

Figure 2 Finding the best model from a given class.
The green “grid” represents represents such class pro-
duced by the model and γ is the goal aircraft trajec-
tory.

space, a reliable trajectory distance is needed. The
model inference problem has to solve the accuracy-
smoothness dilemma :Over-fitted models are gen-
erally poor predictors. The previous construction
gives the shortest path (and thus the distance) between
the goal trajectory and the trajectory set which can be
synthesized by the model.

Trajectory prediction
Air traffic management research and development

has provided a substantial collection of decision sup-
port tools that provide automated conflict detection
and resolution [4, 1, 28],trial planning [13], controller
advisories for metering and sequencing [26, 2], traf-

fic load forecasting [14, 12], weather impact assess-
ment [9, 25, 5]. The ability to properly forecast future
aircraft trajectories is central in many of those deci-
sion support tools. As a result, trajectory prediction
(TP) and the treatment of trajectory prediction uncer-
tainty is an active areas of research and development
(eg [23, 27, 16, 21, 24]).

Accuracy of TP is generally defined as point spa-
tial accuracy (goal attainment) or as trajectory follow-
ing accuracy. The last one can be rigorously defined
by the mean of trajectory space. The first one is a limit
case of the second by adding a weight function in the
energy functional.

When we refer to trajectory prediction errors for
a specific DST, we are typically comparing the pre-
dicted trajectory for a specific DST to the actual tra-
jectory to be experienced by an aircraft. Discrepan-
cies between these two types of trajectories typically
affect the performance of the DST.

Radar tracker evaluation
The goal of a radar tracker is to eliminate the resid-

ual noise coming from the radars. It is a key element
of the ATM system and its accuracy is one of the fac-
tors which determines the separation norm. In order
to validate such trackers, an exact reference trajectory
is generated and perturbed by a white Gaussian noise.
This perturbed trajectory is then used as input of the
tested tracker. The tracker generates an estimated tra-
jectory which is compared to the reference trajectory.
In order to do such comparison, a reliable trajectory
distance is also needed.

Alternative route synthesis
Airspace congestion is related to aircraft located

in the same area during the same period of time. Then,
when congestion has to be minimized, algorithms have
to separate aircraft in time (slot allocation), in space
(route allocation) or both (bi-allocation). When route
allocation is investigated, associated algorithms need
alternative routes set in order to spread the traffic on
them. A route is said to be alternative to another if it
is different enough based on a trajectory distance.

Major flows definition
When radar tracks are observed on a radar screen

over a long period of time in a dense area, it is very
easy to see major flows connecting major airports.
The expression ”major flows” is often used but never
rigorously defined. Based on an exact trajectory dis-
tance and a learning classifier, it is possible to answer
the following questions :Given a set of observed tra-
jectories, can we spit it into ”similar” trajectory
classes? If yes, classes with highest number of ele-
ments will rigorously define the major flows. Given
those classes and a new trajectory, can we tell if it
belongs to a major flow and which one? The princi-
ple of the major flows definition is to use shape space
to represent trajectory shapes as points and to use a
shape distance. (the shape of a trajectory is the path
followed by an aircraft, that is the projection in the 3D
space of its 4D trajectory. The speed on the path has
no impact).
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Figure 3 Four trajectories γ1,γ2,γ3 and γ4, are sharing
a common central straight line. One can identify an
average of two aircraft at each point of this line and
only one in the other segments. If we compute the
highest density associated with those trajectories, we
will extract the central segment which is flown by no
aircraft.

Major flows have not to be confused with highest
density in the airspace. As a matter of fact, some ap-
proaches for major flows extraction consider the accu-
mulated traffic in the airspace and build a kind of den-
sity map for which the highest areas are considered as
major flows. This approach may be completely false
as shown on figure 1. On this figure, four artificial
trajectories share a common highest density area but,
as it can be seen on the figure, no aircraft is flying this
“high density trajectory”.

Another approach consists in extracting major flows
on a set of trajectories thank’s to an efficient HMI and
a bundling algorithm [11]). The results produced by
this kind of algorithm are quite similar to the ones
presented in this paper but it is done manually and we
propose to do it automatically.

As it has been shown in this section, mathemat-
ical distance between trajectories is a real need for
many ATM applications. The next section of this pa-
per presents some current trajectory distance metrics
and shows their limitations. The third part gives a
detailed mathematical description of our new trajec-
tory distance. The fourth part introduces the asso-
ciated algorithms implementation. Finally, the fifth
part, presents the application of such algorithms to the
major flows extraction of the French airspace with '
8000 trajectories.

2 MATHEMATICAL DISTANCE BETWEEN TRA-
JECTORIES

2.1 Introduction
In a vector space, distances are very well defined.
If we consider two points ~P1 = (x1, y1)T and ~P2 =

(x2, y2)T in a plane (see Fig. 4), the distance between
them can be computed with the classical formula of
the euclidean distance (see Fig. 4) :

d(~P1, ~P2) =

√
(x2 − x1)2 + (y2 − y1)2 (1)

P
1

P
2

γ
2

1
γDistance

Distance= ?

Figure 4 On the left, two points ~P1 and ~P2 has been
drawn for which the classical Euclidean distance is
shown in red. On the right, two trajectories are drawn
(γ1, γ2) for which one want to determine a mathemat-
ical distance.

What is the distance, if now the points ~P1 and
~P2 are replaced by two trajectories γ1 and γ2 ? Tra-
jectories are infinite dimension mathematical objects
which are not easy to manipulate. We are looking for
a mathematical distance between trajectories (γ1 and
γ2) with the following properties :

• d(γ1(t), γ2(t)) = 0 ⇒ γ1(t) = γ2(t)

• d(γ1(t), γ2(t)) = d(γ2(t), γ1(t))

• d(γ1(t), γ2(t)) + d(γ2(t), γ3(t)) ≥ d(γ1(t), γ3(t))

One of the main results of this paper is the estab-
lishment of such mathematical distance between air-
craft trajectories.

2.2 Current Trajectory Distances
An aircraft trajectory is a time sequence of coor-

dinates representing the aircraft path over a period
of time and may be represented by a N-uple :T =
{(x1, y1, z1, t1), (x2, y2, z2, t2), ..., (xN , yN , zN , tN)}where
N is the duration.

The simplest metric used for computing the dis-
tance between a pair of trajectories is the mean of co-
ordinate distance, which is given as

m1(T a,T b) =
1
N

N∑
n=1

dn (2)

where the displacement between the positions is cal-
culated using the Cartesian distance

dn = [(xa
n − xb

n)2 + (ya
n − yb

n)2 + (za
n − zb

n)2]
1
2 (3)

Note that, the mean of distance metric makes three
critical assumptions :
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1. the durations of both trajectories are the same :Na =

Nb = N

2. the coordinates are synchronized ta
n = tb

n

3. the time sampling rate is constant ta
n+1 − ta

n =
ta
m+1 − ta

m

It is evident that the mean of distance is very sensi-
tive to the partial mismatches and cannot deal with
the distortions in time.

To provide more descriptive information, the sec-
ond order statistics such as median, variance, min-
imum and maximum distance may be incorporated.
For instance variance trajectory distance is defined as

m2(T a,T b) =
1
N

N∑
n=1

(dn − m1(T a,T b))2 (4)

Although these statistics supply extra information,
they inherit (even amplify) the shortcomings of the
ordinary mean of distance metric m1. Besides, none
of the above metrics is sufficient enough by itself to
make an accurate assessment of the similarity.

Another possible candidate for the distance be-
tween two trajectories γ1 and γ2 will simply be to take
the supremum norm (see Fig 5), that is :

d∞(γ1, γ2) = sup
s∈R
‖γ1(s) − γ2(s)‖ (5)

d 8

γ
1
(t)

γ (t)2

O
D

Figure 5 Supremum norm distance

Since γ1 and γ2 are constant outside bounded in-
tervals of R, the supremum is well defined. How-
ever, this metric is not sensitive to global properties
of curves. In the Fig. 6, the curves γ1 and γ2 are at the
same distance from γ3 but have very different shapes.
From an operational point of view, γ1 is just a shifted

γ

γ

3

γ
2

1

Figure 6 Different trajectories with same sup distance

copy of γ3 while γ2 will probably not be realistic.

For trajectories γ1, γ2 with the same origin-destination
pairs, γ1−γ2 can be defined as a compactly supported
mapping and an area distance between trajectories can
be defined :

d2(γ1, γ2) =

(∫
R
‖γ1(t) − γ2(t)‖2 dt

) 1
2

(6)

d2 ~ area γ
1
(t)

γ (t)2

O
D

Figure 7 Area distance between trajectories with the
same origin-destination pairs

An extension of such area based distance metric
is proposed in [17]. The crossing points of two paths
(where T a(pi) = T b(p j)) are used to define regions
Q j, j = 1, .., J between trajectories (see Fig. 8). For
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Figure 8 Area distance between trajectories with or
without crossings.

each region, a polygon model is generated and the en-
closed area is found by the parameterized shape. The
resulting distance is given by :

m3(T a,T b) =

N∑
n=1

area(Q j) (7)

This metric can handle more complex trajectories, how-
ever it is sensitive to entanglements of the trajectory,
it discards the time continuity, and fails to distinguish
two trajectories in opposite directions. Furthermore,
it is not adapted to 3D trajectories.

In order to introduce our new mathematical dis-
tance between trajectories, one must first give some
representation definitions.
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2.3 Representation
Since objects of interest are aircraft trajectories,

we need to find an adapted framework in which com-
putations may be made on trajectories as a whole.
There are basically two ways of understanding what a
trajectory is :
• The time/position approach. In this case, a tra-

jectory can be represented as a mapping from
a bounded interval of R (the life time of the
trajectory) to R3 or R6 depending on whether
speed is part of the data or not. Since there is an
explicit dependence on time, there is a need to
calibrate trajectories with time shifts for all ap-
plications involving trajectory comparison. We
will see in the following that there is neverthe-
less a mean of reducing the problem so that ori-
gin of time is automatically calibrated.

• The shape approach. Here, trajectories are un-
derstood as paths and time is not directly rel-
evant (from a more formal point of view, we
take the quotient of the trajectories understood
as mappings by the group of diffeomorphisms
acting on time), so that we may assume that the
underlying life time of trajectories is always the
interval [0, 1]. This is the right framework for
dealing with major flows estimation.

2.4 Trajectories as mappings
We will assume in the following that trajectories

are given as mappings from a compact interval of R to
R3. The case of mappings from R to R6 (that is with
explicit speed, for example as given by radar tracking
filter) can be derived with minor changes and thus will
not be addressed here. Since physical trajectories are
smooth unless there is a perturbing noise, we made
the choice to take all trajectories as smooth mappings
from a compact interval of R to R3.

The first point to deal with is the necessary cali-
bration of the origin of time for trajectories compar-
ison. Remembering that there is an explicit depen-
dence on time, one cannot just time shift one trajec-
tory in time in order to make it coincident with an-
other in order to compare them : this will result in
forgetting distortions in time, that is trajectories with
the same range (as mappings) but different positions
at different times may become equal.

Since we choose to compare trajectories as map-
pings, a good candidate for computing the distance
will be to integrate over time (like for the area dis-
tance) and to evaluate a mean error instead of the raw
sum of squares :

dT (γ1, γ2)2 =
1

2T

∫ T

−T
‖γ1(t) − γ2(t)‖2dt (8)

with T > 0. Or, if we allow the mean to be weighted :

dT (γ1, γ2)2 =
1
T

∫
R

h(t/T )‖γ1(t) − γ2(t)‖2dt (9)

and h a positive summable function such that :∫
R

h(u)du = 1 (10)

This formula defines a semi-distance between trajec-
tories γ1 and γ2 (see appendix A).

The previous family of semi-distances has nice
features because of the scaling ability, but since it is
not a single metric, it is difficult to use standard algo-
rithms based on distances (for example, classification
algorithms). There is thus a need for another defini-
tion of proximity between trajectories that will yield
a single value while capturing interesting global char-
acteristics.

Before introducing our homotopic distance between
trajectories one must introduce how do we cope with
time difference between trajectories.

2.5 Parametrization invariance
A very important constraint to take into account

is the parametrization invariance: the shape of an ob-
ject is independent on the way its contour is followed.
In its seminal paper, Kendall introduced the notion of
shape manifold [8]: the originality of its work was the
use of a differential geometry setting to implicitly en-
force the invariance with respect to shape-preserving
transformations. Curves were represented as finite
sequences of distinguished points, called landmarks.
Some related algorithms were eventually designed for
air traffic analysis applications. In a study conducted
by the Mitre corporation on behalf of the Federal Avi-
ation Authority (FAA) [3], a spectral clustering algo-
rithm was applied to sampled trajectories. Only the
distance between landmarks was used, no invariance
under euclidean transformations were imposed. Due
to the high computational complexity, a random pro-
jection was first applied to the data in order to re-
duce the dimension of the samples. The most impor-
tant limitation of this approach is that the shape of
the trajectories is not taken into account when apply-
ing the clustering procedure unless a re-sampling pro-
cedure based on arc-length is applied: changing the
time parametrization of the flight paths will induce a
change in the classification. Methods based on times
series as surveyed in [10, 20] are appealing, but turn
out to be inadequate for the present application. Fi-
nally, functional data statistics [6, 18] provides a pow-
erful framework, still lacking the re-parametrization
invariance. In this section, flight paths will be mod-
eled as points in an infinite dimensional riemanian
manifold. An intrinsic notion of distance exists in this
setting and is defined as the infimum of the length of
the paths connecting two points. Having this at hand
allows the use of standard, distance based algorithms
like k-means, k-mediods or hierarchical clustering.
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2.6 Trajectories registration
A flight path may be modeled as a smooth curve

γ : [a, b] → R3 that maps a time to a position. Two
distinct trajectories γ1, γ2 are most of the time defined
on different time intervals, say [a1, b1] (resp. [a2, b2])
for γ1 (resp. γ2), making the comparison between
them quite awkward. This issue is well known in
the field of functional data statistics as the registra-
tion problem. In a formal sense, it amounts to find
a pair (φ1, φ2) of strictly increasing diffeomorphisms
φ1 : [0, 1] → [a1, b1], φ2 : [0, 1] → [a2, b2] such that
the transformed curves γ1 ◦φ1, γ2 ◦φ2, defined on the
common interval [0, 1], are as similar as possible. The
special problem instance:

min
φ1,φ2

∫ 1

0
‖γ1 ◦ φ1(t) − γ2 ◦ φ2(t)‖2 dt

gives the Fréchet distance between γ1, γ2. Comput-
ing the optimal φ1, φ2 is a difficult task, unless the
curves are assumed to be polygonal. Furthermore, as
mentioned in [18], the registration procedure may re-
move some important features from the data: the ex-
tra degree of freedom provided by the so-called warp-
ing functions φ1, φ2 may have the detrimental effect
of registering curves that does not need it [19]. A
discrete relative to the Fréchet distance is known as
dynamic time warping and may be used to compare
sampled sequences. Nevertheless, it suffers from the
same drawback.

On the end of the other scale, a much simple pro-
cedure is to select only affine transformations for the
warping functions. Given a trajectory γ : [a, b]→ R3,
the affine registration is γ ◦ φ with:

φ : t ∈ [0, 1] 7→ a + (b − a)t

It amounts to shift the time origin so as to make it
coincident with 0, then to scale by the length b − a of
the time interval.

In between, registration procedures based on time
landmarks or monotonic polynomial approximation
may be used [19]. Most of the time, a penalty crite-
rion must be added to the similarity measure in order
to avoid the over-registration phenomenon. It worth
mentioning a special procedure, that will be used in
the sequel, that is more in line with geometry. Given
a smooth curve γ : [a, b] → R3, its arclength is the
smooth mapping:

s : t ∈ [a, b] 7→
∫ t

a
‖γ′(u)‖du

The length lγ of the curve is just s(b). Assuming that
γ′ never vanishes, s is strictly increasing, thus invert-
ible. It induces a warping function:

ξ : t ∈ [0, 1] 7→ s−1(tlγ) ∈ [a, b]

that is characterized by the property:

∀t ∈]0, 1[, ‖Dtγ ◦ ξ(t)‖ = lγ

where Dt stands for the derivative with respect to t.
This warping function is intimately related to the land-
marks approach of [8], as sampling evenly in the in-
terval [0, 1] will result in a geometric even sampling
on the curve itself (with respect to arclength). It will
be denoted as the arclength warping in the sequel.

2.7 The manifold of paths
The idea of representing curves as point on an infi-

nite dimensional manifold arises in the field of pattern
recognition as an answer to the problem of assessing a
degree of similarity between two shapes [15]. Within
this frame, only closed curves were considered as they
represent objects contours. In the context of air traffic,
flight paths are never closed, unless the aircraft take
off and land at the same airport, which is a quite un-
common for airliners. The initial mathematical model
must be adapted to cope this specificity. For the sake
of simplicity, all trajectories are assumed to be defined
on the time interval [0, 1].

Definition 1 The space of immersions Imm([0, 1],R3)
is the set of smooth curves γ : [0, 1]→ R3 with nowhere
vanishing derivative in the interval ]0, 1[.

Generally speaking, an immersion will be a curve with
nowhere vanishing derivative in the interior of its do-
main. It is clear that for such a curve the arclength is
well defined and strictly increasing thus the geometric
warping function exists. It may be used to perform a
registration step to ensure that all curves are defined
on [0, 1].

Given γ in Imm([0, 1],R3), its derivative norm
‖Dtγ‖ is a continuous mapping on the compact in-
terval [0, 1] and thus has a non-zero minimum value
m. If ε : [0, 1] → R3 is a smooth mapping such that
sup[0,1] ‖Dtε‖ < m, then γ+ε will have a nowhere van-
ishing derivative and thus still belongs to Imm([0, 1],R3).
This indicates that this space has locally the structure
of a vector space (in fact a Banach space) and glob-
ally the one of a differentiable manifold. To get rid
of the influence of parametrization, the shape space
is defined as a quotient with respect to all increasing
diffeomorphisms of the interval [0, 1]:

E = Imm([0, 1],R3)/Diff+([0, 1])

E inherits the manifold structure from Imm([0, 1],R3).
A point in E will be denoted by [γ] and is an equiva-
lence class of mappings γ ◦ φ with φ ∈ Diff+([0, 1]).
A tangent vector at [γ] is a couple ([γ], v) where v is
a smooth mapping from [0, 1] to R3. This mapping
must be understood as an infinitesimal displacement
field on the base curve γ. As usual, the set of tangent
vector is called the tangent bundle of E, denoted by

6
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TE. An riemanian metric can be introduced on E, in
the spirit of [15]:

g[γ](u, v) =

∫ 1

0
〈u(t), v(t)〉(1 + Aκ2(t))‖Dtγ(t)‖dt

(11)

+ µ〈u(1), v(1)〉 − µ〈u(0), v(0)〉 (12)

where γ is a representative curve of [γ] and κ is the
curvature of γ at t. The parameters A, µ are strictly
positive real numbers that tune the respective impor-
tance of the curvature and the endpoints. The riema-
nian metric is invariant under a change of parametriza-
tion and thus does not depend on the particular choice
of γ in the equivalence class [γ].

A smooth path between two points [γ1], [γ2] in E
is represented by a smooth homotopy Φ ∈ Imm([0, 1],R3),
that is a smooth mapping from [0, 1]2 to R3 such that:

• Φ(0, •) = γ1(•),Φ(1, •) = γ2(•)

• ∀(s, t) ∈ [0, 1]2, DtΦ(s, t) , 0

The derivative of Φ with respect to the homotopy pa-
rameter s, denoted by DsΦn is a smooth curve on
[0, 1], so that for a given s, the couple ([Φ(s, •)],DsΦ(s, •))
is a tangent vector in TE[phi(s,•)]. An visual representa-
tion of an smooth homotopy along with the associated
tangent vectors is given in Fig. 9.

(a,         )1
(t)γ ’

(t)γ ’
2(b,         )

1
γ ’(u)

du
1

γ ’(u)d(        )

du
dvu

vu initial point

Figure 9 Smooth path between two curves

Using the riemanian metric (11) on TE, the energy
of a path Φ can be defined in the usual way:

E(Φ) =

∫ 1

0
g[φ(s,•)] (DsΦ(s, •),DsΦ(s, •)) ds (13)

It is equivalent for a path to minimize the energy or
the length, the former is preferred as it saves a square
root in the expression. The critical points of E are
called geodesic paths. Since it is only a local condi-
tion (vanishing derivative), it may not correspond to
a minimum of E. If such a global minimum exists, a
path realizing it, is called a minimizing geodesic. In
the finite dimensional setting, the Hopf-Rinov theo-
rem may be invoked to prove the existence of a mini-
mizing geodesic between arbitrary points. Unfortu-
nately, it doesn’t hold generally for infinite dimen-
sional manifolds. It turns out that in the framework

defined above, a minimizing geodesic exits between
any two curves, thus making possible the definition
of a distance on E:

For any couple ([γ1], [γ2]) in E2, the distance be-
tween [γ1] and [γ2] is given by:

d =

∫ 1

0

√
g[φ(s,•)] (DsΦ(s, •),DsΦ(s, •))ds (14)

where Φ is any homotopy between γ1, γ2 realiz-
ing the minimum of E.

The distance d turns E into a metric space and can
be used in any distance-based clustering algorithm.

3 ALGORITHM

3.1 Distance Algorithm
In order to compute the distance between two tra-

jectories (γ1,γ2), a time regularization is first applied
to both trajectories. Then, an homotopy Φ between
γ1,γ2 is built for which a discrete grid is built in order
to minimize its associate energy.

Let a be the origin of the trajectory γ. We have :
γ(t) = a +

∫ t
0 γ
′(s)ds ,so a couple (a, γ′) (∈ W) with

γ′ compactly supported defines a trajectory.
An homotopy between (a, γ′1) and (b, γ′2) is a con-

tinuous mapping Φ : [0, 1] → W such that Φ(0) =
(a, γ′1) , Φ(1) = (b, γ′2). Intuitively, an homotopy is a
continuous deformation between two trajectories.c

The deformation energy between γ1 and γ2 is linked
to the distance between those trajectories and can be
computed with the energy of the homotopy between
γ1 and γ2 :

E(Φ) =

∫ 1

0

(∥∥∥∥∥∂vu

∂u

∥∥∥∥∥2

+

∫
R

∥∥∥∥∥∂γ′u(s)
∂u

∥∥∥∥∥2

ds
)

du (15)

In the case of a linear homotopy (which is the sim-
plest one), the associated energy is given by :

Φ0(u, s) =
(
[(1 − u).a + u.b] ,

[
(1 − u).γ′1(s) + u.γ′2(s)

])
(16)

E(Φ0) = ‖b − a‖2 +

∫
R

∥∥∥γ′1(s) − γ′2(s)
∥∥∥2

ds (17)

There is an infinite number of homotopies shifting
from γ1 to γ2 and our problem is to find the one with
the minimum energy.

The deformation energy of a shape homotopy is
obtained with a slight change in the expression for
trajectories.

7
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Figure 11 On this metric space each trajectory is rep-
resented by a point (blue point)..

E(Φ) =

∫ 1

0

(∥∥∥∥∥∂vu

∂u

∥∥∥∥∥2

+

∫
R

∥∥∥∥∥∂γ′u(s)
∂u

∥∥∥∥∥2

.
∥∥∥γ′u(s)

∥∥∥ ds
)

du

(18)
In order to compute such energy, a grid on the

homotopy connecting γ1 to γ2 is built, as shown on
Fig. 10.

(a,         )
1
(t)γ ’

(t)γ ’
2

(b,         )

x,y,z

Figure 10 Structure of the grid used for homotopy en-
ergy minimization. Each red point has 2D coordinates
(x,y) for which an optimization algorithm is used for
searching the z coordinates which minimize the en-
ergy of the homotopy connecting γ1 to γ2.

This grid help us to compute an approximation of
summation used in E(Φ). The optimization algorithm
is searching for the z coordinate of each grid point
in order to minimize E(Φ). One can show that such
problem is convex (from the optimization theory point
of view) and gradient like method can be used to find
the associated minimum (quadratic programming has
been used to solved this problem efficiently).

3.2 Clustering Algorithm
We consider a set of trajectories extracted from

the radar track database of a given airspace. Hav-
ing defined a distance between trajectories, one can
gather together such trajectories in order to create clus-
ters by using an adaptive clustering algorithm (hierar-
chical clustering). Such a clustering algorithm aims
to partition the trajectory set into K clusters. To reach
this goal, trajectories are consider as points in the as-
sociated metric space (see Fig. 11).

This algorithm uses two parameters, dmin and dmax,
to respectively fuse clusters and create new clusters.
Initially, each trajectory is considered as the centroid
of a cluster. We then apply the three following princi-
ples one after the other:

• if two centroids are at a distance lower than
dmin, we fuse them into a single cluster, of which
the resulting centroid is the barycenter of the
two initial centroids. The barycenter is com-
puted the following way :

µi =
1
N

i=N∑
i=1

γi (19)

• a new individual is aggregated to a cluster if its
distance from the closest centroid is lower than
dmax and in this case we compute the new global
centroid.

• Otherwise, we create a new cluster containing
the single trajectory.

The number of clusters is also a result of the al-
gorithm. An example of clustering resust is given on
Fig. 12.

For each cluster c, one can compute also the fol-
lowing features :

• Number of trajectories in the cluster Nc;

• Mean trajectory which is the cluster centroid
(γc);

• Dispersion of the cluster:

Nc∑
i=1

∥∥∥γ j − γc

∥∥∥2
(20)

where ‖.‖ is the norm in the trajectory metric
space.

The overall processing can be summarized by the
Fig. 13

8
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γ
1 γ

Ν

Trajectory 1 Trajectory N

Registration 

Clustering 

Trajectories

Distance 

Computation 

Clusters

Registration 

Figure 13 Overall structure of the algorithm

Figure 14 Radar tracks of the France traffic of June,
27, 2015. This traffic correspond to the upper airspace

Figure 12 In this example the algorithm find eleven
clusters with different features.

4 RESULTS
The algorithm has been applied to the French airspace

with an heavy traffic of 8764 flights corresponding to
June 27, 2015. This traffic has been extracted from
the radar track database. Each trajectory being sam-
pled every ten seconds, one has to manipulate about 5
million points, each on them having four coordinates
(x, y, z, t). The traffic is represented on Fig. 14.

The initial step consists in computing the trajec-
tory registration in order to remove the absolute time
dependency. Then, the dmin and dmax distance have
been fixed in order to apply the hierarchical cluster-
ing algorithm. Those distances have been establish
during experimentations (dmin = 2.30 dmax = 4.5).
Based on those distances, the hierarchical clustering
algorithm has extracted 47 major flows for this day as
shown on Fig. 15.

The algorithm has been implemented into C++
and executed on a IntelXeon3.2Ghz PC computer with
an executing time of 30 seconds for extraction the
major flow associated to the 8764 flights of June 27,
2015.

5 CONCLUSION
This paper has shown that distance between tra-

jectories is a real need for ATM applications. Several
ways of computing distances on the space of trajecto-
ries have been presented with their limitations. This
family of metrics, scale based, is mainly useful for
descriptive purpose and to quickly analyze a set of
trajectories (for example, as a tool complementary to
standard descriptive statistics).

Then, a concept originating from functional anal-
ysis has been introduced in order to work directly on
trajectories as a whole. For more in depth analysis
of trajectories, a new kind of distance has been in-
troduced that is based on the energies of homotopies
joining pairs of trajectories. This yield to a variational
problem that cannot be solved directly, but may be re-
duced to a quadratic optimization problem. This kind
of distance allows computations to be done on trajec-
tories understood as shapes (or embeddings).

Based on this new distance between trajectories,
an efficient major flows extraction has been developed
with nice results on the French airspace for several
thousands of trajectories.
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Figure 15 Major flows extracted from the hierarchical
algorithm.

References
[1] D.J. Brudnicki and A.L. McFarland. User

request evaluation tool (uret) conflict probe
performance and benefits assessment. In
FAA/Eurocontrol ATM Seminar Saclay France,
1997.

[2] R. Coppenbarger, R. Lanier, D. Sweet, and
S. Dorsky. Design and development of the en-
route descent advisor (eda) for conflict-free ar-
rival metering. In AIAA-2004-4875 AIAA GNC
Conference Providence RI, 2004.

[3] M. Enriquez. Identifying temporally persistent
flows in the terminal airspace via spectral clus-
tering. In FAA-Eurocontrol, editor, ATM Semi-
nar 10, 06 2013.

[4] H. Erzberger, R.A. Paielli, D.R. Isaacson, and
M.M. Eshowl. Conflict detection in the presence
of prediction error. In FAA/Eurocontrol ATM
Seminar Saclay France, 1997.

[5] J. Evans and al. Reducing severe weather de-
lays in congested airspace with weather sup-
port for tactical air traffic management. In
FAA/Eurocontrol ATM Seminar BUdapest Hun-
gary, 2003.

[6] F. Ferraty and P. Vieu. Nonparametric Func-
tional Data Analysis: Theory and Practice.
Springer Series in Statistics. Springer, 2006.

[7] C. Jaynes, S. Webb, R. Steele, and Q. Xiong.
n open development environment for evaluation

of video surveillance system. In Proceedings of
PETS, Copenhagen, June 2002.

[8] David G. Kendall. Shape manifolds, procrustean
metrics, and complex projective spaces. Bulletin
of the London Mathematical Society, 16(2):81–
121, 1984.

[9] D.B. Kirk and al. Problem analysis resolution
and ranking (parr) development and assessment.
In FAA/Eurocontrol ATM Seminar Santa Fe NM,
2004.

[10] T. Warren Liao. Clustering of time series data
- a survey. Pattern Recognition, 38:1857–1874,
2005.

[11] Aude Marzuoli, Christophe Hurter, and Eric
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A Semi Distance beetween trajectories

dT (γ1, γ2)2 =
1

2T

∫ T

−T
‖γ1(t) − γ2(t)‖2dt (21)

with T > 0. Or, if we allow the mean to be weighted :

dT (γ1, γ2)2 =
1
T

∫
R

h(t/T )‖γ1(t) − γ2(t)‖2dt (22)

and h a positive summable function such that :∫
R

h(u)du = 1 (23)

Now, since the derivative of ‖γ1(t) − γ2(t)‖2 is :

2(γ1(t) − γ2(t), γ′1(t) − γ′2(t)) (24)

((., .) denotes the usual scalar product) we have :

‖γ1(t) − γ2(t)‖2 = ∆−+∫ t

−∞

2(γ1(s) − γ2(s), γ′1(s) − γ′2(s))ds

with ∆− = limt→−∞ ‖γ1(t) − γ2(t)‖2 (this limit always
exists since we have assumed at the beginning that tra-
jectories are mappings from compact intervals). The
expression of the mean square error becomes :

dT (γ1, γ2)2 = ∆−+

1
T

∫
R

h(t/T )
(∫ t

−∞

(γ1(s) − γ2(s), γ′1(s) − γ′2(s))ds
)

dt

By fubini theorem, we have :

dT (γ1, γ2)2 = ∆−+

1
T

∫ −T

−∞

(γ1(s) − γ2(s), γ′1(s) − γ′2(s))ds+∫ T

−T

(∫ T

s
h(t)(γ1(s) − γ2(s), γ′1(s) − γ′2(s))dt

)
ds

and finally :

d(γ1, γ2)2 = ∆−+∫ −T

−∞

(γ1(s) − γ2(s), γ′1(s) − γ′2(s))ds+∫ T

−T
(γ1(s) − γ2(s), γ′1(s) − γ′2(s))(

∫ 1

s/T
h(u)du)ds

Limits as T → 0,T > 0 and T → +∞ can be ob-
tained. If T → 0,T > 0, since

∫ 1
s/T h(u)du is bounded,

we have :

lim
T→0+

dT (γ1, γ2)2 = ∆−+∫ 0

−∞

(γ1(s) − γ2(s), γ′1(s) − γ′2(s))ds

This is in fact ‖γ1(0) − γ2(0)‖2.
γ1, γ2 are constant mappings outside a compact

interval of R, so both γ′1 and γ′2 are compactly sup-
ported. Furthermore the support of the mapping s →
(γ1(s)−γ2(s), γ′1(s)−γ′2(s)) is included in the union of
the supports of γ′1 and γ′2, thus A > 0 exists such that

11



+D.Delahaye, S.Puechmorel, S.Alam, E. Feron

this mapping vanishes outside [−A,+A]. This means
that for T > A the first integral in the previous expres-
sion vanishes. The second has value :∫ T

−T

(
(
∫ 1

s/T
h(u)du)(γ1(s) − γ2(s), γ′1(s) − γ′2(s))

)
ds

(25)
and here again, as soon as T > A this reduced to :∫ A

−A

(
(
∫ 1

s/T
h(u)du)(γ1(s) − γ2(s), γ′1(s) − γ′2(s))

)
ds

(26)
so :

lim
T→+∞

dT (γ1, γ2)2 = ∆−+

lim
T→+∞

∫ A

−A

(
(
∫ 1

s/T
h(u)du)(γ1(s) − γ2(s), γ′1(s) − γ′2(s))

)
ds

by dominated convergence theorem, this gives :

lim
T→+∞

dT (γ1, γ2)2 = ∆−+K
∫ A

−A
(γ1(s)−γ2(s), γ′1(s)−γ′2(s))ds

(27)
with K =

∫ 1
0 h(u)du. and finally, using again the fact

that γ′1, γ
′
2 are compactly supported, this is :

lim
T→+∞

dT (γ1, γ2)2 = ∆−+K
∫
R

(γ1(s)−γ2(s), γ′1(s)−γ′2(s))ds

(28)

Now, using the fact that :∫
R

(γ1(s) − γ2(s), γ′1(s) − γ′2(s))ds = ∆+ − ∆− (29)

with ∆+ = lims→+∞ ‖γ1(s) − γ2(s)‖2, we have :

lim
T→+∞

dT (γ1, γ2)2 = (1 − K)∆− + K∆+ (30)

So the limit case T → +∞ is a convex combination
of the initial and final differences (this will be 0 if tra-
jectories are on the same origin destination, thus the
limit of the dT is not a distance). Letting the weight-
ing function h depend on time shift τ yields the final
definition of a family of metrics :

dT,τ(γ1, γ2) = sup
τ∈R

1
T

∫
R

h((t − τ)/T )‖γ1(t) − γ2(t)‖2dt

(31)
with the property that the limit case T → 0,T > 0
reduces to the supremum distance. This can be seen
as a scale base distance, with T parameter being the
scaling factor.
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