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Abstract—En-route conflict resolution is a good example of
a large-scale combinatorial optimization problem. On the one
hand, it has been modeled in many different ways, most of the
time depending on the tools that were proposed to solve it. On
the other hand, many different resolution methods can be tested
and compared on such problems but a common model needs to
be used to validate the comparison.

In this paper we extend the 2D-framework introduced in 2013,
which separates the model from the solver. First, we introduce
a 3D-model and add new refinements on the uncertainty model
taking into account, inter alia, delays due to human factors.
Second, we compare the performance of a complete Constraint
Programming solver and an approximation algorithm based on a
Memetic Algorithm, an efficient metaheuristic combining Genetic
Algorithm with Tabu Search.

To this aim, we generate a benchmark of conflict resolution
problems built with scenarios involving 15 to 100 aircraft, 3
different levels of uncertainty and maneuvers in both horizontal
and vertical planes. The two methods are able to efficiently solve
moderate size problems in near real time, but the execution
time of the complete algorithm exponentially rockets with larger
instances whereas the metaheuristic scales much better with
the number of aircraft. However, the former is able to prove
optimality or infeasibility on reasonable problems, which allows
the assessment of the quality of the solutions produced by the
latter.

Keywords: conflict resolution, Metaheuristics, constraint pro-
gramming

INTRODUCTION

Research on automatic conflict resolution started in the
1980s and many different models were introduced to comply
with existing resolution techniques. Some research, issued
from the Air Navigation System Providers offer realistic
models [1] but do not focus on the resolution methods. Some
approaches, like [2], [3] which use uncertainty models and the
Base of Aircraft Data (BADA, developed and maintained by
Eurocontrol), focused both on the model and the resolution
algorithms. However, they were completely tailored to the un-
derlying traffic simulator (CATS), which prevents the scientific
community from comparing different resolution methods.

Many mathematical models have led to specific resolution
algorithms able to deal with very complex situations, but
require specific characteristics for trajectory prediction. This is
the case for Pallottino’s approach [4] that used Mixed Integer
Linear Programming (as [5], [6], [7]). Theses models rely
on constant speed trajectories and assume that all maneuvers
are executed simultaneously. They cannot deal with trajectory

models able to handle descending or climbing aircraft, nor
with complex trajectory uncertainties.

Conflict resolution is known for being highly combinato-
rial [8] and large instances can therefore be very difficult to
solve. Assessing the relative merits of different solvers is very
useful to pave the way to future automation tools.

In 2013, we proposed a framework to separate the trajectory
model from the resolution algorithm [9] and offered the
scientific community the opportunity to test different algo-
rithms on various problems without investing efforts on the
model. With such a framework, resolution times and costs
of different solvers can be fairly compared. Problems can
be easily downloaded on a website clusters.recherche.enac.fr.
For each problem, the website offers a second file containing
the trajectory envelops in order to be able to visualize the
solutions. These problems were solved using an Evolutionary
Algorithm and Constraint Programming, which were able to
find the best solution on small problems or highly constrained
ones.

In 2015, Lehouiller et al. [10] also proposed a general
framework by modeling the problem with a graph where the
vertices are the trajectories and the edges connect compatible
trajectories. This is possible because the problem only involves
binary constraints. The problem can thus be viewed as mini-
mizing the cost of a maximum clique. In figure 1, each aircraft
must choose between four maneuvers {a, b, c, d}. The edges
represent compatible maneuvers. There is only one maximum
clique representing a solution: < 1d, 2c, 3c, 4b >.

Lehouiller obtains good results using this model on prob-
lems involving up to 20 aircraft with a small number of
maneuver options. Lehouiller’s graph model can be generated
with the 2013 framework.

In this article, we try to build more realistic examples
using vertical maneuvers as well as horizontal ones. We
also improve the uncertainty model to make it compliant to
air trafic controller and pilot communication constraints and
practices. For example, when a pilot is given a heading or
flight level change, it may take some time before the maneuver
is actually implemented. When the aircraft heads back to its
initial trajectory, an extra execution time also needs to be
taken into account. Heading changes are not always followed
with high precision, and some level of uncertainty should be
added to any trajectory with this degree of freedom. The speed
error needs to be taken into account in the model, as well as
uncertainties on the climbing rates in a 3D context. Moreover,
an aircraft can either “fly by” or “fly over” a beacon, which
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Fig. 1. Graph representation of a Conflict Resolution Problem: Clique
< 1d, 2c, 3c, 4b > is a solution.

creates an extra source of uncertainty. The size of the 3D
instances are also much larger as they involve aircraft on
different flight levels, which allows us to check the limits of
solvers on very difficult problems.

The first section of this paper introduces the improved
trajectory model taking into account vertical maneuvers and
realistic uncertainties. Section III details the method used to
build conflict resolution benchmarks with different sizes and
levels of uncertainties. Section IV decribes two methods for
the resolution of conflicts, namely Constraint Programming
and Memetic Algorithm. Section V compares both approaches
on the benchmark and assesses their comfort zones.

I. TRAJECTORY PREDICTION MODEL

In this paper, we build a trajectory prediction tool giving
the aircraft positions at each time step according to simple
maneuver options, and a set of uncertainty parameters. In
our previous work, we had only defined heading change
maneuvers in order to comply with controllers practices in the
horizontal plane. In this article we add vertical maneuvers in
order to ease the resolution of complex situations. We also try
to be more realistic in the trajectory model by taking aircraft
turning rates into account and uncertainties related to human
pilot and controller behaviors. In the end, we compute up to
64 different trajectories for each maneuver taking into account
the uncertainty parameters. The 3D convex envelops of the
trajectories are built and compared to other aircraft trajectories
to detect possible conflicts.

A. Maneuvers

We discretize time into steps of duration τ to describe
maneuvers. τ is small enough to detect every conflict in the
application. In section III, τ = 3 s because two facing aircraft
flying at 600 kn (maximal speed) get only 1NM closer every
3 s, so we miss no conflict with such a small τ value (see [11]
for a more in-depth discussion on this topic).

O

D

α

t1

t0

Fig. 2. Maneuver model.

Aircraft fly on five different levels in the vertical plane, from
Flight Level (FL) 280 to FL320. We do not model climbing or
descending flights but it could easily be done. On each Flight
Level, flight plan routes are defined by a list of beacons. The
first point O is the origin and the last point D is the destination.
Aircraft fly from beacon to beacon and correct the lateral error
thanks to their FMS. Consequently, when heading toward a
beacon, there is no uncertainty on the lateral position.

In our trajectory model, maneuvers are either heading
changes or flight level changes. We do not combine both in
order to keep maneuvers simple. They are started at a time t0
and ended at another time t1. Heading changes α can take
nα = 6 different values in our benchmark, i.e. 10, 20 or
30 degrees to the left or the right of the current heading,
vertical moves δFL can take nFL = 4 values, i.e. climb or
descend 1000 ft or 2000 ft from the current level. The number
of maneuver kinds is thus nk = nα + nFL = 10. We limit
the number of maneuvers created by choosing t0 among n0
values (typically n0 = 4 in the experimental benchmark). The
number of values for t1 is also chosen among a limited set of
n1 values (typically n1 = 4).

Horizontally, a heading change maneuver, as depicted in
figure 2, is representative of current Air Traffic Control prac-
tice and can be easily implemented by pilots and current FMS
technologies (cf. [3]).

If we consider 4 values for t0, 4 values for t1, 4 vertical
maneuvers and 6 possible angles (there is no use to combine
a null heading change α = 0 with various t0 and t1 values,
so that only one maneuver is added when the aircraft is not
deviated), the number of maneuvers per aircraft is:

nman = n0 × n1 × nk + 1

So for the benchmark presented in section III nman = 4×4×
10 + 1 = 161.

For a n aircraft conflict, the search space size is nnman, i.e. ≈
1044 for a 20-aircraft instance (almost 5.10220 for 100 aircraft).

We model six different sources of uncertainties:

• When a pilot gets a maneuver order, she can react more
or less quickly. An uncertainty εt0 ∈ [0, Et0 ] representing
the maximum reaction time for beginning a maneuver is
associated to time t0 (see figure 3).

• An uncertainty εt1 ∈ [0, Et1 ] representing the maximum
reaction time for ending a maneuver is associated to time
t1 (see figure 3).

• An uncertainty εα ∈ [−Eα, Eα] is also associated to the
heading change angle α (see figure 4).

• Horizontal aircraft speeds vh are hence subject to a εvh ∈
[−Evh , Evh ] relative error (expressed as a percentage)
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Fig. 3. Reaction time uncertainty model with maximal errors Et0 and Et1 .
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Fig. 4. Heading change uncertainty model with maximal error Eα.

such that future positions of aircraft are spread over a
range which grows with time (see figure 5).

• Climbing and descending rates vv are also subject to a
εvv ∈ [−Evv , Evv ] relative error (as a percentage) (see
figure 6).

• An aircraft can “fly by” (Fb) or “fly over” (Fo) a beacon,
and we consider both options to build the future trajectory
(see figure 7). The fly mode fm can be chosen among
two values fm ∈ {Fb, Fo}.

B. Decision Variables

We simplify the access to the conflict matrix C: the decision
variables t0, t1 and the heading change maneuver α or the
flight level change δFL associated with aircraft i are aggregated
into a single decision variable mi by a bijection from the valid
4-tuples to interval [1, nman]. We call M the set of decision
variables of the problem:

M = {mi ∈ [1, nman], ∀i ∈ [1, n]} (1)

(1− Evh)vh t1

t0
(1 + Evh)vh

(1 + Evh)vh

(1− Evh)vh

Fig. 5. Speed uncertainty model with maximal error εs.

t0

t1

(1 + Evv)vv (1− Evv)vv

(1 + Evv)vv (1− Evv)vv

New FL

Fig. 6. Climb and descent uncertainty model with maximal error Evv model.

Fo

Fb

Fig. 7. Flight mode uncertainty model with possible modes “fly by” (Fb)
or “fly over” (FO).

C. Cost

We compute the maneuver cost of our model from the
decision variables. Values of t0 are enumerated by an index k0
varying in [1, n0], values of t1 by index k1 in [1, n1] and angles
α of value 10, 20 or 30 degrees right or left, are respectively
indexed by kα in [1, nα2 ]. Flight levels are indexed by kv in
[1, nFL

2 ]: for a 1000 ft vertical move kv = 1, for a 2000 ft
move kv = 2. For our benchmark problems, the cost c(mi) of
a maneuver mi for aircraft i is then defined by:

c(mi) =

 (n0 − k0)2 + k21 + k2α if α 6= 0
(n0 − k0)2 + k21 + (1 + kv)

2 if δFL 6= 0
0 otherwise

(2)

where k0, k1, kα and kv are the indices corresponding to
maneuver mi. This cost is null whenever an aircraft is not
maneuvered.

Furthermore, this cost function ensures the following prop-
erties:

1) any maneuver is more costly than no maneuver;
2) maneuvers should start as late as possible;
3) maneuvers should be as short as possible;
4) the angle should be as small as possible;
5) vertical maneuvers should be as small as possible;
6) a 1000 ft vertical maneuver is equivalent to a 20◦

heading change, and a 2000 ft one to 30◦.
We chose to keep the expression of the cost function very

simple in order to make it easy to understand. In a real
environment, it should be modified to comply with aircraft
performance models on one side and controllers’ preferences
on the other side. This paper aims at specifying a framework
that separates the solver method from the problem itself, so as
to provide the scientific community (which may be unfamiliar
with ATC and conflict resolution) with the simplest possible
benchmark that enables them to compare different solvers.

Given an instance with n aircraft, we define the cost of
a solution as the sum of the costs of the maneuvers for all
aircraft:

cost =

n∑
i=1

c(mi) (3)

D. Handling Uncertainties

We compute the envelops for each maneuver in order
to detect conflicts between two maneuvers of two different
aircraft, while taking the various uncertainties into account.
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Fig. 8. An example of convex hulls representing a maneuver with uncer-
tainties in the horizontal plane.

Maneuver descriptions are stored in a table that defines, for
each aircraft and each maneuver, the possible future positions
of the aircraft at every time step. These positions are safely
approximated horizontally by their convex hull, which is
computed with Graham’s algorithm [12], and vertically by a
minimum and maximum altitude.

As described in section I-A, we defined six uncertainty
parameters: εt0 , εt1 , εα, εvh , εvv and fm. In order to take into
account every possible trajectorie, we test every combination
of the extreme values of the uncertainties:

1) 0 and Et0 for εt0 ;
2) 0 and Et1 for εt1 ;
3) −Eα and Eα for εα;
4) −Evh and Evh for εvh ;
5) −Evv and Evv for εvv ;
6) Fb and Fo for fm.

26 = 64 combinations of the extreme uncertainty values are
used to build 64 trajectories. Once these trajectories are built,
we use Graham’s algorithm to build the convex hull of the 64
extreme trajectories for each time step t of the trajectory. This
convex hull represents the possible positions of the aircraft at
every time step t.

Figure 8 gives an example of a 30◦ heading change maneu-
ver starting at t = 5min, lasting 10min, with Et0 = Et1 =
60 s, Eα = 5◦ and Evh = 5%. The convex hulls including the
possible aircraft positions every minute are represented with a
green dashed line.

Any traffic simulator using any kind of uncertainty hy-
pothesis can be adapted to build the trajectory prediction for
the aircraft and for the maneuver options. It is also possible
to have different uncertainties for different aircraft. We can
also use different maneuver options if necessary. The convex
hull prevents the detection algorithm from missing a potential
conflict w.r.t. the chosen uncertainties.

II. CONFLICT DETECTION

Once the trajectory predictions are computed and stored,
we can build the 4D conflict matrix C. We combine the four
maneuver parameters t0, t1, α and δFL in order to reduce the
4-tuple to a single number. Therefore we use a bijection from
the valid 4-tuples to interval [1, nman]. Then, for each pair of
aircraft (i,j) and each pair of maneuver options (k,l) (where k
is a maneuver option for aircraft i and l for aircraft j), we test
if maneuvers k and l are in conflict. In this case, Ci,j,k,l = 1,
otherwise Ci,j,k,l = 0. Furthermore, we can consider that i <
j since a conflict between i and j is equivalent to a conflict
between j and i. To detect a conflict, the minimal vertical
distance between the convex hull pairs representing aircraft i
and j is first computed at each time step and compared to the
vertical standard separation norm (1000 ft), then, if the norm
is violated, the horizontal distance between the two convex
hulls is computed and compared to the horizontal standard
separation norm (5NM).

For each time step, the algorithm is divided in four stages:
1) Check the vertical minimum distance between convex

hulls.
2) Check if a vertex of convex hull k is inside convex hull

l, or if a vertex of convex hull l is inside convex hull k.
3) Otherwise, check if two edges of convex hulls k and l

intersect.
4) Otherwise, check the distance between every vertex of

convex hull k and every edge of convex hull l, or every
vertex of convex hull l with every edge of convex hull
k. As soon as one of the distances is smaller than the
separation standard, Ci,j,k,l is set to 1.

This calculation is time consuming because the number of
pairs tested is big. For example, a 20-aircraft conflict with 161
maneuvers per aircraft generates 20×19

2 = 190 pairs of aircraft
for which 1612 = 25, 921 pairs of maneuvers must be tested.
A total of 4, 924, 990 pairs of maneuvers must be tested to
build the conflict matrix.

III. BENCHMARK GENERATION

In section V, we consider 11 sizes of instances, involving
15, 20, 25, 30, 40, 50, 60, 70, 80, 90 and 100 aircraft,
with three levels of uncertainties (ε ∈ {1, 2, 3}). For each
combination, 10 scenarios of aircraft converging to the center
of the considered airspace volume were randomly built. For
each scenario, speeds are chosen from 384 kn to 576 kn (i.e.
20% variation almost a typical speed of 480 kn). The nominal
vertical speed for maneuvers is set to 600 ftmin−1. The initial
aircraft positions are chosen on a 100NM radius circle and are
noised within a 20NM-side square. The initial heading is also
noised with a value chosen in [−1, 1] radians (≈ ±60◦). In
the vertical plane, aircraft are equally dispatched on 5 different
levels from FL280 to FL320. A total of 11 × 10 scenarios
are built. Figure 9 illustrates these dimensions.

For the maneuvers, we choose α values in the set:
{−30◦,−20◦,−10◦, 10◦, 20◦, 30◦}. Flight level changes δFL
are chosen in the set {+10,+20,−10,−20}. t0 can take four
values: 0,1,2 or 3 minutes. t1 can take four values: t1 = t0+s
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Uncertainty level ε = 1 ε = 2 ε = 3
Et0 10 s 20 s 30 s
Et1 10 s 20 s 30 s
Eα 1◦ 2◦ 3◦

Evh 2% 4% 6%
Evv 5% 10% 15%
fm {Fb, Fo} {Fb, Fo} {Fb, Fo}

TABLE I
UNCERTAINTY PARAMETERS

with s chosen among 5,6,7,or 8 minutes for heading changes
and 7,8,9 or 10 minutes for flight level changes.

For each scenario, three levels of uncertainty are defined.
The uncertainty parameters are summarized in table I. The
size of the convex hulls approximating the possible positions
of aircraft increases with the uncertainty parameters, creating
more conflicts for the same scenario. A total of 11×3×10 =
330 scenarios were thus built and tested with two different
approaches in the next section.

IV. CONFLICT RESOLUTION

In this section, we propose two methods for the resolution
of the generated conflicts. The first one, a Memetic Algorithm
(section IV-A), is a metaheuristic that mimics natural evolution
to explore the search space. The second one, Constraint Pro-
gramming (section IV-B), is based on a systematic exploration
of the search space, which can prove the optimality (or the
absence) of a solution.

A. Memetic Algorithm

1) Principles: The Memetic Algorithm (MA), described in
algorithm 1, is an hybridization of an Evolutionary Algorithm
(EA) and a Tabu Search (TS) such as presented in [13]. The
main feature of a MA is that each element of the population
is a local minimum.

Algorithm 1 Memetic algorithm (MA)
1: population ← initializePopulation()
2: while termination criterion is not met do
3: parent1, parent2 ← select(population)
4: child ← crossover(parent1, parent2)
5: child ← tabuSearch(child)
6: population ← replace(population, child)
7: end while
8: Return the best element of population

First (line 1), a population of candidate solutions in the state
space is randomly generated and a tabu search (described in
algorithm 2) is applied to each candidate. In a second step
(line 3) we randomly select two individuals in the population
called parents. Then (line 4), we generate a new element called
child by a classical crossover operator of the two parents,
which recombines their maneuvers in the offspring. Afterwards
(line 5), we improve the child by applying a tabu search.
Finally (line 6), we replace the worst element of the population
by the child if its cost is lower and if it does not already belong
to the population. We iterate this procedure until a given time
limit (line 2) or when no improvement is made for a given
number of iterations.

2) Fitness Function: The fitness of our MA represents
the function to minimize. Here, we first focus on finding a
conflict-free set of maneuvers, with the smallest deviation cost
as a secondary objective. Therefore, the fitness function is
defined as the linear combination of two terms, the number
of remaining conflicts and the cost of a solution defined by
equation 3:

F =M ×
∑
i<j

Ci,j,mi,mj + cost

where M is a big (enough) integer to guarantee that the fitness
of a solution with more conflicts is always higher.

3) Tabu search: Our tabu search algorithm, described in
algorithm 2, improves the current solution according to the
fitness function. A TS, like all local search algorithms, mod-
ifies the current solution by successive small changes called
moves. The moves used in our TS consist in the modification
of the maneuver assigned to one of the aircraft, which defines
the neighborhood of a candidate solution.

Algorithm 2 Tabu Search (TS)
1: Input : an initial solution, s
2: tabuList ← ∅
3: while termination criterion is not met do
4: mv ← selectBestMove(s, tabuList)
5: s← move(s,mv)
6: tabuList ← update(tabuList, reverse mv)
7: sbest ← saveBest(sbest,s)
8: end while
9: Return sbest

First (line 4), we select the best move mv for the current
solution which is not in tabuList, i.e. the list of forbidden
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maneuvers for each aircraft during a given number of itera-
tions, being initially empty (line 2). Notice that in a TS, the
selected move is not necessarily a move that improves the
solution fitness. In a second step (line 5), we update the current
solution by applying the selected move and add to tabuList its
reverse (line 6) to prevent the change to be undone during a
given amount of iterations. Finally (line 7), we register the
current solution as the best solution encountered so far if it
is the case. We iterate this procedure until a given number of
iterations (line 3).

4) Crossover: We have used a very basic crossover operator
that generates a child solution from two parent solutions. For
each aircraft, the crossover operator randomly selects one of
the two maneuvers of the parents and assigns it to the child.

B. Constraint Programming

Constraint Programming (CP) is a versatile optimization
technology based on the Constraint Satisfaction Problem
(CSP) formalism which emphasizes the satisfaction of com-
binatorial constraints (i.e. arbitrary relations over a set of
decision variables). CP offers a clean separation between the
modeling language and the resolution algorithms, enabling
to quick development of solvers in an incremental fashion
and experimentation with various search strategies without
changing the model. See [14] for example, for more details
on the CP technology.

Contrar to metaheuristics, the standard search algorithm of
CP is backtracking (or Branch & Bound if a cost is to be
optimized), which provides a complete algorithm able to prove
the optimality of a solution or the infeasibility of an instance.
These properties allow us to assess the efficiency of the MA,
which is able to consistently find the optimal solution for all
instances for which the constraint program was able to obtain
proof of optimality (up to 30 or 40 aircraft as described in
section V). However, the computation times of our constraint
program become prohibitive for the largest instances, because
the search algorithm has an exponential complexity w.r.t. the
number of aircraft.

We use here the CP algorithm described in [9] with the same
decision variables as the MA and standard binary constraints
to represent the conflicts between maneuvers. Because the
solutions produced by constraint programming necessarily
satisfies all constraints, the cost is only defined by the sum
of the costs of all aircraft as defined by equation 3.

V. RESULTS

Benchmark generation (section III) and conflict resolution
(section IV) were implemented, using the FaCiLe constraint
library [15] for the CP model. The following results were
obtained on a standard workstation consisting of a 3.4 GHz
octo-core Intel R© Xeon R© processor with 16 GB of memory
running Debian Linux 3.16.7. The instances used in this study
are available online at clusters.recherche.enac.fr.

To assess the performances of the MA, which is a stochastic
algorithm using a pseudo-random number generator, 5 runs
were attempted for each instance to investigate the robustness
of the algorithm. All tests were done with a population of 40

individuals with 1000 iterations for the tabu search phase and
an overall time limit of 300 s.

Compared to the benchmark presented in [9], ranging from
5 to 20 aircraft and limited to maneuvers in the horizontal
plane, this new benchmark is an order of magnitude greater
with 3D instances from 15 to 100 aircraft evenly distributed
among 5 flight levels (cf. section III). Therefore the mean
number of aircraft on each level ranges from 3 (for 15-
aircraft instances) to 20 (for 100-aircraft instances), which
approximately amounts to the instances of the 2013 benchmark
for a single layer. However, as an aircraft may climb or
descend and interferes with the other levels, the various layers
are obviously not independent and the size of the search space
(exponentially) increases.

The next sections detail the optimality and unfeasibility
proofs obtained by the CP solver which confirm the efficiency
of the MA, then show how the MA scales with larger and
more complex instances.

A. Proved Optimal Solutions and Infeasibility

With an improved implementation of the arc-consistency
algorithm (the main inference technique used with CP), our
constraint program was able to obtain optimality proofs for
all the instances of the 2013 benchmark and for problems up
to 30 aircraft of the new 3D benchmark. However, within the
300 s allocated to run the algorithm, only the optimal solution
could be obtained for most of these 3D instances, the proof of
optimality generally being much longer. For greater number
of aircraft (more than 40), even finding a first solution can be
challenging and out of reach within the allocated time.

Figure 10 shows the mean time (in seconds) needed to com-
pute the optimal solution for both the MA and CP algorithm
for all instances ranging from 15 aircraft to 30 aircraft with
uncertainty level 1. Whereas the MA scales well with the size
of the instance, the performance of the constraint program
quickly deteriorates. 40-aircraft instances are not shown in the
figure, as only a few ones could be solved to optimality, the
proofs taking several hours to one day to complete.
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However, proofs were obtained in less than one hour by the
CP algorithm for all unfeasible instances with 100 aircraft and
uncertainty level 3 (with up to 8.8× 106 forbidden trajectories
pairs). These proofs validate the results of the MA solver,
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which was able to obtain valid (and probably optimal) solu-
tions on all feasible instances (though not within the allocated
300 s for 100-aircraft ones) and failed to do so on unfeasible
problems.

B. Towards Large-Scale Problems

The Memetic Algorithm exhibits a much better behavior
when the number of aircraft increases and was able to obtain
conflict-free solutions for all feasible instances within 300 s,
consistently achieving the optimum whenever the CP algo-
rithm could prove it. Figure 11 shows the mean cost over
all instances with increasing number of aircraft for the three
uncertainty levels.
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Fig. 11. Mean cost (and standard deviation) found by the Memetic Algorithm
with 300 s time limit.

As expected, the cost of conflict resolution, which is the sum
of the costs of all maneuvers, increases with the number of
aircraft and with the uncertainty level. Moreover, as shown in
figure 12 where the cost per aircraft is indicated, this growth
is not constant because the density of trajectories increases
while the airspace volume is kept constant, leading to more
involved maneuvers.
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Fig. 12. Mean cost per aircraft found by the Memetic Algorithm with 300 s
time limit.

Among the 5 runs executed on each instance, we observed
that the MA consistently finds the same cost for problems
with less than 50 aircraft, but the standard deviation amounts
to almost 10% for larger instances. Due to the large scale and
number of forbidden trajectories pairs of the hardest problems,

the local search performed by the MA can be trapped in local
optima on some of the runs and probably fails to achieve
optimality.

Moreover as shown on figure 13 for one of hardest in-
stances, the Memetic Algorithm needs much more time than
300 s to converge to its best solution. The figure represents the
convergence of the best solution encountered by MA during
one run for instance #9 with 100 aircraft, uncertainty level 3
and a time limit equals to 2000 s. Note that if the execution
time of the MA is limited to 300 s, then the best solution
encountered so far is not a valid solution as one conflict
remains and its cost is very high compared to the one found
around 1100 s.
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Fig. 13. Convergence of the Memetic Algorithm on a typical run for
instance #9 with 100 aircraft and uncertainty level 3 and 2000 s time limit.

Furthermore, figure 13 shows how the MA is guided; firstly,
the MA tries to decrease the number of remaining conflicts
even if it increases the cost (e.g. at ≈100 s and ≈180 s);
secondly, when the solution is admissible, the MA attempts
to improve the cost value without reintroducing any conflict,
exploring only the valid regions of the search space.

However, our results show that the MA solver performs
well enough on reasonable instances corresponding to real-life
scenarios and produces near-optimal solutions quickly enough
for a real-time system.

VI. CONCLUSION AND FURTHER WORK

We have presented a 3D extension of the en-route conflict
resolution framework introduced in [9] with a more complete
uncertainty model and the results obtain by our former Con-
straint Programming (CP) algorithm and a new metaheuris-
tic, a Memetic Algorithm (MA), on the corresponding 3D
instances.

On the one hand, CP was able to obtain optimality proofs
within a time limit of 300 s for problems up to 30 aircraft of
the new 3D benchmark. For larger instances, some optimality
and unfeasibility proofs could be achieved if the solver was
allowed to run for several hours, and others seem out of reach.
On the other hand, the MA could always obtain solutions
without conflict for all feasible instances, even with 100
aircraft, within 300 s, even consistently reaching the optimum
whenever it could be proved by the CP solver.
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The performance of such metaheuristics paves the way for
the implementation of conflict solvers as a component of real-
time systems, but they still need to be tested iteratively within
a rolling horizon context on a full day of real traffic instead
of artificial (though quite hard) unrelated scenarios.
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