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Abstract—In this paper, we compare several machine learning
methods on the problem of learning a model of the air traffic
controller workload from historical data. This data is a collection
of workload mesurements extracted from past sector operations
and of ATC complexity measurements computed from radar
records and airspace data (sector geometry).

We assume that the workload is low when a given sector is
collapsed with other sectors into a larger sector, normal when it
is operated as is, and high when it is split into smaller sectors
assigned to several working positions.

This learning problem is modeled as a classification problem
where the target variable is a workload category (low, normal,
high) and the explanatory variables are the air traffic control
(ATC) complexity metrics.

Several classifiers are compared on this problem: linear dis-
criminant analysis, quadratic discriminant analysis, naive Bayes
classifiers, neural networks, and gradient boosted trees. The
performance of these models is assessed on a separate test set.
The best methods show a rate of correct predictions around 82%.

Keywords: Air traffic control, ATC complexity, workload,
machine learning, airspace configuration

INTRODUCTION

How can we predict the workload of air traffic controllers
operating a given sector and facing a more or less dense and
complex traffic? This question is of crucial importance to the
safety of the air traffic management (ATM) system at large.
Overloads might lead to potentially dangerous situations where
some conflicts might not be detected in time by the controllers.

Predicting the worlkoad with good accuracy is also a
question of efficiency. In day-to-day operations, the airspace
is dynamically reconfigured according to the controller work-
load. Underloaded sectors are collapsed to form larger sectors,
and overloaded sectors are split into several smaller sectors
operated separately. When it is not possible to absorb the
traffic simply by reconfiguring sectors, the traffic is delayed
or rerouted so as to avoid the congested areas. This needs to
be done well in advance, usually before the aircraft take off.
Predicting with greater accuracy which ATC sectors shall be
operated at what time and which of these sectors might get
overloaded would improve the whole traffic regulation process.
This requires a realistic and accurate workload model, which
is the subject of this paper.

This problem has been addressed in several ways since
the beginings of air traffic control (ATC). Depending on the
context and purpose, one might count the movements on an
airport, or the number of aircraft within the boundaries of
an en-route sector, or the incoming flow of traffic over a

time period. Such basic metrics – and the associated threshold
values (capacities) – provide simple and straightforward an-
swers to the question of deciding whether the controllers are
experiencing a normal workload when handling given traffic,
or if they are overloaded.

However, it has been aknowledged for a long time that
simple metrics, such as aircraft count, do not adequately reflect
the complexity of air traffic control. ATC complexity covers
dynamic aspects relative to the traffic, static aspects relative
to the sector geometry and route network, and aspects relative
to the air traffic control procedures.

In this paper, we are interested in the relationship between
ATC complexity and workload. Both of these concepts are
loosely defined in the literature ([1]), and before building
models relating one to the other, we need to quantify them.
Many ATC complexity indicators have been proposed in the
literature [1], [2], [3], and this paper proposes nothing new
in that matter. Quantifying the controller’s workload has been
done through different kinds of measures: physical activity
([4], [5]), physiological indicators ([6], [7], [8]), or subjective
ratings ([9], [10]). Some of these indicators are difficult to
interpret, and others are subject to biases (such as the recency
effect denounced in [7], and the possibility of raters errors
in the case of "over-the shoulder workload ratings" [11]).
Collecting these data requires heavy experimental setups, often
resulting in relatively small datasets and potential overfitting
issues when trying to adjust a model on too few examples.

In order to avoid these drawbacks, we have proposed in
previous work ([12], [13], [14]) to use historical records of
the past sector operations to quantify the workload. These
records are available in large quantity, for a large number
of sectors. The information that can be extracted from the
past sector operations is the following: we can assume that
the workload was normal when the sector was operated, low
when it was merged with other sectors to form a larger sector,
and high when it was split into smaller sectors assigned to
several working positions.

Several approaches have been tried to build models relating
ATC complexity to workload. For example, taskload models
([15], [16]) compute the cumulative time required to execute
control tasks. Linear regression models such as the popular
dynamic density models ([17], [9]) approximate subjective
workload ratings by a linear combination of a number of
ATC complexity measures. Other works use a neural network
instead of a linear model ([10]) to approximate subjective
ratings. In previous work, we also used neural networks, but
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our target variable was the workload measured from the past
sector operations instead of subjective ratings. Considering an
initial set of 27 complexity metrics found in the literature,
we selected a subset of relevant metrics for the purpose
of building a model that could be used to predict future
airspace configurations ([12], [13], [14]). We showed that this
concept was feasible and could be used to forecast airspace
configurations that were much more realistic than the actual
sector opening schedules made by the Flow Management
Positions ([18], [19]). The concept was demonstrated on a
mock-up HMI using static data ([20])

The current paper further explores the relationship between
complexity and workload by comparing the performances of
several machine learning methods using a fixed set of ATC
metrics as input and the workload observed from past sector
operations as target variable. The problem of learning the
workload is here considered as a classification problem, where
the target variable is a workload category (low, normal, or
high). The methods being compared are the following: linear
discriminant analysis (LDA), quadratic discriminant analysis
(QDA), naive Bayes classifier (NBayes), neural networks
(NNet), and gradient boosted trees (GBM).

The remainder of this paper is organized as follows: Sec-
tion I is a short introduction to machine learning. Section II
describes the methods used in this study. The data and exper-
imental setup are described in section III, and the results in
section IV. The expected benefits of the proposed approach
are discussed in section V. The paper concludes with a brief
summary of our findings and the perspectives of future works.

I. A SHORT INTRODUCTION TO MACHINE LEARNING

This section is a brief introduction to machine learning. The
reader may refer to [21], [22], [23] for a more thorough view
of this active research field.

Learning from data with a computer can be done in different
ways, through supervised learning, unsupervised learning, or
reinforcement learning. In reinforcement learning, a sofware
agent takes actions in a given environment so as to maximize
a cumulative reward. In supervised or unsupervised learning,
given some features x of an observed phenomenon, the objec-
tive is to learn a model from a set of examples (x1, . . . , xN ).
Unsupervised learning considers the explanatory variables x
either to produce clusters of data, or to estimate the probability
density of x, using the examples (x1, . . . , xN ). In supervised
learning, we assume a relationship y = f(x) between x
and a target variable y, and we use examples of the outputs
(y1, . . . , yN ) associated with the inputs (x1, . . . , xN ) to learn
a model h approximating f .

In this paper, supervised learning techniques are used to
predict the workload from ATC complexity indicators. The
target variable y is here a workload category (low, normal,
or high) and the input x is a vector of complexity indicators
computed from the traffic or the sector geometry.

Such learning problems where the target is a categorical
variable are usually referred to as classification problems, as
opposed to regression problems where y is a floating-point
value or a vector of floats.

Given a loss function ` such that `(y, ŷ) is the cost of the
error between the computed output ŷ = h(x) and the observed
data y = f(x), our objective is to choose h minimizing the
following risk (i.e. the expected loss), where X and Y are the
random variables from which are drawn x and y:

R(h) = EX,Y
[
`(Y, h(X))

]
=

∫
X×Y

`(y, h(x))PX,Y (d x, d y)

(1)

A. Learning from a finite dataset

In practice, the joint distribution of X and Y is not known
and one can only approximate f using a set of examples S =
{(x1, y1), . . . , (xN , yN )} of finite size.

The most straightforward idea is then to select the model h
minimizing the following empirical risk:

Remp(h, S) =
1

|S|
∑

(xn,yn)∈S

`(yn, h(xn)) (2)

Unfortunately, minimizing the empirical risk on S might not
lead to the most desirable model. The selected model might fit
the examples {(x1, y1), . . . , (xN , yN )} of S very well, while
performing poorly on new instances of x1.

Statistical models can be more or less “flexible” when
fitting the data, depending on their analytical expression. For
example, a linear model is much less likely to overfit the data
than a polynomial of high degree. Selecting the best model
among a collection of models of various “flexibilities” requires
a bias-variance tradeoff. Simple models tend to have a high
bias (i.e. they are far from truth) and a low variance (i.e. the
response of the model is about the same, whatever the training
set used to tune it). In contrast, complex models have low
bias and high variance. A complex model tuned on too few
examples tends to overfit these examples and to perform poorly
on new inputs.

B. Model assessment and selection

There are several ways to control overfitting and to find a
suitable bias-variance tradeoff. One can use an information
theory criterion, such as AIC (Akaike’s “An Information
Criterion”) or BIC (Schwartz’s Bayesian Information Crite-
rion). These asymptotic criteria add a penalty P depending
on the model complexity to the empirical risk Remp(h, S)
defined in equation (2). The model having the lowest value of
Remp(h, S) + P is selected.

Another way to proceed is to assess empirically the gener-
alization error. Let us denote A the algorithm used to learn a
model from a dataset S. In holdout cross-validation, the initial
dataset S is split into two sets: a training set ST used to learn
the models, and another set SV used to assess the holdout
validation error Errval as defined by the equation below:

Errval(A, ST , SV ) = Remp(A[ST ], SV ). (3)

1For example, let us assume we fit a polynomial curve on 10 points. For
this regression problem, a polynom of degree 9 will fit exactly the examples,
but will give poor predictions at other points. For a classification problem,
the same overfitting problem might occur when using a K-nearest-neighbours
method with K = 1.
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The model having the lowest holdout validation error is
selected.
K-fold cross-validation is another popular empirical

method, where the dataset S is partitioned into k folds
(Si)1≤i≤k. Let us denote S−i = S\Si. In this method, k
separate predictors A[S−i] are learned from the k training sets
S−i. The mean of the holdout validation errors is computed,
giving us the cross-validation estimation below:

CVk(A, S) =

k∑
i=1

|Si|
|S|

Errval(A, S−i, Si). (4)

When used for model selection, cross-validation can be per-
formed successively on a collection of models. The model
having the best cross-validation error is selected.

C. Hyperparameter tuning

In many methods, the bias-variance tradeoff is controlled
through one or several parameters. For example, one can think
of the number of hidden units in a neural network, or the
weight decay hyperparameter (see subsection II-C). Hyperpa-
rameter values can be selected through cross-validation.

Let us denote λ the vector of hyperparameters of an algo-
rithm Aλ. In this paper, a 10-fold cross-validation has been
used to tune hyperparameters, as described in algorithm 1.

Algorithm 1 Hyperparameter tuning for an algorithm Aλ and
a set of examples T (training set).

function TUNEGRID(Aλ,grid)[T ]
λ∗ ← argmin

λ∈grid
CV10(Aλ, T )

return Aλ∗ [T ]
end function

II. METHODS USED IN THIS STUDY

The following machine learning methods have been applied
to our workload prediction problem: linear discriminant analy-
sis (LDA), quadratic discriminant analysis (QDA), naive Bayes
classifier (NBayes), neural networks (NNet), and gradient
boosted trees (GBM). These methods are described in the
following sections.

We used the statistical software R, and more specifically
the lda and qda functions of the MASS package, the
naiveBayes function of package e1071, the nnet neural
network of the Nnet library, and the Xgboost library for
gradient boosted trees.

A. Linear and quadratic discriminant analysis

Linear discriminant analysis (LDA) and quadratic discrim-
inant analysis (QDA) are methods modeling the joint proba-
bility density p(x, y). Since we are considering classification
problems, where y is a category (or class) y ∈ {C1, . . . CP },
we denote p(x, Ck) the joint density, and we have:

p(x, Ck) = p(x | Ck) P(Ck)

The prior probability P(Ck) can be assessed empirically by
counting the occurences of class Ck in the data, or it can

be defined by the user. In linear and quadratic discriminant
analysis, a gaussian density is assumed for p(x | Ck).

P(Ck) = πk

p(x|Ck) = (2π)−
P
2 |Σ|−

1
2 exp

{
−1

2
(x− µk)TΣ−1k (x− µk)

}
(5)

In LDA, the covariance matrix Σk = Σ is the same for
all classes Ck, whereas QDA assumes a different covariance
matrix for each class.

With the above assumptions, the posterior probability
P(Cj |x) of each class j can be computed using the Bayes’
theorem:

P(Cj |x) =
p(x|Cj)P(Cj)

p(x)
=

p(x|Cj)P(Cj)∑
k p(x|Ck)P(Ck)

It can be easily verified, by computing ln P(Ck|x)
P(Cl|x) , that

the gaussian assumption leads to a linear boundary between
classes Ck and Cl when all classes share a same covariance
matrix Σ (LDA). The quadratic term is maintained when we
assume different covariance matrices for the classes (QDA).

Training LDA or QDA models is done by computing
maximum-likelihood estimates for the parameters πk, µk and
Σk.

B. Naive Bayes classifier

The naive Bayes classifier computes the posterior probabil-
ities P(Cj | x) using the Bayes rule and assuming conditional
independance of the explanatory variables. For an input vector
x = (x1, . . . , xD)T of dimension D, this conditionnal inde-
pendance is expressed as follows:

p(x |Cj) =

D∏
d=1

p(xd|Cj)

In addition, the naive Bayes classifier generally assumes a
gaussian distribution for each of these variables. With these
assumptions, the model is very much the same as the LDA
model seen in the previous section, except that the off-diagonal
terms of the correlation matrix Σ are null.

C. Neural networks for classification

Hidden
layer

Output
layer

Figure 1: Example of a feed-forward network with one hidden
layer

Figure 1 shows an example of a feed-forward neural net-
work with one hidden layer such as the ones used in this study.
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In our case, the output is a vector y = (y1, y2, y3) modeling
the probabilities to belong to the low, normal, or high workload
categories.

In order to distinguish the output computed by the network
from the target values found in our examples, we shall from
now on denote ŷ the computed output, and y the target value.

The network output can be interpreted as a vector of
posterior class-membership probabilities, given the input x:

ŷ =

 ŷ1...
ŷP

 =

P(C1|x)
...

P(CP |x)


With this interpretation, and as the classes are non-
overlapping, we must have:

ŷp ∈ [0, 1], ∀p ∈ {1, . . . , P}
P∑
p=1

ŷp =

P∑
p=1

P (Cp|x) = 1
(6)

One way to ensure the conditions of equation (6) is to take
ŷ = γ(a) where γ is the softmax function described below:

γ :

a1...
aP

 −→


exp{a1}∑P
p=1 exp{ap}

...
exp{aP }∑P
p=1 exp{ap}

 (7)

In equation 7, each ap is a weighted sum of the outputs of the
hidden layer.

Each hidden unit j of the hidden layer computes a value
zj = ϕ(aj) where aj is a weighted sum of 1, x0, . . . , xD. A
common choice for ϕ is to take the sigmoid function ϕ(aj) =

1
1+e−aj

, or the hyperbolic tangent function tanh.
Training the neural network on a set of examples ST =

{(x1, y1), . . . , (xN , yN )} amounts to minimizing an error
function depending on the network weights. These weights
are tuned so as to minimize the error between the computed
outputs ŷ1, . . . , ŷN and the target values y1, . . . , yN . The error
function can be chosen according to the maximum-likelihood
principle, or to the maximum posterior, for example.

In our classification problem, and under some normality
assumptions, the maximum-likelihood principle leads to min-
imize the cross-entropy error function given in equation (8),
where w is the vector of neural network weights.

E(w) = −
N∑
n=1

P∑
p=1

ynp ln
ŷnp(w)

ynp
(8)

The maximum posterior principle leads to a regularized
cross-entropy error, described in equation (9).

Eλ(w) = −
N∑
n=1

P∑
p=1

ynp ln
ŷnp(w)

ynp
+ λ

D∑
j=1

w2
j (9)

The regularization performed through the additional term
in the right-hand side of equation (9) is known in the neural
network literature as the weight decay method.

For the neural networks NNetNh,λ, the hyperparameters
allowing us to select a suitable bias-variance tradeoff are the
number of hidden units Nh and the factor λ in equation (9).

D. Gradient boosting (GBM) applied to classification trees

The stochastic gradient boosting tree algorithm was intro-
duced in [24], [25], [22]. It applies functional gradient descent
to classification or regression trees ([26]).

The functional gradient descent is a boosting technique.
The model h is iteratively improved. Denoting hm the current
model at iteration m, we consider the opposite gradient of
the loss gi = −∂`(ŷ,yi)∂ŷ (h (xi) , yi). A model g is then
tuned to fit this opposite gradient, using a set of examples
(xi, gi)1≤i≤n. The model h is then updated as follows :
hm+1(x) = hm(x) + ρg(x) , where ρ is a constant mini-
mizing the empirical risk. The next iteration repeats the same
procedure for hm+1 until a maximum number of iterations
is reached. In stochastic gradient boosting, the dataset is
randomly resampled at each iteration.

In the Gradient Tree Boosting, the machine learning algo-
rithm boosted by the functional gradient descent is a classi-
fication or regression tree algorithm. Before continuing our
description of gradient boosted trees, let us say a few words
on classification and regression trees (CART) which were
introduced by Breiman in [26]. In this algorithm, a binary tree
is used to represent a binary recursive partition of the input
space. At each node, the input space is split in two regions
according to a condition xj ≤ s. The J leaves of this tree
describe a partition (Rj)1≤j≤J of the input space. Each region
Rj is associated to a constant γj . In the case of regression, it
will be a constant float value (usually the average value of the
examples in region Rj). In classification trees, γj will be a
class (the most represented class among the examples in Rj).
When the tree is used to make a prediction on a new input x,
the value γj is returned when x falls into Rj .

CARTs have some advantages. For example, they are insen-
sitive to input monotonic transformations: Using xj , log(xj)
or exp (xj) leads to the same model. As a consequence, this
algorithm is robust to outliers. It can easily handle categorical
variables and missing values. However it is known to have a
poor performance in prediction. This performance is greatly
improved however when applying gradient boosting to CART.

In gradient boosted trees, the equation of the model update
is the following, where ν is a shrinkage parameter:

hm : x→ hm−1(x) + ν
∑

Rj∈Tm

γmj1Rj
(x) (10)

In our first experiments we used the gbm package in the R
software. Due to major bugs2 we switched to the Xgboost
package.

We can denote GBM(m,J,ν) the gradient boosted tree al-
gorithm, where m is the number of boosting iterations, J
is the number of leaves of the tree and ν is the shrinkage
parameter. The final model obtained after boosting is a sum
of regression or classification trees. J allows us to control the
interaction between variables, as we have J − 1 variables at
most in each tree. ν is the learning rate. In [22] (chap. 10), it is
recommended to take small values for the shrinkage parameter

2The gbm software suffers from a memory leak when using multinomial
distributions. This known bug has not been solved by the gbm developpers
yet.
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(ν < 0.1) and small values for J as well (4 ≤ J ≤ 8). The
hyperparameter grid used for this algorithm and the others is
presented in section III-D.

III. DATA AND EXPERIMENTAL SETUP

A. Explanatory variables

In this study, ATC complexity indicators are used as inputs
to our models. In previous works ([12], [28], [14]), we selected
6 basic complexity metrics among 27 metrics found in the
literature. We used a principal component analysis to reduce
the dimensionality of the inputs, and then selected the most
relevant metrics related to the significant components. The 6
metrics that were found to be the most relevant for the purpose
of building airspace configuration prediction models are the
following:

• vol, the airspace volume of the considered ATC sector,
• nb, the number of aircraft within the sector boundaries at

time t,
• flow15, the incoming traffic flow within the next 15

minutes,
• flow60, the incoming traffic flow within a 1 hour time

horizon,
• avg_vs, the average absolute vertical speed of the aircraft

within the sector,
• inter_hori, the number of speed vector intersections with

an angle greater than 20 degrees.

These metrics are fairly simple and can be computed from
radar tracks and static sector data (geometrical boundaries).

In the current paper, we have chosen to use the same
metrics. We compare several machine learning methods on
historical data from 2016. The ATC complexity metrics are
standardized so as to obtain explanatory variables with mean
0 and standard deviation 1. These standardized variables are
used as input vector x in our models.

B. Target variable

The target variable y we are trying to predict with our
models is a workload category: low, normal, or high. In order
to build our examples, we extracted this workload variable
from historical airspace configuration data. In many cases,
the workload in an ATC sector s at a past time t can be
quantified by considering how it was operated at that time
t. We simply make the following assumptions about the
relationship between sector operation and workload:

• Low workload when sector s is collapsed with other
sectors to form a larger sector operated on a working
position,

• Normal workload when the sector s is operated as is,
• High workload when s is split into several smaller sectors

operated on different working positions.

The other possible states – such as when a part of s is collapsed
with one sector and another part is collapsed with another
sector – are useless for quantifying the workload and are not
used.

C. Datasets and selection procedure

The datasets used in this study are built from radar tracks
and recorded sector operations from two weeks in October
2016, from the five french ATC control centers (Aix, Bor-
deaux, Brest, Paris, and Reims). For any given day of traffic
in that period, only the ATC sectors operated at one moment
or another during the day are used to build examples. Sectors
that were not opened that day are not used to build examples.

For a given ATC sector, we first consider the time windows
during which the sector was actually operated. Then, for each
such time window of duration d minutes, we select all patterns
(xn, yn) within this window, and also all the patterns in the d
minutes before and the d minutes after, within the limits of 0h-
24h. We repeat this procedure for all time windows and ATC
sectors. We then add randomly drawn samples (with equal
probability) until the three classes “low”, “normal”, and “high”
are equally represented in our data.

Our data is split into two subset: a training set made of
the first week, from October 13th to 19th, and a test set
made of the second week, from november 20th to 26th. The
training set is used to tune models and the test set is used
to assess the performance of tuned models. Our training set
comprises 140 168 examples, with complexity and workload
measurements from 511 different ATC sectors. The test set is
made of 137 564 examples, from 513 ATC sectors.

For the methods requiring hyperparameter tuning, a 10-fold
cross-validation is performed on the training set. This cross-
validation is stratified so that every class is approximately
equally represented in each fold. In addition, the folds are
built so that the examples relative to a same ATC sector are
not put in different folds.

The whole process can be seen as a nested cross-validation,
with an outer holdout cross-validation used for model selec-
tion, and an inner 10-fold cross-validation operating on the
training set for hyperparameter selection.

D. Hyperparameter grids

The hyperparameter selection of the inner cross-validation
is performed on the training set, using function TuneGrid of
algorithm 1 and the grids described in table I.

Method Hyperparameter grid
LDA -
QDA -
NBayes -

NNet(n,λ)
Nh = {15, 20, 25}
λ = {10,1,1e-1,1e-2,1e-3,1e-5,0}

GBM(m,J,ν)

m = {5000, 6000, 7000}
J = {2, 3, 4}
ν = {1e-4, 5e-4, 1e-3,1e-2,1e-1}

Table I: Grid of hyperparameters used in our experiments.

IV. RESULTS

Table II shows the rates of correct predictions for the
different machine learning methods used in this study. These
rates are computed from the test set, not from the training set
that was used to tune each model.
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The column labeled “Overall” shows the rate of correct
classifications over all three classes. The rates per class are
given in the corresponding other columns (low, normal, and
high).

Method Overall Low Normal High
LDA 71.4 71.6 70.1 72.4
QDA 74.8 81.8 63.8 79.7

NBayes 76.8 83.2 68.8 79.1
NNet 81.9 75.7 78.6 92.0
GBM 81.8 74.4 79.3 92.1

Table II: Correct classifications rates

In our previous studies [12], [13], we trained a neural
network on data samples from June 2003. The overall rate of
correct classifications was about 83%, and the class-specific
rates were about 65% only for the “normal” workload class,
and about 90% for the two other classes. The new results
shown in table II for the neural network trained on 2016
data are consistent with these previous results, concerning the
overall rate of correct predictions. Our new 2016 dataset is
built so that the three classes are equally represented in the
data, which was not the case in our previous works. This might
explain why the class-specific rates for NNet in table II are
slightly different from our previous results.

V. EXPECTED BENEFITS FOR THE ATM

We have shown in the previous sections that machine
learning techniques can be succesfully used to train models
that predict the air traffic controller workload from a few
complexity measures. What benefits for the Air Traffic Man-
agement (ATM) can be expected from this approach?

The current metrics for workload assessment, such as the
aircraft counts in a sector or the incoming flows of traffic, are
easy to understand and simple to use for the ATM operators.
In comparison, machine learning methods may appear more
sophisticated and complex. What they do exactly and how they
work is not always easily perceived. However, once trained,
the resulting model is just a relatively simple mathematical
formula that can be used to produce workload estimates from
any given input traffic.

Having workload estimates is not sufficient, though. One
is usually interested in defining a threshold value for the
workload, below which the situation is considered safe, and
above which the excessive workload is considered as poten-
tially hazardous. Flow management operators often use the
sector capacity for that purpose, or monitoring values for peak
and sustained traffic, for short-term ATFCM3 measures. One
usually defines at least one capacity value per sector (or a set
of monitoring values), or several ones depending on various
conditions of operation (e.g. military activity, weather, etc).

When considering the impact of ATC complexity on work-
load thresholds, one way to proceed is to modulate these
threshold values, taking into account the level of complexity.
However, ATC complexity is a rather elusive concept that
depends on several interacting factors. The fact that complexity

3ATFCM: Air Traffic Flow and Capacity Management

is not clearly defined and not quantified in a single metric
makes the implementation of this approach difficult.

The reader might have noticed that the notion of capacity –
as a threshold value for the incoming flows – does not appear
in this paper, nor does the notion of peak or sustain monitoring
values usually associated with the aircraft count metric. In our
approach, the model outputs are workload probabilities and
one can choose a probability value as the threshold indicating
a potential overload. This probability threshold is the same for
all sectors and it does not change with the ATC complexity,
because the workload model itself takes the complexity factors
as inputs and weighs them. We no longer have to define
empirically a specific set of threshold values for each ATC
sector (more than 500 sectors in France) and possibly for each
complexity level (assuming these levels can be defined). We
now have only one common threshold probability po allowing
to determine if any given sector is overloaded or not. Let us
consider a machine learning model which output ŷ(x) is a
triple of probabilities (P(C1|x),P(C2|x),P(C3|x)) where x is
the input vector of complexity metrics and C1, C2 and C3 are
the low, normal and high workload categories. The usual deci-
sion functions such as “if flow > capacity(sector,complexity)
then overload” are now replaced by the following decision
function: if P(C3|x) > po then overload

Having defined probability thresholds for “overload” and
“underload”, one can compute a prediction of the optimal
sector openings, based on workload estimates. This is done
by observing how the workload evolves in the prediction
time window, in the ATC sectors of the current configuration.
If the workload probabilities go beyond the “underload” or
“overload” thresholds, a new optimal partition of the airspace
is computed based on the workload model. This operation is
repeated until a sequence of sector configurations is obtained,
covering the time interval for the prediction (see [18], [19]).

Assuming the data used to train the workload model is
representative of the variety of sectors and traffic situations and
of the way sectors are operated, the machine learning approach
proposed in this paper could improve the accuracy of workload
predictions in many applications. A typical example is the
elaboration of realistic predictions of ATC sector openings
based on the estimated workload, as explained above. Another
possible application is a what-if function allowing the operator
to evaluate the impact of ATFCM measures. Assuming the
operator detects a potential overload in an ATC sector, he or
she could check if rerouting or delaying some flights could
alleviate the workload in this sector, and see the impact on
the other sectors. There is no doubt an improved workload
prediction would highly benefit the ATM in terms of cost-
efficiency and safety.

CONCLUSION

Let us now conclude this paper by summarizing our ap-
proach and our findings. We have compared several machine
learning methods on the problem of learning workload pre-
diction models from historical data. The examples used to
learn our models were made of ATC complexity measurements
computed from radar records and sector data, and workload
measurements extracted from past ATC sector operations.
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The three levels (low, normal, high) only give a rough
indication of the workload, when compared with subjective
ratings with 5 to 7 workload levels. However, the chosen target
variable is probably less subject to a number of biases than
subjective ratings or other workload measurements. Further-
more, subjective ratings are usually recorded during normal
sector operations, and only for a few sectors. Little data is
collected concerning overloads or underloads outside the usual
domain of operation of the sector. The workload measurement
we propose has the advantage of being easily available, in large
quantities and for a great number of ATC sectors, because it
can be directly extracted from historical records of past sector
operations.

The results of the current study show that the choice of a
neural network model in our previous works, which was not
motivated by any comparative study at the time, is justified.
Neural networks (Nnet) and gradient boosted trees (GBM) do
perform better than linear models for classification (LDA) or
quadratic discriminant analysis (QDA), with an overall rate of
correct classifications of about 82 %. The rates per class, for
these two best methods, range from 75 % for the low workload
class to 92 % for the high workload class.

In future works, we might want to examine more closely
the generalization performance of our models on elementary
airspace sectors that cannot be split into smaller sectors. For
such sectors, our dataset contains only examples of the two
classes “low” and “normal.” It is well known in machine
learning that a model can only be as good as the data that
was used to produce it. So our models might not correctly
detect overloads for such elementary airspace sectors. If so,
a possible workaround might be to produce some artificial
data samples of the “high” workload class for such sectors.
This would force our model to correctly assess the boundary
between normal and high workload for these specific sectors.

Other work might consider the seasonal variability in our
data. It would be interesting to compare the performances of
a same model tuned several times on data samples of different
months.
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