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Functional Decomposition for Bundled Simplification of Trail Sets

Christophe Hurter, Stéphane Puechmorel, Florence Nicol, Alexandru Telea

Abstract—Bundling visually aggregates curves to reduce clutter and help finding important patterns in trail-sets or graph drawings. We
propose a new approach to bundling based on functional decomposition of the underling dataset. We recover the functional nature of
the curves by representing them as linear combinations of piecewise-polynomial basis functions with associated expansion coefficients.
Next, we express all curves in a given cluster in terms of a centroid curve and a complementary term, via a set of so-called principal
component functions. Based on the above, we propose a two-fold contribution: First, we use cluster centroids to design a new bundling
method for 2D and 3D curve-sets. Secondly, we deform the cluster centroids and generate new curves along them, which enables us to
modify the underlying data in a statistically-controlled way via its simplified (bundled) view. We demonstrate our method by applications
on real-world 2D and 3D datasets for graph bundling, trajectory analysis, and vector field and tensor field visualization.

Index Terms—path visualization, trajectory visualization, edge bundles, functional decomposition, path generation, streamlines

1 INTRODUCTION

Bundling techniques reduce visual clutter in large graph drawings or
trail-sets by grouping curves into bundles. Clutter is traded for overdraw,
making the coarse-scale patterns in the input data better visible. In the
last decade, tens of different bundling techniques have been proposed
for the visual exploration of graphs, networks, motion data, fiber sets,
and multidimensional data. Challenges such as computational scalabil-
ity [32,41,66], incorporating data attributes into bundling [50], shaded
visualization of bundles [39, 63], and handling dynamic data [33, 47]
have been extensively covered by existing techniques.

Bundling can be seen as an image-space simplification operator
[42] that creates a sparse, easy to explore, representation of a dense
curve drawing. Bundles can be seen as simplified proxies for sets of
original data elements. In many cases, such curves are actually sampled
paths of some processes that have a functional nature. Hence, three
questions arise: (1) How can we model curves by recovering their
underlying functional nature? (2) How can we model the variability of
data elements that a bundle summarizes? (3) How can we manipulate
the original data by manipulating its simplified (bundled) view? To our
knowledge, no work has jointly addressed these three questions yet.

We approach these questions by using proven statistical tools from
functional data analysis (FDA). In contrast to current methods, we
model bundling as a data-variability representation and simplification
process. We consider input curves as large sequences of possibly noisy
spatial sample points. To answer (1), we model such curves as finite
linear combinations of spline basis functions. This has two key advan-
tages: It reduces the number of sampling points required to represent
complex-shaped trails, and it allows us to directly control the desired
smoothness of our bundles. For instance, complex-shaped aircraft trails
require thousands of sample points, but can be efficiently encoded with
fewer basis functions and associated coefficients. To answer (2) and
(3), we use Functional Principal Component Analysis (FPCA), a well-
known statistical tool in FDA, that generalizes multivariate principal
component analysis to a functional setting. Given a group of similar
curves, FPCA models any curve in the group as a sum of the mean curve
and a linear combination of so-called principal component functions.
FPCA has two major advantages. First, the PCF’s capture the shapes
of the curve sample with a small number of components. Secondly,
the PCF expansion coefficients, called scores, reveal shape differences
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and variability of each curve around the centroid. As curves and scores
correspond one-to-one, we can easily generate arbitrary curves that
are similarly spatially spread, and have similar shapes, to the bundled
ones, by sampling new scores from the estimated score densities. This
enables us to easily modify a centroid curve and next generate an ar-
bitrary number of curves that (a) follow the modified centroid at a
user-controlled distance but (b) follow the spatial variability and shape
of the input curves. This process, which we dub ‘unbundling’, allows
us to explore and manipulate dense datasets via their bundled versions.

2 NOTATIONS AND RELATED WORK

Following Lhuillier et al. [42], let P = {γi} be a set of paths embedded
in Rd , where d typically is 2 or 3. These can be either edges in a graph
drawing [28] or curves in a trail-set [50, 59]. The bundling B(γi) of a
path γi then satisfies

∀(γi,γ j) ∈ P×P|κ(γi,γ j)< κmax→ δ (B(γi),B(γ j))� δ (γi,γ j). (1)

Here, δ is a distance metric between Rd curves, e.g., Hausdorff
distance [19]; and κ reflects the dissimilarity of two paths γi and γ j,
which always considers the distance δ between paths, but can also
consider path type, weights, timestamps, or directions [31, 63]. Simply
put, Eqn. 1 says that the bundled versions of two sufficiently similar
curves are much closer than their unbundled versions. Bundling meth-
ods are usually grouped into geometry-based vs image-based [30, 74].
In our context it is more useful to discuss bundling methods related to
how they address the three questions outlined in Sec. 1, as follows.

Q1. Functional modeling: When the input data P can be modeled
as functions, it is advisable to use tools that preserve this model.
Functional Data Analysis (FDA) [56] does precisely this: While in
traditional multivariate statistics one samples functions at several
points, ending up with a finite-dimensional vector representation,
FDA expands the functional data on a basis, then uses the vector of
expansion coefficients in a multivariate framework. A clever choice of
the expansion basis allows directly capturing important data features
such as smoothness and details. However, FDA was mainly used for
real-valued functions only, e.g. spectrometric data [58] or weather
data [35], little was done for vector-valued functions, such as our
2D or 3D paths. The main issue for vector-valued functions is the
interdependence of coordinates that, as we shall see, precludes the
analysis in a per-coordinate fashion.

Q2. Bundle modeling: Eqn. 1 tells that data-similar paths (κ(γi,γ j)<
κmax) get bundled into spatially very close curves B(γ). Bundles are
typically not modeled explicitly but emerge purely as visually separate
shapes in the final image. It is thus important to control which paths γi
end in a given bundle. For this, two kinds of methods exist. Explicit
methods build a support data structure I from P and next define B based



on I: Hierarchical methods build I from the hierarchy of a compound
graph [10,13, 23,28, 68] or a tree extracted from a DAG [54]; general-
graph methods use spanning trees [51], Steiner trees [9], spiral trees
[8], Voronoi diagrams [14, 39], and Delaunay triangulations [14, 55].
Given I, paths are routed along it as smooth curves, e.g. B-splines
[10, 23, 28, 52, 68]; Bézier splines [5]; NURBS [55]; and cubic curves
[25]. Explicit methods control which paths end in the same bundle,
i.e., how the input P is partitioned into bundles. Yet, not all types of
path drawings P allow the creation of a structure I. Implicit methods let
paths (or path fragments) self-organize into bundles, by using variants
of the mean shift operator well known in image processing [12]. This is
done in a geometric setting via force-based methods [4,29,47,48,60] or
by using faster, GPU-parallelized, image-based methods [32,41,50,66].
Implicit methods can treat any path-set P; yet, controlling which paths
get bundled together is much harder.

Our proposal combines the advantages of explicit and implicit
methods: We explicitly model parts of the dataset P by bundles, so we
can trace back a bundle to the subset of P it represents; however, we do
not require an explicit support structure I to be constructed from P, so
we keep the advantages of implicit methods.

Q3: Data manipulation: By changing a bundled drawing interactively,
several goals can be achieved, most notably supporting select, navigate,
filter and arrange tasks [6,42]. Several types of changes can be applied
to bundles: Relaxation can be used to (linearly) interpolate between raw
and bundled curves. Introduced by Holten [28], virtually all bundling
methods use this mechanism to control the bundling tightness; changing
the interpolation interactively also allows one to visually link bundled
to un-bundled elements and thus to see what a bundle contains. B
can also be applied (or prevented) locally on P, based on the user’s
point of interest [34], with variants known as fisheye and bring & go
techniques [38,64] and edge plucking [70]. Such techniques are refined
in more recent papers [43,57]. However, all such techniques essentially
change the bundled drawing and not the underlying data. We extend
the above techniques to allow interactive manipulation of the bundled
representation to change the large and/or complex dataset P. Similar
techniques were used to manipulate e.g. shapes via control points, or
spatial regions in 2D visualizations via morphing [7]. Based on this, we
generate a new curve set P′ whose bundling reflects the manipulation,
and whose statistical properties (in terms of spatial spread and local
shape) are close to the original curve set P.

3 FUNCTIONAL BUNDLING FRAMEWORK

Our bundling proposal, based on functional statistics, is explained
next. We first outline how we represent discretized curves as points
in a function space (Sec. 3.2), thereby covering Q1. Next we explain
how to represent a whole bundle by the concept of principal curves
(Sec. 3.3), thereby covering Q2. Finally, we show how we manipulate
data by manipulating the bundles’ principal curves and resampling the
distributions these capture (Sec. 3.4), thereby covering Q3. Section 3.5
gives the pseudocode for our full method, for reading convenience.

3.1 Curve clustering
As we shall see when we present our statistical bundle model (Sec. 3.3),
we model a curve-set C by a mean curve and variance with respect
to this mean. This works well if the variance of curves over C is not
too large, just as PCA works well for point clouds that can be well
approximated by hyper-ellipsoids. To enforce this, we pre-partition
the input path-set P into a set of clusters Ci having limited intra-cluster
variance. Implementation details are given in Sec. 3.5.

3.2 Curve functional modeling

Both our input and bundled curves are sets of Rd curves. In contrast
to most existing bundling methods, we do not have any constraint on
d, i.e. we can handle 2D, 3D, or higher-dimensional curves. Let us
consider our first question Q1—how to model such curves γ . If we
used standard multivariate statistics, γ would be a set of d-dimensional
samples [44, 53, 69]. This can lead to a loss of prior knowledge about
the data, such as control on curve shape or smoothness. Functional

statistics [56] is a recent research area that aims to overcome the
limitations of multivariate data representation when applied to functions
and, in particular, curves. It models curves as functions that are points
in an infinite-dimensional function space. We choose the space L2 of
all square integrable functions, as this space is commonly used when
modeling curves [56]. For smooth curves (and bundled curves) such
as ours, we also assume that the first two derivatives belong to L2.
Altogether, we will model our curves as functions in the Sobolev space

W2 =

{
f ∈C1([0,1],R), f ′ abs. cont.,

∫ 1

0
f (x)2 + f ′′(x)2dx <+∞

}
.

(2)
We can now define the norm of a function f ∈W2 as

‖ f‖W2 =

(∫ 1

0
f (x)2 +β f ′′(x)2dx

)1/2
. (3)

Here, the term f (x)2 gives the distance of f to 0, thus capturing
reconstruction accuracy; the term f ′′(x)2 captures local curvature,
which allows constraining the smoothness of our bundles. The
parameter β is discussed below.

Discrete implementation: In bundling applications, curves come as
discrete (sampled) objects. We model a curve as a set of sample points
γ = (x1, . . .xn), xi ∈ Rd , taken at parametric positions (t1, . . . , tn), ti ∈
[0,1]. From now on, we will use functional notations, e.g. γ(t), with
t ∈ [0,1], to denote continuous functions in W2, and notations without
parameters, e.g. γ , to denote their discrete (sampled) counterparts. To
go to our functional setting, we first find the continuous curve that γ

samples by seeking for a function f ∈W2 with minimal norm and
which minimizes the penalized sum-of-squares residual [56] given by

e =
n

∑
i=1

( f (ti)− xi)
2 +β

∫ 1

0
f ′′(s)2ds. (4)

Note that Eqn. 4 is derived from Eqn. 3 by stating that f passes close to
the points of γ . In both equations, β ≥ 0 balances between reconstruc-
tion error and smoothness: When β is small, approximating curves
f go close to the points xi; large β values yield smoother curves, but
a less accurate approximation. The preset β = 0.1 was used for all
figures in this paper. Using reproducing kernel theory [1], we can next
express any f as a linear combination of basis functions

f (t) = α0 +α1t +
n+2

∑
i=2

αiK(t, ti) (5)

where α0, . . . ,αn+2 are real-valued coefficients computed so as to min-
imize e. K is a cubic spline kernel, which is often used to approximate
curves with continuous second-order derivatives [15], given by

K(t,s) =
max((t− s)3,0)

6
− t2s

2
− t3

6
. (6)

Separately, note that any f ∈W2 with f (0) = f ′(0) obeys the so-called
reproducing property

f (t) =
∫ 1

0

∂ 2K
∂ s2 (t,s) f ′′(s)ds. (7)

Denoting a = (α0, . . . ,αn+2) the vector of unknown coefficients that
we need to find to minimize e, and using the expression of f as a sum
of kernel functions (Eqn. 5) and the property in Eqn. 7, we can write
the error e (Eqn. 4) in matrix-vector notation as

e = ‖γ−Ga‖2 +βaT G̃a. (8)

where G and G̃ are the following matrices

G =

 1 t1 K(t1, t1) . . . K(t1, tn)
...

...
...

...
...

1 tn K(tn, t1) . . . K(tn, tn)

 (9)
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Fig. 1. Functional bundling steps: clustering (Sec. 3.1), curve modeling (Sec. 3.2), bundle modeling (Sec. 3.3), and curve generation (Sec. 3.4).

and

G̃ =


0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 K(t1, t1) . . . K(t1, tn)
...

...
...

0 0 K(tn, t1) . . . K(tn, tn)

 . (10)

To minimize e, we equate its gradient from Eqn. 8 to zero and obtain(
GT G+β G̃

)
a = GT

γ. (11)

This is a linear system with positive-definite matrix and unknown vector
a, easy and fast to solve numerically using LAPACK [40].

Discrete curves γ ∈ P usually have different sample point counts
n and sampling locations ti. This implies a different expression of f
(Eqn. 5) for every γ , which complicates our work. To solve this, we fix
the spline basis used in computation, then find the best approximation
of curves on it: Assuming spline kernels K(t,ηi) are located at p so-
called knot locations (η1, . . . ,ηp) in the interval [0,1], we obtain f by
solving the same linear system Eqn. 11, but with the modified matrices

G =

 1 t1 K(t1,η1) . . . K(t1,ηp)
...

...
...

...
...

1 tn K(tn,η1) . . . K(tn,ηp)

 (12)

and

G̃ =


0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 K(η1,η1) . . . K(η1,ηp)
...

...
...

0 0 K(ηp,η1) . . . K(ηp,ηp)

 . (13)

The matrix G̃ has to be computed only once for a path-set P as it only
depends on the fixed knot locations ηi. The speed of this fixed-knot
evaluation is practically identical to that of the variable-knot version,
as the only thing that changes is the content of the matrices G and G̃,
and the number of knots p is of the same order of magnitude as the
sample point count n.

Summary: Given a curve-set P = {γi}, we compute a matrix A whose
rows ai represent each a curve γi in terms of spline coefficients. (see
also Fig. 1). We next use A to analyze and manipulate P.

3.3 Bundle statistical modeling
Consider now a group of curves C = {γ1, . . . ,γN} ⊂ P. We model C by
its mean curve γ and variance around it, thereby answering Q2. We thus
define bundling as the operation that reduces the deviation of curves in

C from γ . For this, we proceed as follows. For a curve set C, we first
need to model its variability. A classical hypothesis is that C comes
from an underlying hidden stochastic process Γ : Ω× [0,1] where Ω

is the probability space of all possible outcomes. We further assume
that for any t ∈ [0,1], Eω [‖Γ(t,ω)‖2] < +∞. For any t ∈ [0,1], the
expectation Eω [Γ(t,ω)] is well-defined; we estimate it by the empirical
mean curve estimator γ defined as

γ(t) =
1
N

N

∑
i=1

γi(t). (14)

The covariance function H for our curve-set C is defined for any (s, t)
in [0,1]2 as Eω [Γ(s,ω)Γ(t,ω)T ]. H is a d×d symmetric and positive
matrix. Similarly to the mean, the empirical estimator for H is

Ĥ(s, t) =
1
N

N

∑
i=1

γi(t)γi(s)T . (15)

Using Ĥ, we can now explain the variability of C around its mean γ by
using the well-known Karhunen-Loève expansion [62]:

Γ(t,ω) = γ +
+∞

∑
i=1

bi(ω)φi(t) (16)

where bi are real-valued random variables and the functions φi obey∫ 1

0
Ĥ(s, t)φi(s)ds = λiφi(t) (17)

for some values λi > 0. In other words, φi are the (vector-valued)
eigenfunctions of the covariance operator with eigenvalues λi. The
random variables bi are called the scores of the decomposition. They
have zero mean and are pairwise uncorrelated. We call the curves
φ j,1≤ j ≤ n the principal curves of the set C. Note that our principal
curves are not related to the lexically-identical term introduced by
Hastie et al. [27] and further refined by Erdogmus et al. [49]: There,
given a point cloud, one computes a single principal curve that locally
minimizes the sum of square distances to the points; in contrast, our
several principal curves capture the variability of a set of curves in
multiple orthogonal directions.

Discrete implementation: Let xi j = γi(ti j), j = 1 . . .ni be the sample
points of γi at positions 0 < ti j < 1. When all curves γi are sampled
at the same positions, i.e. ti j = s j, i = 1 . . .N, j = 1 . . .n, we compute
the mean curve via Eqn. 14 as γ(s j) =

1
N ∑

N
i=1 xi j. When sampling

positions ti j or sample counts ni differ over C, we gather all samples
xi j and positions ti j into a single set, then solve Eqn. 5 on this set to
obtain γ (for full details, see Yao et al. [72]).



To find the principal curves φi, recall that all our functions f ∈W2

are approximated using spline kernels (Sec. 3.2). Let Φ(t) be the vector
of the p spline kernels introduced in Eqns. 12 and 13, i.e.

Φ(t) =

 K(t,η1)
...

K(t,ηp)

 . (18)

We can thus write any function f with values in Rd as f (t) = aT Φ(t),
where a is a p× d matrix of real-valued coefficients. Each row of a
contains one instance of the values α0, . . . ,αp+2 obtained by solving
Eqn. 11 for one of the d dimensions. Let ai and bi be the matrices for
the curve γi and principal curve φi, respectively. With these notations,
the empirical covariance Ĥ from Eqn. 15 can be written as

Ĥ(s, t) =
1
N

N

∑
i=1

γi(t)γi(s)T = Φ(t)T HaΦ(s) (19)

with

Ha =
1
N

N

∑
i=1

aiaT
i . (20)

Next, by substituting Ĥ(s, t) from Eqn. 19 into Eqn. 17, we get

Φ(t)T Ha

(∫ 1

0
Φ(s)Φ(s)T ds

)
bi = λiΦ(t)T bi. (21)

Denoting HΦ =
∫ 1

0 Φ(s)Φ(s)T ds, Eqn. 21 becomes

Φ(t)T HaHΦbi = λiΦ(t)T bi. (22)

Since Eqn. 22 is valid for any t ∈ [0,1], we get(∫ 1

0
Φ(t)Φ(t)T dt

)
HaHΦbi = λi

(∫ 1

0
Φ(t)Φ(t)T dt

)
bi (23)

or, much more usefully, in matrix form

HΦHaHΦbi = λiHΦbi. (24)

Note that we compute HΦ only once as it depends only on the spline ker-
nel knots ηi; and this computation involves only closed-form integrals.
To speed up solving Eqn. 24, we compute the Cholesky decomposition
HΦ = LT L with L lower-triangular and invertible, so Eqn. 24 becomes

LT LHaLT Lbi = λiLT Lbi. (25)

Since LT can be inverted, the above is equivalent to

(LHaLT )Lbi = λiLbi (26)

which we solve for Lbi by a standard numerical eigensolver [24].
Next, we find bi, the coefficients of principal curve φi, by simple
back-substitution (since L is lower-triangular).

Summary: We capture the variation of a curve-set C by a mean curve
γ and a (potentially infinite, see Eqn. 16) set of principal curves φi,
described by their coefficient matrices bi. We use these next to bundle
and/or manipulate C, as follows.

3.4 Statistical curve generation
To perform both bundling and data manipulation (thereby answering
Q3), we first fix a truncation order M for the infinite series in the
Karhunen-Loève expansion (Eqn. 16). We can now generate a new
curve γ̃ that is statistically similar to those in C by drawing coefficient
vectors ci, i = 1 . . .M from the respective laws of the random variables
bi, i = 1 . . .M and summing them, i.e. by computing

γ̃(t) = γ +
M

∑
i=1

ciφi(t). (27)
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Fig. 2. Sample curve-set (a) and its reconstruction (b) using two eigen-
functions. Graph of eigenfunctions (c) and newly sampled curves (d).

For this, we need the distributions of bi. We could estimate these from
C using non-parametric kernel estimators [18]. If we assume that bi are
normally distributed, a simpler (and faster) way is to use the variance,
which is given by the eigenvalues λi obtained when solving Eqn. 26.
Generating a new curve γ̃ that fits the distribution in C is now easy:

1. Draw n random real numbers c1, . . . ,cM according to indepen-
dent, centered normal distributions with variances equal to the
eigenvalues λi obtained from Eqn. 26;

2. Get the new curve γ̃ by using Eqn. 27.

This mechanism allows us to perform two types of operations:

Data manipulation: Replacing γ by any other curve γ ′ ∈ W2 in
Eqn. 27 lets us create curves that approximate the distribution in C
around any ‘centerline’, thereby manipulating the input curve-set P. If
we use the original expansion coefficients of curves from C instead of
random values ci, we effectively create a new curve-set that has the
same deviation from γ ′ as the original C has from γ .

Bundling and unbundling: Varying the coefficients ci from 0 to their
observed values, i.e. replacing their values by σci in Eqn. 27, where
σ ∈ [0,1] is an interactively controlled parameter, smoothly relaxes
the curves from γ to their initial positions, much like the relaxation
introduced by Holten [28] (see Sec. 4.2 for examples). We dub this
statistical curve generation unbundling: By analogy, if bundling cre-
ates a simplified representation of a path-set (in our case, mean and
principal curves), then unbundling is the inverse process that takes this
representation to generate a path-set. Note that this goes beyond the
classical bundle relaxation used by most bundling techniques: We do
not only control relaxation, via the values ci, but can also generate new
curves, and we can use a different bundle location (centerline) than the
one given by the actual data.

For all tested datasets, setting M ≤ 5 gives very accurate recon-
structions. We show this for an artificial test set of undulating curves
(Fig. 2a), which we reconstruct very well by only M = 2 eigenfunctions
for the two largest eigenvalues (Fig. 2b). Indeed, we see that all φi for
i > 2 are almost zero everywhere (Fig. 2c). Figure 2d shows how we
can generate new curves (in red) which follow the shape of the initial
curve-set within the constraints of the normal distribution assumption.

3.5 Implementation

We first cluster the input path-set P by bottom-up hierarchical agglomer-
ative clustering [16] with a dissimilarity κ(γ1,γ2) between two curves



Table 1. Datasets used for bundling in Fig. 3. For each dataset, we
list its number of curves, computed clusters, sampling point count, total
computation time, and other bundling papers which used it.

Dataset curves clusters samples time (secs.) also used in

France 17275 232 50K 26 [19, 32, 50, 66]
Paris 8620 91 23K 21 [50, 66]
US airlines 2099 129 11K 5 [14, 29, 32, 39]
US migrations 9780 174 30K 7 [19, 29, 32, 66]
Radial 4021 46 30K 7 [19, 32, 63]

γ1 and γ2 equal to their Hausdorff distance, also used by earlier bundling
techniques [19, 63], defined as

dH(γA,γB) = ∑
xA

i ∈γA

d(xA
i ,γB)+ ∑

xB
i ∈γB

d(xB
i ,γA) (28)

where
d(x ∈ γA,γB) = ‖x−nγB(x)‖ (29)

is the distance from a point x ∈ γA to the closest point nγB(x) ∈ γB to x.
We next define the dissimilarity between two curve-sets CA and CB as

κ(CA,CB) =

(
∑γi∈CA,γ j∈CB

|CA| · |CB|
κ(γi,γ j)

)
·

(
M

∑
i=1

(λCA
i −λ

CB
i )2

)
(30)

where λC
i is the ith largest eigenvalue of curve-set C. The variance-

accounting second factor in Eqn. 30 makes comparing curve-sets more
accurate than using only average-linkage distance (first factor), and
much faster than full-linkage distances [36]. To efficiently compute
closest points, we use a quadtree structure [2]. Having too few curves
in a cluster makes the statistical curve generation (Sec. 3.4) unreliable,
as these cannot truly create a distribution (that we next want to sample).
Hence, if we find a cluster with less than 10 curves, and the user does
not want to increase κmin, we exclude these curves from the process—
we simply render them unbundled. This makes sense, as we can then
spot these ‘outliers’ which are dissimilar from all other bundled curves.

Algorithm 1 shows the computation of principal curves of a cluster
C: We first derive the spline expansions of all curves γi ∈C, see Sec. 3.2
(GETCURVEEXPANSION). Next, we compute the principal curves of C,
see Sec. 3.3 (GETPRINCIPALCURVES). Finally, we create new curves
around a (possibly modified) centerline, see Sec. 3.4 (Algorithm 2,
GETNEWCURVE). In the above pseudocode, all point coordinates are
scalars (d = 1) for writing simplicity. Extending to higher dimensions
d > 1 is trivial, see Algorithm 3 (GETCURVEPOINT). Implementing
Algorithms 1..3 is simple: We only need real-valued matrices and
vectors (as data structures), a linear solver, and an eigensolver.

4 APPLICATIONS

We present next applications of our functional bundling for classical
graph bundling (Sec. 4.1), trail data manipulation (Sec. 4.2), vector
field visualization (Sec. 4.3), and tensor field visualization (Sec. 4.4).

4.1 Graph and trail-set bundling
We first use our method for classical graph or trail-set bundling: Given
such a dataset P, we bundle it by computing the per-cluster functional
decomposition of paths γi ∈ P, and next drawing these with coefficient
values ci close to zero. As explained in Sec. 3.4, this generates tight
bundles. Figure 3 shows results for several well-known datasets in
bundling literature: France is a one day of aircraft trails over French
airspace; Paris selects flights that landed, took over, or overflew Paris
in the France dataset; US airlines has flights between US airports over
one year; US migrations captures population movements over the US
over one year; and Radial is a function call graph in a software system.
The France and Paris datasets contain 3D trails (longitude, latitude,
altitude). To our knowledge, only 2D versions (latitude, longitude) of
these datasets have been bundled so far [19, 32, 50, 66]. We directly
achieve 3D bundling by our functional method, see Fig. 4. All other
datasets contain 2D trails. Table 1 shows details, including computation
times. For more insight, Fig. 3 (right column) shows the computed

Algorithm 1 Curve modeling and principal curves computation
procedure GETCURVEEXPANSION(A,C,s, t) . A: returned
coefficients matrix; C: curve sample-points (row-wise); s: sample
positions vector; t: kernel locations vector

n← length(s); m← length(t)
for i = 1,n do . Compute matrix G (Eqn. 12)

G[i,1]← 1; G[i,2]← s[i]
for j = 1,m do

G[i, j+2]← K(s[i], t[ j])
end for

end for
for i = 1,m do . Compute matrix G̃ (Eqn. 13)

for j = 1,m do
G̃[i, j]← K(t[i], t[ j])

end for
end for
M← GT G+β G̃
A←M−1GTC . Inverse M−1 is not computed; a linear system

is instead numerically solved (Eqn. 11)
end procedure
procedure GETHPHIMATRIX(L, t) . L: returned Cholesky
factorization of the HΦ matrix; t: kernel locations vector

n← length(t)
for i = 1,n do

L[i, j]←
∫ 1

0 K(ti,s)∗K(t j,s)ds . Integral is closed form
end for
Cholesky(L)

end procedure
procedure GETCOEFFSCOVARIANCE(Ha,A) . Ha: returned
covariance matrix; A: curve coefficient vectors (row-wise)

(n,m)← size(A) . (n,m) = (#rows,# columns) of A
Ha← n−1AT A . Covariance computed using Eqn. 20

end procedure
procedure GETPRINCIPALCURVES(P,v,A, t) . P: returned matrix
of principal curves coefficients (row-wise); v: returned eigenvalues
vector; A: curve coefficients matrix (row-wise); t: kernel locations

n← length(t)
GetCoeffsCovariance(Ha,A)
GetHPhiMatrix(L, t)
M← LHaLT

eigen(M,P,v) . Compute numerically eigenvectors of M (in P)
and eigenvalues (in v), see Eqn. 26

P← L−1P
end procedure

Algorithm 2 Statistical curve generation
1: procedure GETNEWCURVE(a,b,P,v) . P,v are same

as in GetPrincipalCurves; b: coefficient vector for γ; a: returned
vector of coefficients for the randomly-generated curve

2: n← length(b)
3: for i=1,n do
4: a[i]← b[i]+

√
v[i] ·P[i, :] · rnd(n) . rnd(n) draws a vector

of length n from a normal distribution
5: end for
6: end procedure

Algorithm 3 Curve evaluation (sampling)
1: procedure GETCURVEPOINT(x, t,a,s)) . x: returned point; t:

parametric coordinate of x; a: coefficients vector for the curve that
x is on; s: spline kernel locations

2: n← length(s)
3: for i=1,n do
4: v[i]← K(t,s[i]) . K is the spline kernel in Eqn. 6
5: end for
6: x← vT a
7: end procedure
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Fig. 3. Bundling by functional decomposition for graphs and trail-sets. Per column, left to right: raw curves, bundles, and colored clusters.

curve clusters, colored and shaded using the IBEB technique [63]. To
obtain ‘thick’ cluster shapes, we use a relaxation σ = 0.2.

a) b)

Fig. 4. Bundling a 3D trail-set. (a) raw data; (b) bundles.

As visible, our functional method produces similar results to those
yielded by earlier methods [29, 32, 63, 66]. Of course, differences exist,
e.g. in terms of bending, thickness, and number of bundles produced;
and one can argue that other techniques produce more insightful and/or
more aesthetically pleasing results than ours. We did not explore the
parameter space of our method in detail to see how it can be tuned
to imitate (or improve) upon existing methods, which is surely to be

considered next. As Tab. 1 shows, our current implementation is much
slower than state-of-the-art GPU-based methods [41, 66]. However,
as already explained, our method can directly work in more than two
dimensions, whereas all existing fast bundling methods known so far
are designed (and optimized) for 2D datasets. Apart from 3D bundling,
our contributions are in the novelty of functional bundling, the repre-
sentation of bundles as explicit objects (to our knowledge, only done so
far by SBEB [19]), and our ability to manipulate the underlying data
via bundling, the latter being demonstrated next.

4.2 Trail-set manipulation for ATC planning

We next show how functional bundling enables users to easily manipu-
late a path-set via its simplified (bundled) representation. Our data is a
set of recorded aircraft trails in 3D space (longitude, latitude, height).
In air-traffic control (ATC), flight routes consist of an ordered sequence
of spatio-temporal references called beacons. Aircraft usually follow
flight routes but can deviate from them, within bounds, for safety or
traffic optimization reasons. Routes are very complex to define in prac-
tice and have a huge impact on flight time, fuel consumption, and traffic
complexity [71]. Also, routes are incrementally changed over time by
ATC planners to optimize traffic flow (managing more aircraft) with
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Fig. 5. Changing flight routes of a 3D flight dataset using functional bundling and user-edited flight routes. See Sec. 4.2.

higher safety and improved traffic fluidity, but also when new flights
are scheduled. Each route change can have a large impact on a high
(national or international) planning level, and change impact is very
complex to forecast. Summarizing, the process of changing a route,
based on existing and new flight data, and assessing the change impact,
is expensive and laborious. We aim to improve this.

Functional bundling offers a new way to easily change flight routes
based on actual traffic data and to assess change impact, as follows.
Figures 5a-c show flight paths for a specific section of a flight route
between Nice (southeast of France) and Paris (north of France) from
three viewpoints. Flights first ascend, then descend—see view (c). A
planner wants to improve average aircraft fuel consumption (for all
flights on this route) by changing the route to reduce the ascent and
descent parts to lower altitudes. For this, the planner interactively
modifies the mean path γ of the trail-set P (shown red in Fig. 5). We
support this by a simple 3D curve-editing tool that allows sketching a
target curve γ ′ (Fig. 5d, green). The curve is sketched in the view plane;
its depth coordinates are set to the average depths of the trail-set P as
seen from the current viewpoint—γ ′ thus lives in the half-transparent
plane Z (Fig. 5d). After sketching, the mean curve γ is smoothly
attracted towards γ ′ (Fig. 5d). A To incrementally model a reasonably
complex 3D centerline γ

′ with limited effort, a few sketch steps, done
from different viewpoints, are typically enough (Fig. 5e). Next, our
method changes the input trail-set P so as to follow γ

′ and to respect
their original spatial spread in P (Sec. 3.4). The new trails P′ (cyan
in Figs. 5f-h) can be compared from the original viewpoints with the
input trails (shown black). Using P′, we can now compute the fuel
savings, and repeat the loop if we want to further improve. This scenario
answers the question “how much fuel can we save if all existing flights
Nice-Paris flew lower but having the same spatial distribution?”. We
can also address a more involved question “how much fuel can we save
if extra flights Nice-Paris were to appear, following the same spatial
distribution as the current ones, along the new low-altitude route?”. For
this, we use the curve-generation method in Sec. 3.4 to create new trails
that follow our desired route γ ′ and also follow the spatial distribution
in P.

The entire above analytic loop was executed by several specialist
ATC planners from the French civil aviation, with over 10 years of
experience in the field, who also came up with the fuel-saving question.
The loop took a few minutes, which the planners stated to be much more
cost-effective for exploring ‘what if’ ATC-planning scenarios than their

current tools which require manually changing every single flight-path
when a route changes by changing the path’s tens of control points.
Our current 3D sketching tool is, of course, basic; more advanced
ones can be imagined. One could also argue that editing a 3D curve-
set by changing its centerline could be done by simpler geometry-
based techniques. However, generalizing this to d > 3 dimensions
and ensuring that the edited curve-set has similar statistical properties
(spatial spread, mean curve, and local curvature) as the original one,
is far from trivial. Functional bundling offers these features by design.
We do not know of any curve-set editing techniques that guarantee
such properties; for instance, classical spline or NURBS editing via
control points can easily create kinks, loops, and fold-backs in a curve.
Separately, we see how functional bundling can easily handle 3D trail-
sets; more dimensions, e.g. data on flight speed, fuel live consumption,
or wind force, can be immediately added, as we handle any number
of dimensions (Sec. 3.5). Finally, we note the similarity of our use-
case with transmogrifiers [7]: Both techniques modify a visualization
by sketching simple shapes directly in screen space. However, our
method modifies not just the visualization, but the underlying data,
with statistical guarantees offered.

4.3 Vector field visualization
Simplified visualizations of vector fields have used streamline clusters
[37, 45, 73] depicted by representative streamlines from each cluster,
for tasks like 3D clutter and occlusion reduction and spotting salient
patterns. We achieve similar results: We start with a large set of
3D streamlines γi created by densely seeding the flow domain, and
bundle it by our method. Figure 6(a-e) show results for increasing
simplification levels, i.e., decreasing numbers of clusters, for a flow in a
basin computed on a grid of 128×85×42 cells [26], and a set of 4595
streamlines (183K sample points). For comparison, Fig. 6f shows two
simplification levels for the same field computed with the algebraic-
multigrid (AMG) method of Griebel et al. [26]. Our method captures
well the salient flow structures, even at coarse levels, producing results
in line with AMG. The inlet-outlet flow and the vortex-like region in
Fig. 6a are visible even in the coarsest view (Fig. 6e). Next, in Fig. 6e
we generate extra curves using the data distribution around the cluster
centerlines (Sec. 3.4). We see how these curves obey the local flow
structure and add detail without increasing clutter or occlusion. The
image corresponding to Fig. 6e, without generated curves, is not shown
for space reasons, but is easy to imagine—it contains curves centered in
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Fig. 6. (a-e) Progressive bundling of 3D streamlines for a flow field. (f) Comparison with multiscale flow simplification [26]. See Sec. 4.3.

the thick streamline ‘bands’ visible in Fig. 6e. Highly simplified images
like Fig. 6e cannot be (easily) obtained by using fewer randomly-seeded
streamlines, as this does not guarantee good coverage, but require
more involved streamline seeding methods [45, 73]. The only other
streamline bundling method we are aware of is hierarchical streamline
bundles (HSB) [73]. Similarities, but also differences, exist with our
work: (a) HSB uses carefully-placed seeds based on the field’s salience;
we do not assume any specific seeding or streamline spatial distribution.
(b) Both methods use the same type of bottom-up hierarchical clustering
and similar Hausdorff distances to compare paths. (c) both methods
describe streamline clusters statistically; HSB defines a centerline as
an explicit streamline being closest to all streamlines in a cluster, and
measures the standard deviation from it; we propose the more detailed
principal curves, which do not force the mean to be an existing input
curve, and model variance by M eigencurves rather than simple standard
deviation. (d) HSB defines bundles as the streamlines closest to a
cluster’s boundary, thereby aiming to capture cluster boundaries; we
define them as a sampling of a cluster that minimizes variance, thereby
aiming to capture the inside of clusters. Finally, comparing Tab. 1 with
Tab. 1 in HSB [73] shows that we are one order of magnitude faster
on similar datasets (number of cells, streamlines, sample points), even
though HSB has a CPU-GPU implementation. Summarizing, we do
not claim better simplified vector field visualizations than comparable
methods—but we show that functional bundling is a serious contender.

4.4 Tensor field visualization

Finally, we consider the simplified visualization of fiber tracts obtained
as streamlines of the major eigenvector of a diffusion tensor imaging
(DTI) field. Such datasets have a spatially complex structure which
makes them hard to explore [3]. To assist with this, simplified visu-
alizations have been proposed. Early methods cluster the fibers and
display a small set of representatives for each cluster [46,65], or cluster
outlines [11]. Bottger et al. [4] extend the mean-shift bundling [32]
to 3D connections between brain areas; since the input data is a graph
rather than a trail-set, the deformations produced by bundling are not
critical. Everts et al. propose a variant of the above which, when used
with careful seeding, filtering, and smoothing of the tracts, reduces spa-
tial clutter [21]. Given all above, it is arguably interesting to explore
new ways of producing simplified visualizations of DTI fiber sets.

Figure 7 shows how functional bundling produces simplified fiber-set
visualizations. We traced 150352 fibers from high fractional anisotropy
areas in a 128× 128× 51 DTI volume (dataset from Everts et al.
[21]). We filtered fibers shorter than 2mm, yielding a set P of 120593
fibers (6.4M sample points), shown in Fig. 7a color-coded on direction,
with alpha blending. This image has visible occlusion and clutter.
Figures 7b,c show our functional bundling results for two clustering

a)

b)

c) f)

e)

d)

Fig. 7. DTI fiber tract bundling. (a) Input fibers. (d) Isotropic KDEEB
bundling. Our method, with geometry-only similarity (b,c) and geometry-
and-anisotropy similarity (e,f). Pseudo-shading effects are added using
tube (e) respectively cone (f) billboard sprite textures. See Sec. 4.4.



levels. We draw only the cluster centerlines for clarity. The main
connection patterns start becoming visible. Figure 7d shows the results
of mean shift bundling [4], implemented by extending KDEEB [32]
to 3D, which yields more wiggling bundles than our method. This is
easily explained: KDEEB constrains bundle curvature only by post-
processing the bundled curves by 1D Laplacian filtering; in contrast,
we use curvature explicitly during bundling (parameter β , Eqn. 4). We
can do more: Images (b-d), and all other fiber-bundling methods we
know, use only the local relative position and proximity of the fibers.
This creates gaps in surfaces formed by fibers, such as in the corpus
callosum area in Figs. 7b-d. We fix this by a dissimilarity κ that uses
the original DTI data: Given two fibers γA ∈ P, γB ∈ P, we define

κ(γA,γB) = ∑
xA

i ∈γA

dDT I(xA
i ,γB)+ ∑

xB
i ∈γB

dDT I(xB
i ,γA) (31)

with

dDT I(x ∈ γA,γB) = d(x,γB)

(
cP(x)

(
e2(x) ·

x−nγB(x)
‖x−nγB(x)‖

)k

+1

)
(32)

where d is given by Eqn. 29; cP(x) =
2(λ2−λ3)
λ1+λ2+λ3

, where λ1 ≥ λ2 ≥ λ3
are the tensor eigenvalues, is the planar anisotropy [67] at x; e2 is the
eigenvector for λ2; and k= 2 is a constant. Simply put, Eqn. 31 says that
fibers in high planar-anisotropy regions are more similar to other fibers
outside the plane than to neighbor fibers in the plane; elsewhere, κ is the
Hausdorff distance of two 3D curves (compare Eqns. 31 and 28). This
creates clusters that are orthogonal on fiber planes in regions of high
cP, so showing such clusters strongly bundled effectively ‘pulls’ fibers
close to such planes into the planes themselves, i.e., towards the location
of the clusters’ centerlines; in low cP regions, we get isotropic bundling
[4, 21]. Figures 7e,f show the resulting simplifications, rendered with
view-plane-aligned billboard point sprites textured to imitate shaded-
tube profiles and cone profiles (see insets in Figs. 7e,f respectively).
Fiber sheets are now better visible, and have fewer gaps, than in Figs. 7b-
d. The sprites create a pseudo 3D-like shading effect for the fiber-set
(Fig. 7f). This is similar to depth-dependent halos (DDH) [22], but
with important differences: Close fibers visually merge into sheets and
tubes, much as in DDH; these structures are shaded in our case, whereas
DDH renders only black shapes with white outlines. To conclude, we
argue that, albeit not proven to surpass all comparable methods, our
functional bundling yields visually compelling low-clutter simplified
visualizations of complex DTI fiber-sets.

5 DISCUSSION

We discuss next several relevant aspects of our method.
Shape control: Our bundles are guided by the mean curves computed
by functional decomposition from the clustered path-set. Our clusters
(Sec. 3.1) are coherent, so bundles will follow the input data with small
deviations only. This contrasts to most, if not all, implicit bundling
methods which strongly deform the input curves [4, 19, 29, 32, 50, 66].
The deformation amount in a bundle, given by the eigenvalues λi
(Sec. 3.3), could be used to quantify, visualize, or limit the bundling
extent, in contexts where path positions encode relevant data.
Multidimensionality: While we only show results for d = 3
dimensions (aircraft trails, streamlines, and DTI fibers), our entire
method, including its implementation, can directly handle higher
dimensions (Sec. 3). Except FFTEB [41], this is the only bundling
method we know of that generalizes to d > 3.
Data manipulation: Functional decomposition allows modeling, but
also manipulation of, a path-set. Besides the ATC planning use-case
(Sec. 4.2), we could e.g. use exactly the same simple and fast procedure
to re-organize a bundled drawing, e.g. to prevent distortions in some
areas or to emphasize patterns of interest [32].
Parameters: We use the following parameters for all figures in this
paper (see also Fig. 1): The dissimilarity κ tells which curves end
in the same cluster. Good κ presets for isotropic bundling are given

Table 2. 3D datasets used for functional bundling in Secs. 4.2-4.4.

Dataset curves clusters samples time (secs.)

ATC flights (Sec. 4.2) 4438 132 117K 6
Streamlines (Sec. 4.3) 4595 241 183K 46
DTI fibers (Sec. 4.4) 120593 608 6.4M 143

in earlier bundling papers [19, 46, 73]; for DTI fiber bundling, we
propose a custom κ (Eqn. 31). The number of knots of our spline basis
(Sec. 3.2) is preset to p = 50. To ensure a good approximation between
discrete curves and the spline-based representations fitted to them, we
use a relatively high number of curve sampling points (n between 50
and 100). This also makes n of the same magnitude order as p. The
smoothing β (Eqn. 4) is preset to 0.2. Higher values yield smoother,
but less well approximating, bundles. The truncation order is preset to
M = 5 (Sec. 3.4). Finally, the bundling strength σ is interactively set
to values in [0,1] to navigate between the original and fully bundled
curves (Sec. 3.4).
Limitations: If paths in a cluster differ too much, the computed center-
lines γ i contain spurious curls and twists, so the statistical generation
(Sec. 3.4) can create curves that may not resemble the input ones. This
is analogous to using PCA to characterize a point distribution which de-
viates too much from a hyper-ellipsoid. A related issue that we assume
the coefficients bi to be normally distributed. This generates random
curves which are normally distributed around γ i (Sec. 3.4). This normal
distribution may differ from the distribution of the actual input curves.
Studying how to better capture this actual distribution in the generation
process is left for future work.

Our CPU-based functional decomposition is linear in cluster size.
Table 2 lists the statistics for the 3D datasets used in Secs. 4.2-4.4.
About 80% of our entire pipeline cost (Tabs. 1 and 2) is the bottom-
up path clustering [16], which is O(nN2 logN) for N paths each of
n sample points on average. Hence, functional bundling by itself is
reasonably fast and could benefit from faster clustering techniques
[17, 20, 61]. Testing such algorithms, e.g. following recommendations
for trail clustering [46], and using GPU-based linear-algebra tools to
implement Algorithm 1, can make our method competitive with the
fastest bundling techniques [32, 41, 66].

6 CONCLUSION

We have presented a new method for visual simplification of graphs
and trail-sets based on functional decomposition. We model curves as
linear combinations of piecewise polynomial (spline) basis functions
with associated expansion coefficients, and we model path sets as a
mean function with its associated expansion plus a set of principal
curves expressed via the same basis functions. Trails correspond one-
to-one to expansion coefficients which allows a simple generation of
arbitrary curves that are statistically similar to the given ones. We
use this technique in two ways: First, we create bundled views of the
data based on the centroid functions. Secondly, we allow deforming
the centroid function to manipulate the underlying data in a simple
way while preserving statistical properties. Our method handles path-
sets in any dimension, has a sound mathematical foundation, and can
be implemented using standard linear algebra tools. We demonstrate
our proposal for the visual simplification of graph drawings, 3D air-
craft trail-sets, 3D streamlines and DTI fiber tracts, and the interactive
construction and analysis of air-traffic flight routes.

Many extensions are readily possible. Principal curves allow a direct
way to quantify, visualize, and limit the amount of deformation that
bundling creates, which is useful when one wants to analyze and control
such deformations. Secondly, functional bundling can simplify path-
sets of more than three dimensions. This opens interesting ways for the
(visual) exploration of high-dimensional static and dynamic path-sets.
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