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This paper presents a new approach to perform 4D trajectory tracking for transportation aircraft. As current systems are extensions of 3D guidance with overfly time constraints at some given points and no general control framework has been developed for 4D guidance of a transport aircraft; the main goal of the proposed approach is to introduce a new method based on the inversion of the flight dynamics while avoiding numerical issues. A six degree of freedom model for a wide body transportation aircraft was developed in Matlab to provide a numerical simulation of the proposed approach, showing satisfying results.

Until today no general control framework has been developed for 4D guidance of a transport aircraft and current systems are extensions of 3D guidance with overfly time constraints at some given points. In that case control laws are based on frequency decoupling and different PID control layers with gain scheduling provisions. Some attempts have been performed recently [START_REF] Wahid | Design of aircraft space indexed guidance along an airstream[END_REF], [START_REF] Wahid | Space-indexed aircraft trajectory tracking[END_REF] using mainly Non Linear Inversion (NLI). Other authors have proposed to extent the energybased control approach [START_REF] Lambregts | Vertical flight path and speed control autopilot design using total energy principles[END_REF] to 4D guidance [START_REF] Lambregts | Automatic flight control concepts and methods[END_REF], [START_REF] Chudy | Tecs/thcs based flight control system for general aviation[END_REF].

However in both cases serious limitations appear.

In this study it is considered that aircraft dynamics are composed of fast dynamics related with the angular attitude of the aircraft and of slow dynamics related with the trajectory followed by the aircraft, referenced at its center of gravity. For modern transportation aircraft with Fly by Wire (FBW) technology, the autopilot is in charge of controlling the aircraft angular attitude, improving flying qualities through stabilization and generating automatic protections in dangerous piloting situations. In this paper, the autopilot will be considered to be an specific device providing in an integrated way these essential functions, so that the attention will be focused on the auto guidance system in charge of controlling the slow flight dynamics with the aim of providing 4D guidance.

The paper is organized as follows, Section 2 provides the developed mathematical model and actuator dynamics. In Section 3 are discussed two previous approaches pointing out their limitations for 4D guidance. Section 4 describes the adopted control structure and Section 5 shows the simulation results of the control approach. Finally, conclusions are given in Section 6.

FLIGHT DYNAMICS

Adopted Frames and Flight Variables

The Earth reference frame is considered in this paper to describe the 4D trajectories. It is assumed that the Earth reference frame is Earth centered and is denoted by

F E = (O E , x E , y E , z E ).
Then, a 4D reference trajectory can be defined by three functions associated with the coordinates of the center of gravity of the aircraft supposed to follow it. These functions are parameterized by time:

x R (t), y R (t), z R (t), t ∈ [t init , t end ],
where t init is the reference flight starting time and t end is the reference flight ending time. A second reference frame, the body frame, is considered to represent the fast dynamics of the aircraft, it is attached to the aircraft c.g. and is defined as F B = (C, x B , y B , z B ). The x B axis goes from tail to nose of the aircraft while the z B axis, perpendicular to the latter, points downwards and lies in the symmetry plane of the aircraft, to complete the triad, the direction of y B can be obtained by the cross product z B × x B . Lastly, denoted by F W = (C, x W , y W , z W ), the wind frame is introduced since it allows to represent the aerodynamic actions on the aircraft. This frame has its x W axis aligned with the aircraft velocity vector relative to the surrounding air mass, i.e. the airspeed (V a ). The difference between x B and the projection of x W in the Cx B z B plane, gives birth to the angle of attack (α). Also, the angle created by the projection of V a in the Cx B y B plane and the x B axis, is known as the sideslip angle (β). Physical quantities from the wind frame can be mapped into the body frame by the following rotation matrix:

L BW =    cαc β -cαs β -sα s β c β 0 sαc β -sαs β cα    (1)
In the same tenor, the velocity of the aircraft

V E = [ ẋ E , ẏ E , ż E ]
T expressed in the body frame, is given by V B = [u, v, w] T . Also, the euler angles will be used to describe the attitude of the aircraft. These angles will be bounded as follows φ{-π, π}; θ{-π 2 , π 2 } ; ψ{-π, π}, although limits are never reached during normal operation for transportation aircraft. The rotation matrix from the body to the earth frame considering a rotation around the axes in the order zyx, is given by:

L EB =    c θ c ψ s φ s θ c ψ -c φ s ψ c φ s θ c ψ + s φ s ψ c θ s ψ s φ s θ s ψ + c φ c ψ c φ s θ s ψ -s φ c ψ -s θ s φ c θ c φ c θ    (2)
Moreover, from the rigid-body equations and other known relations extracted from [START_REF] Etkin | Dynamics of Flight, Stability and Control[END_REF]; [START_REF] Stevens | Aircraft Control and Simulation[END_REF] it is obtained:

   u v w    =    Vacαc β + Vw x Vas β + Vw y Vasαc β + Vw z    (3) α = arctan w -Vw z u -Vw x (4a) β = arcsin v -Vw y Va (4b) Va = (u -Vw x ) 2 + (v -Vw y ) 2 + (w -Vw z ) 2 (4c)
where V wx,y,z are the wind components in the body frame.

The vector R = [α, β] T is defined for simplicity in further equations.

Attitude Dynamics

Concerning the attitude of the aircraft, the angular rates (Ω = [p, q, r] T ) are produced by the deflection of ailerons, elevator and rudder, denoted by [δ ail , δ ele , δ rud ] T . The rotational equations of the aircraft are given by:

Ω = I -1 Mext -I -1 Ω × (IΩ) (5) 
where

M ext = [L , M, N ]
T are the rolling, pitching and yawing moments respectively, and I stands for the inertia matrix, in kg • m 2 : Thereby, introducing relations for the aerodynamic moments:

I =    A 0 -E 0 B 0 -E 0 C    =    1,
   L M N    = 1 2 ρSV 2 a       bC l cCm bCn    + C δ    δ ail δ ele δ rud       (7)
where

C δ =    bC l δail 0 bC l δrud 0 cCm δele 0 bCn δail 0 bCn δrud    (8)
and ρ is the air density, S wing area, b wingspan, c mean chord, and the rolling, pitching and yawing aerodynamic coefficients (C l , C m , C n respectively) are denoted by: 

  C l Cm Cn    =    C l β β + C lp bp 2Va + C lr br 2Va Cm 0 + Cm α α + Cm q cq 2Va Cn β β + Cn p bp 2Va + Cn r br 2Va    (9)
Then, equation ( 5) can be rewritten as in [START_REF] Lombaerts | Nonlinear reconfiguring flight control based on on-line physical model identifica-tion[END_REF] like.

Ω = 1 2 ρV 2 a SI -1       bC l cCm bCn    + C δ    δ ail δ ele δ rud       -I -1 Ω × (IΩ) (10)
Subsequently, differentiating (4a), (4b), and using (3), ( 14), ( 15), an expression rearranged for Ω is obtained:

α β = H 11 H 12 H 13 H 21 H 22 H 23    p q r    + Q 1 Q 2 (11)
where

H 11 = -tan β cα + Vw y cα Vac β H 12 = 1 + Vw x cα + Vw z sα Vac β H 13 = -tan β sα + Vw y sα Vac β H 21 = sα + Vw z c β + Vw y sαs β Va H 22 = Vw z cαs β -Vw x sαs β Va H 23 = -cα + Vw y cαs β + Vw x c β Va Q 1 = 1 Vac β g 1 - 1 m (L + F thr sα) + 1 Vac β Vwx sα -Vwz cα Q 2 = 1 Va g 2 + 1 m Y -F thr cαs β + 1 Va Vwx cαs β -Vwy c β + Vwz sαs β with g 1 = g cαc θ c φ + sαs θ g 2 = g c β c θ s φ + s β cαs θ -sαs β c θ c φ
which can be written as:

Ṙ = H (R) Ω + Q (R) (12) 
The rotation speed components are related with the attitude angle rates by the Euler equations given by: 

  φ θ ψ    =    1 tg θ s φ tg θ c φ 0 c φ -s φ 0 s φ c θ c φ c θ       p q r    (13)

Guidance Dynamics

An acceleration equation in the body frame is denoted by: 

  u v ẇ    =    1 m (Fx a + F thr ) -gs θ + rv -qw 1 m Fy a + gc θ s φ + pw -ru 1 m Fz a + gc θ c φ + qu -pv    ( 14 
)
where m is the mass, g gravity, F thr thrust force, and

   Fx a Fy a Fz a    = L BW    -D Y -L    (15)
are the aerodynamic forces dependent on Lift (L), Drag (D) and Sideforce (Y ), which simultaneously are related with their aerodynamic force coefficients by:

   D Y L    = 1 2 ρSV 2 a    C D C Y C L    (16)
Then, an expression in the Earth frame is obtained:

   ẍE ÿE zE    = L EB    Fx a + F thr Fy a Fz a    1 m +    0 0 g    (17)
Regarding to airspeed in the wind frame, after differentiating (4c), and using (3), ( 14), ( 15), it is obtained that:

Va = g 3 + 1 m F thr cαc β -D + p Vw z s β -Vw y sαc β + q Vw x sαc β -Vw z cαc β + r Vw y cαc β -Vw x s β -Vwx cαc β -Vwy s β -Vwz sαc β ( 18 
)
with

g 3 = g -cαc β s θ + s β c θ s φ + sαc β c θ c φ
Then, neglecting wind disturbances and taking into account a longitudinal decoupled motion, ( 18) can be reduced to:

Va = 1 m (F thr cα -D -mgsγ ) (19)
Introducing the Flight Path Angle (γ = θ-α), the vertical motion is given by:

γ = 1 mVa (F thr sα + L -mgcγ ) (20)
Considering that transport aircraft perform through their yaw stabilizer equilibrated turns, the heading rate is given by:

ψ = g Va tg φ (21)

Actuator Dynamics

Let a first-order model be adopted for the aerodynamic actuators, writing δ d i (i = ail, ele, rud) as the commanded positions of the control surfaces, and δ i as the current positions of the control surfaces:

δi = 1 ξ i δ d i -δ i ( 22 
)
where ξ i are the time-constants. Also, the resultant thrust produced by the engines is supposed to behave as a firstorder system, denoted by

Ḟthr = 1 ξ T F d thr -F thr ( 23 
)
where the F d thr is the desired thrust and F thr the current thrust. Besides, the time-constants of the actuators keep the relation: ξ T >> ξ i .

PROPOSED CONTROL APPROACHES

In this part are briefly discussed two previous control approaches that resulted in the design of 4D guidance devices. The first one is related to energy-based control while the second is related with direct Non Linear Inversion control. Limitations of both methods are pointed out.

Total Energy Control Approach

In this method, the concept of a potential flight path angle denoted by: γ p = γ + Va g is considered. It indicates the potential path angle that can be achieved by bringing the acceleration to zero by applying elevator until γ becomes γ p . This potential angle is found to be related with the specific total energy rate of the aircraft, therefore, the approach consists in controlling the behaviour of the energy rate by controlling γ p using the thrust and elevator.

However, the control of this variable is performed with non available plant dynamics while introducing empirically an energy rate distribution variable L = γ -Va g to distribute the energy rate between the flight path angle and acceleration. This distribution variable is controlled directly by the elevator, bypassing the fast dynamics and arising difficulties to integrate other autopilot functions.

Furthermore, the speed and altitude dynamics in this approach are expected to be identical, bringing to light a problem for some 4D trajectories where this is not true.

Finally, no integral term has been proposed to force online position error to zero.

Direct Non Linear Inverse Control Approach

This method distinguishes between fast and slow dynamics. The variables used to create the link between these dynamics are the components p, q, r of the rotational speed. Therefore, two layers of inversion are considered for this approach. The first regards to the fast dynamics and allows to determinate the necessary position of the actuators (deflections of aileron, elevator and rudder) as functions of the desired angular velocities, based on equations (10),( 12),(18), and ( 22). The second layer takes care of the slow dynamics, and allows to obtain the angular velocities and Thrust required to follow the 4D commanded trajectory. However, in the second layer, this approach presents as main drawback a singularity when inversion is performed to get the input parameters to the slow dynamics. This problematic appears after introducing the control inputs p, q, Ḟthr T in the equation of the outputs, which is made by obtaining the jerk vector of the positions in F E by differentiating (17). The control inputs appear in the matrix LEB . This is possible thanks to the Euler property and ( 13), which allows to rewrite LEB in terms of L EB and the skew-symmetric matrix of the angular velocities LEB = L EB Ω . The resultant equation using the vector F ab = [Fx a + F thr , Fy a , Fz a ] T and considering that the mass rate of change is very small compared to the aircraft total mass, has the form: 24) where

   x (3) E y (3) E z (3) E    = 1 m M pqT    p q Ḟthr    + 1 m MrF ab r + L EB m    Ḟxa Ḟya Ḟza    ( 
M pqT =    c θ c ψ MpF ab MqF ab c θ s ψ -s θ    (25) 
with

Mp =    0 c φ s θ c ψ + s φ s ψ c φ s ψ -s φ s θ c ψ 0 c φ s θ s ψ -s φ c ψ -s φ s θ s ψ -c φ c ψ 0 c φ c θ -s φ c θ    (26a) Mq =    -c φ s θ c ψ -s φ s ψ 0 c θ c ψ -c φ s θ s ψ + s φ c ψ 0 c θ s ψ -c φ c θ 0 -s θ    (26b) Mr =    s φ s θ c ψ -c φ s ψ -c θ c ψ 0 s φ s θ s ψ + c φ c ψ -c θ s ψ 0 s φ c θ s θ 0    (26c)
Note that to develop a control law using NLI or any other model-based-approach relying on equation ( 24), the inverse of (25) needs to be computed.

In the case in which φ ≈ ψ ≈ 0, the determinant of this matrix is given by:

| M pqT | = s θ Fy a + (s θ (Fx a + F thr ) -c θ Fz a ) (s θ Fz a ) + c θ (c θ (Fx a + F thr ) + s θ Fz a ) Fz a (27)
and, when considered θ ≈ 0, a singularity appears for F xa + F thr = 0. This is the case when the plane is cruising at constant speed. Therefore, taking into account that the cruise phase of a flight is essential, and that the airplane will go through this condition very often, any algorithm using this control approach should be discarded. This result is not surprising, realizing that when a cruise flight with the Euler angles near zero is performed, the matrix L EB will remain constant, so its derivative is expected to tend to zero. Furthermore, it is worth to say that even if the first derivative of the Euler angles along with the Thrust are considered as the control inputs, φ, θ, Ḟthr T for instance, like in [START_REF] Wahid | Space-indexed aircraft trajectory tracking[END_REF], the corresponding matrix (similar to (25)) will be described by ( 28) and will also present singularities during the cruise phase.

M φθ =    c θ c ψ M φ F ab M θ F ab c θ s ψ -s θ    (28)
where

M φ = Mp (29a) M θ =    -s θ c ψ c θ s φ c ψ c θ c φ c ψ -s θ s ψ c θ s φ s ψ c θ c φ s ψ -c θ -s θ s φ -s θ c φ    (29b)
So another method should be searched in order to avoid this singularity.

PROPOSED 4D CONTROL APPROACH

The main objective for the proposed 4D trajectory tracking control strategy is to avoid singularity issues while inverting the flight dynamics. This will be made possible by considering three phases:

(1) Control of the longitudinal and lateral motions, θ and φ, with stabilisation in yaw ψ. We will consider that thanks to the relation α = θ -γ, to command θ when γ is known, is equal to command the AoA.

The control of θ and φ while stabilizing yaw motion can be performed using classical control techniques (2) Control of Speed and the Flight Path Angle as functions of AoA and Thrust using the guidance equations ( 19),( 20).

(3) Adjustment of the heading angle given by ( 21), targeted speed, and desired flight path angle as functions of the positions errors generated by a 4D reference trajectory.

Proposing desired dynamics for the speed V d a , heading ψ d , and flight path angle γ d as first order linear responses, they are such as:

Va = 1 τ V V d a -Va (30a) γ = 1 τγ γ d -γ (30b) ψ = 1 τ ψ ψ d -ψ (30c)
where τ V , τ γ , τ ψ are time-constants. Equations ( 19), (20), and ( 21) can be rewritten as

m τ V V d a -Va + mgsγ = F thr cα -D(ρ, α, Va) (31a) mVa τγ γ d -γ + mgcγ = F thr sα + L(ρ, α, Va) (31b) tg -1 Va gτ ψ ψ d -ψ = φ (31c)
Therefore, in order to obtain the values of the thrust and AoA required to follow their proposed dynamics, we solve the nonlinear set of equations (31a), (31b) for F thr and α, and apply saturations if the results are out of the thrust F min thr , F max thr and angle of attack α min , α max limits. Note that the Jacobian of the right hand side of equations (31a), (31b) is

J = cα -F thr sα + ∂D(ρ,α,Va) ∂α sα F thr cα + ∂L(ρ,α,Va) ∂α (32) 
and its determinant

| J |= F thr + ∂L(ρ, α, Va) ∂α cα + ∂D(ρ, α, Va) ∂α sα > 0 (33)
assuring that inversion is possible at all times. The φ value required to follow the lateral dynamics, it is obtained directly from (31c) and is also saturated within the limits φ min , φ max . Now, to assure that the 4D trajectory error tends to zero after some perturbation, the reference values for V a , γ, and ψ must be adapted. The proposed adaptive scheme is the following:

V d a = Va + δVa (34a) 
γ d = γ + δγ (34b) 
ψ d = ψ + δψ (34c)
where

δVa = 1 τx (x R -x E ) (35a) δγ = 1 τz (z R -z E ) (35b) δψ = 1 τy (y R -y E ) (35c)
and τ x , τ y , τ z are time-constants such that:

τ x >> τ V ; τ y >> τ ψ ; τ z >> τ γ .
The term δψ is depicted in figure 1. 23)). Also, the required AoA is computed and then used to calculate a desired pitch angle (using the Flight Path Angle). The commanded (x R (t), z R (t))

trajectory is followed with a small delay.

For the lateral motion, another 100m sinusoidal reference trajectory for y R (t) is proposed, the response of the controller is depicted in figure 3. For practical purposes, the initial heading of the airplane is zero degrees. The vector Ṙa can be taken from ( 12) and ( 18), and the vector Ω from (10). Consequently a NLI leads to an attitude control input denoted by:    For k i > 0 (i = 1, ...6) are gains chosen in order to assure asymptotical convergence of the variables to their desired values. The feasibility of this approach depends on the singularity of C δ , the matrix involving the aerodynamic coefficients (assumed to be known thanks to experimental data, airflow simulations, or any other method) due to the control surfaces, aspect that can be handled.

  Núñez * F. Mora Camino * * H. Bouadi * * * 1. INTRODUCTION As air traffic is predicted to increase dramatically in the upcoming years, new problems and requirements are arising, among those related with the use of 4D trajectories are of most interest. NextGen FAA (2016) and SESAR EUROCONTROL (2016) control projects, where traffic capacity and safety issues are central, adopt the Trajectory Based Operations (TBO) paradigm, which supposes 4D guidance effectiveness. Then, an important enabler is automation, allowing aircraft to follow with more accuracy flight plans characterized by a 4D reference trajectory. It is expected that accurate 4D guidance will improve safety by decreasing the occurrence of near mid-air collisions for planned conflict free 4D trajectories, and then diminish the workload associated to a single flight for air traffic controllers. This leads to propose in this paper a new approach to perform 4D guidance.

  Hameduddin and Bajodah (June 2012), Kim and Kim (November 2003), Ali et al. (2010), Mattei and Monaco (October 2014). In this work, the autopilot implemented in the simulations is based on an inversion of the fast dynamics, like in Escamilla-Núñez et al. (January 2017) (see Section 7).
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 1 Fig. 1. Change in ψ required to follow the reference trajectory
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 2 Fig. 2. X, Z desired stand for x R , z R . X, Z stand for x E , z E .
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 3 Fig. 3. Y desired stands for y R . Y stands for y E . Heading and roll angles are also shown.6. CONCLUSION

  where the wind effects appear in the terms involving Ṙa, and:(p -p d ) -k 2 ( ṗ -ṗd ) + pd -k 3 (q -q d ) -k 4 ( q -qd ) + qd -k 5 (r -r d ) -k 6 ( ṙ -ṙd ) + rd